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Abstract: Using many-body dissipative particle dynamics (MDPD), polymer solutions with
concentrations spanning dilute and semidilute regimes are modeled. The parameterization of MDPD
interactions for systems with liquid–vapor coexistence is established by mapping to the mean-field
Flory–Huggins theory. The characterization of static and dynamic properties of polymer chains is
focused on the effects of hydrodynamic interactions and entanglements. The coil–globule transition
of polymer chains in dilute solutions is probed by varying solvent quality and measuring the radius
of gyration and end-to-end distance. Both static and dynamic scaling relations for polymer chains
in poor, theta, and good solvents are in good agreement with the Zimm theory with hydrodynamic
interactions considered. Semidilute solutions with polymer volume fractions up to 0.7 exhibit the
screening of excluded volume interactions and subsequent shrinking of polymer coils. Furthermore,
entanglements become dominant in the semidilute solutions, which inhibit diffusion and relaxation
of chains. Quantitative analysis of topology violation confirms that entanglements are correctly
captured in the MDPD simulations.

Keywords: polymer solutions; many-body force law; Flory–Huggins theory; Zimm dynamics;
entanglements

1. Introduction

Because of the fast evolution of polymer science and nanotechnologies, polymeric materials with
precisely tailored functionalities, such as block copolymer thin films and polymer nanocomposites,
become central to a wide range of emerging applications. In order to achieve versatile properties and
functionalities of the macroscopic materials, polymeric building units with increasingly smaller sizes
and different types of chemistry are integrated into more and more complex structural hierarchy in
controlled and synergistic manners. This demand challenges manufacturing processes, in which one
must close the gap between adjusting macroscopic characteristics and controlling micro-nanostructures
of building blocks.

Among many existing methods for polymer synthesis and processing, solution deposition
techniques (e.g., drop casting, dip coating, spin coating, electrospray, and printing) [1–6] are
frequently employed due to the ease of implementation and low cost. Namely, an initial liquid
precursor with solutes and/or dispersed moieties transforms into a solid material upon evaporation.
The thermodynamics and kinetics of the precursor solutions during the drying process govern the final
structure of the system [7–11]. However, the complex interplay among polymer, solvent, and other
components in the evaporating mixtures is not fully understood; in-situ experimental characterization
of non-equilibrium multi-component systems across multiple length and time scales is still difficult.

Computational simulation is appealing for elucidating the intricate polymer–polymer and
polymer–solvent interactions and revealing detailed dynamics of the multi-component systems
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on the molecular scale. Dissipative particle dynamics (DPD) emerges as a popular mesoscopic
technique for modeling polymer solutions/melts and probing their structural and rheological
properties [12–29]. A recently developed variation, many-body dissipative particle dynamics
(MDPD), further extends DPD’s capabilities to producing the liquid–vapor coexistence and simulating
evaporation process [30–35], which is a promising step toward modeling solution-based processing
of polymeric materials. Despite many successful MDPD simulations [35–40], there is no report on
the parameterization of MDPD interaction parameters [37,41] for the liquid–vapor coexistent systems.
More importantly, a comprehensive study of the conformation and dynamics of polymer chains in
solutions is lacking.

This work seeks to establish a general mapping of MDPD parameters onto the Flory–Huggins
χ parameter for the liquid state with coexisting vapor, which enables physical representations of
multi-component, multi-phase polymeric systems, e.g., polymer solutions, copolymers, and polymer
blends. Based on the obtained relation, polymer solutions with a full range of concentration and
solvent quality are modeled using MDPD, followed by systematic characterization of the structural and
dynamic properties of solvated polymer chains. The analysis is focused on revealing hydrodynamic
interactions and quantifying entanglements of chains.

The present article is organized as follows: Section 2 briefly reviews the MDPD method and
describes the details of the polymer simulations. Section 3.1 presents the parameterization of the
MDPD interactions based on the mean-field Flory–Huggins theory. In Section 3.2, the conformation
and dynamics of the polymer chains in dilute solutions with varying solvent quality are probed and
the simulation results are compared to the Zimm model. Section 3.3 focuses on semidilute solutions
and the effect of polymer volume fraction on the chain morphology and dynamics, through which the
roles of hydrodynamic interactions and chain entanglements are elucidated. Finally, a summary of the
important results and conclusions is presented in Section 4.

2. Methods

Many-body dissipative particle dynamics [30,32–34,41,42] is used to model polymer solutions
with volume fractions ranging from 0.008 to 0.7, representing dilute solutions to semidilute solutions.
MDPD is a mesoscopic particle-based method that can effectively model multi-phase, multi-component
systems and captures correct hydrodynamic behavior [35,39,40,43–49]. In MDPD, a volume of fluid
is modeled by coarse-grained beads, and each bead represents a cluster of molecules. The evolution
of the entire system over time is dictated by the motion of beads, which is governed by Newton’s
equation of motion, mdvi/dt = fi. The thermodynamics and transport properties of the system are
determined statistically via the ensemble of MDPD beads.

The force acting on each bead i from neighboring beads consists of three parts
fi(t) = ∑

(
FC

ij + FD
ij + FR

ij

)
, each of which is pairwise additive. The three terms, respectively,

describe the conservative, drag, and random forces. The sum runs over all beads j within a cutoff radius
rc from bead i. The main advantage of MDPD compared to standard DPD is its ability to produce the
coexistence of liquid and vapor phases in coarse-grained fluids, which is achieved by introducing a
long-range attractive force that is responsible for surface tension. In particular, the conservative
force FC

ij is given by FC
ij = Aij

(
1− rij/rc

)
r̂ij + Bij

(
ρi + ρj

)(
1− rij/rd

)
r̂ij with rij =

∣∣ri − rj
∣∣/rc

and r̂ij =
(
ri − rj

)
/
∣∣ri − rj

∣∣ [32]. Here, The attraction strength Aij < 0, the repulsion strength
Bij > 0, and the repulsion range rd < rc, making repulsion short-range and attraction long-range.
The repulsive term depends on local densities ρi and ρj as well as inter-bead distance rij; the
attractive term depends only on the distance. The interaction parameters Aij and Bij are given
in terms of kBT/rc, where kBT is the Boltzmann constant and T is the temperature of the system.
The local density for each particle is defined as ρi = ∑j 6=i 15/2πr3

d

(
1− rij/rd

)2 [32]. This many-body
conservative force was shown to produce cubic pressure-density equations of state with van der
Waals loop, thereby permitting the liquid–vapor coexistence with a sharp interface [30,32,34,35].
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Notably, the soft-core repulsive term allows a degree of overlap between beads, in contrast to hard-core
potentials (e.g., the Lennard–Jones potential) in which the repulsion diverges at zero inter-bead
distance. Thus, larger time steps than those typically used in molecular dynamics (MD) simulations,
which commonly involve hard-core potentials, can be applied in the MDPD simulations. Together
with the coarse-grained representation of multi-component, multi-phase systems, MDPD can capture
physical phenomena occurring on relatively larger length and time scales than those normally captured
by MD. These features make MDPD an ideal computational tool to resolve the polymer dynamics in
liquid–vapor multi-phase systems.

The drag force is FD
ij = −λωD

(
rij
)(

r̂ij · vij
)
r̂ij, where λ is a simulation parameter related to

the viscosity arising from the interactions between the constituent beads of fluid. ωD is a weight
function satisfying ωD = 0 at rij = rc, and the relative velocity is vij = vi − vj. The random force is
FR

ij = σωR
(
rij
)
ξij r̂ij, where ξij is a zero-mean Gaussian random variable of unit variance and σ is the

amplitude of the noise. The fluctuation-dissipation theorem relates σ to λ as σ2 = 2kBTλ [50]. Finally,
the weight functions take the following form: ωD

(
rij
)
= ωR

(
rij
)2

=
(
1− rij/rc

)2 for rij < rc [15].
The combination of drag force and random force serves as a thermostat applied on the MDPD system
for producing the canonical (NVT) ensemble [14,15,50]. All three forces act on pairs of neighboring
beads such that momentum is conserved locally, and hydrodynamic behavior emerges in relatively
small systems [12,14].

The equation of motion is integrated in time using the velocity-Verlet algorithm. The simulation
takes rc as the characteristic length scale with a dimensionless value as rc = 1. The corresponding
energy scale kBT at room temperature is chosen as the characteristic energy. Thus, kBT = 1 at T = 25 ◦C
is considered in this work. The characteristic mass is defined as the mass of a MDPD bead and takes
the dimensionless value of 1. The characteristic time scale is then defined as τ =

√
mr2

c /kBT = 1.
A time step ∆t = 0.01 is used for all simulations characterizing static and dynamic properties of
polymer [15,51]. Unless otherwise stated, the value of λ is chosen as 4.5 to obtain a relatively rapid
equilibration of the system temperature and to ensure the numerical stability of the simulations for the
specified time step. All simulations are performed by modifying and extending the particle dynamics
software code LAMMPS [52].

In this work, the MDPD non-bonded parameters of Aij = −40 and Bij = 40 are used for any two
beads of the same type (i.e., solvent–solvent or polymer–polymer interactions). Notably, MDPD applied
to multi-component systems requires a constant Bij to ensure a conservative many-body force law [53].
Thus, the attraction parameter Aij is adjusted to control the polymer–solvent interactions, which can
be mapped to the Flory–Huggins χ parameter as detailed below. The repulsion cutoff radius is set
as rd = 0.8 for all non-bonded interactions. As used in our previous study, this parameter set yields
a liquid–vapor system with a liquid number density of 3.926 and viscosity of 3.510 [35]. Therefore,
the total density of polymer solutions is set to ρsys = 3.926 for all simulations conducted in this study.

The widely used bead-spring model is applied to represent flexible polymer chains. Groups of
repeating units in a linear polymer are modeled as consecutive MDPD beads connected by Hookean
springs, whose potential is given by Ebond = 1

2 Kb
(
rij − r0

)2. Here, Kb = 128 is the elastic constant, rij is
the distance between bonded beads i and j, and r0 is the equilibrium bond distance. An equilibrium
bond distance of 0.685 is chosen such that the mean distance between connected beads coincides with
the position of the first neighbor peak in the radial distribution function of the MDPD liquid with
density 3.926. Initial configuration of each polymer chain is created by a self-avoiding random walk
on a face-centered-cubic (fcc) lattice superimposed on the simulation box [54,55]. Polymer beads in
a chain are consecutively inserted onto the lattice in a stepwise manner, mimicking chain-growth
polymerization. The probability of successful insertion and chain growth depends on the generated
bond angle and the density of unoccupied sites. Once the polymers are constructed, the corresponding
number of solvent beads are added to the system at randomly positions to solvate the polymer and
obtain the desired polymer volume fraction.
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The dimensions of the simulation box vary from 10 × 10 × 10 to 40 × 40 × 40, with periodic
boundary conditions imposed in all three directions. The total number of beads in our simulations
ranges from 3000 to 251,264. The number of beads per chain is varied from N = 5 to 140. In order
to minimize the finite-size effect on the equilibrium properties of the system [21–23], the length L of
the cubic simulation box satisfies the condition L/Rg > 5, where Rg is the radius of gyration of the
polymer chains. Each simulation system is typically equilibrated for 5 × 105 time steps prior to a
production run of at least 5 × 105 time steps.

3. Results and Discussion

3.1. Parameterization of MDPD Parameters

In order to represent physical systems of specific chemistry, one must establish a rigorous
approach to the parameterization of the interaction parameters. Unlike the commonly applied DPD
method [15,56], to date only a few MDPD studies have reported general methods for obtaining a
corresponding parameter set capable of reproducing the thermodynamic properties of experimental
fluids [37,41]. The central idea of the MDPD parameter derivation is mapping the configurational
part of the free energy density of MDPD binary mixtures to the mixing free energy density
from the mean-field Flory–Huggins lattice theory [57], similar to the approach applied to DPD
method [15]. Due to the no-go theorem of MDPD (Baa = Bbb = Bab for a binary mixture of a
and b fluids), the cubic repulsive term in the MDPD equation of state of a single component fluid [32]
p = ρkBT + αAρ2 + 2αBr4

d
(
ρ3 − cρ2 + d

)
does not contribute to the configurational part, where α, c,

and d are fitting parameters [32]. Thus, the mapping yields the same expression of the Flory–Huggins
χ parameter as the one for DPD, χ = 2α(ρa + ρb)(Aab − Aaa)/kBT = 2αρsys∆A. A set of simulations
of binary mixtures of monomers is carried out to establish the χ-∆A relation, where only the cross
attraction parameter Aab is adjusted from −14 to −7. The χ parameter is calculated from the density
profiles of the phase-separated systems. Only systems showing strong phase separation are sampled
because the Flory–Huggins mean-field expression breaks down for systems with small χ [15]. A good
linear relation between χ and excess repulsion ∆A is confirmed in Figure 1a; the fitting results in
χ = (0.479± 0.007)∆A for ρsys = 3.926. Notably, the MDPD method can be readily extended to
simulate ternary systems given that the parameterization of the self and cross interaction parameters
is carried out in a rigorous way. In addition to the Flory–Huggins approach employed in this work,
Hildebrand solution theory approach [58,59] and more advanced ab-initio methodologies [60] may be
adapted in MDPD to simulate ternary mixtures of beads dissimilar in both size and chemistry.

The surface tension of the binary mixtures can be also determined in the
simulations. The Irving–Kirkwood expression is used to measure surface tension, given as

σ =
Lz

2

〈
pzz −

1
2
(

pxx + pyy
)〉

, where pxx, pyy, and pzz are the diagonal components of the microscopic

pressure tensor [61] and Lz is the dimension of the simulation box in the z direction. Here, the z
direction is normal to the time-averaged interfaces. The factor of 1/2 arises from the existence
of two interfaces in the periodic simulation domain. The angular bracket represents ensemble
average. The dependence of surface tension on the χ parameter is subsequently compared to
the classical van der Waals theory σ ∼ χα

(
1− χcrit/χ

)1.5. Figure 1b shows good agreement
between the simulation results and the theory. The variation of surface tension is given by the
fitting σ ∼ (0.82± 0.04)χ0.29±0.02[1− (2.34± 0.03)/χ]1.5. Consistent with the DPD results [15],
the extrapolation of the surface tension of the MDPD fluids leads to a non-classical critical point of a
value of 2.34 higher than the theoretical value χcrit = 2. Nevertheless, the critical point found from the
MDPD simulations agrees well with the one obtained in the DPD simulations.
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Figure 1. (a) Relation between effective χ parameter and excess repulsion between unlike species
in a binary mixture of monomers defined as ∆A = Aab − Aaa, where a and b represent the types of
interacting beads. The dash line is the least-square linear fitting. (b) Simulated surface tension of the
binary mixture as a function of χ parameter. The smooth curve is a fit to a 3/2 power law with a
non-classical critical point.

3.2. Dilute Polymer Solutions for Different Solvent Quality

Dilute polymer solutions with a volume fraction φ ≈ 0.008 are investigated. Each system has M
chains with N beads per chain. The inter-molecular interactions between different chains are present in
the system, closely representing physical systems. The number of chains is adjusted accordingly to keep
the polymer volume fraction constant when the chain length is varied. The solvent quality is controlled
by tuning the polymer–solvent attraction parameter Aps, which determines the polymer–solvent
Flory–Huggins parameter χps according to the linear relation obtained above. The mean-square
radius of gyration of the polymer chains and their end-to-end distance are calculated to characterize
the equilibrium structure of polymer chains, defined by

〈
R2

g

〉
=
〈
(1/N)∑N

i=1(ri − rcom)2
〉

and〈
R2

1N
〉
=
〈
(r1 − rN)

2
〉

, respectively. Here, ri is the position of the ith bead in a polymer chain and rcom

is the center-of-mass position of the chain. The coil–globule transition of the flexible chains having
different lengths is monitored as the solvent quality varies. Figure 2 clearly shows the characteristic
collapse of polymer chains from an expanded coil state to a globule state as Aps decreases, modeling the
solvent quality change from good to poor. The observed continuous coil–globule transitions are
consistent with theory predictions [62,63], where longer chains exhibit much more pronounced change
in size. The spatial distribution of chains also reveals that the conformation transition is accompanied
by the phase separation due to inter-molecular interactions. In particular, multiple collapsed chains
aggregate into a bigger globule as shown in Figure 2b. Figure 2a also indicates that the Flory theta
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point of the transition corresponding to the ideal chain behavior does not coincide with the athermal
condition of Aps = Ass = App = −40.
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Figure 2. (a) Mean-square radius of gyration as a function of solvent quality quantified by Aps for
dilute polymer solutions with different chain lengths. Snapshots of dilute polymer solutions with
chain length N = 100 in the: (b) globule; and (c) expanded coil states. Colors represent different
chains. The lines are only guides to the eyes. The error bars represent the standard deviations of the
ensemble averages.

To explicitly analyze the correspondence of solvent quality to Aps, Figure 3 plots the variation of
mean-square radius of gyration as the chain length increases on the log–log scale for three different
values of Aps. The linear behavior of

〈
R2

g

〉
as a function of bond number confirms that the MDPD

results can be well described by the classical scaling law [64,65],
〈

R2
g

〉
∼ (N − 1)2ν, where ν is the

Flory scaling exponent. The good agreement between the simulation data and the theory indicates
that, at low polymer volume fractions, the presence of polymer–polymer inter-molecular interactions
have negligible effect on the polymer conformation. The power-law fitting of the simulation data
for the athermal solvent (Aps = −40) yields

〈
R2

g

〉
= (0.066± 0.008)(N − 1)1.22±0.03. The end-to-end

distance also obeys the scaling relation, and the fitting results in
〈

R2
1N
〉
= (0.49± 0.09)(N − 1)1.17±0.04.

The scaling exponents obtained from both measurements are consistent: v = 0.61± 0.02 from the
radius of gyration and v = 0.59 ± 0.02 from the end-to-end distance. The exponents imply that
the chains exhibit good solvent behavior in the athermal solvent, where effective excluded volume
interactions are imparted through the MDPD conservative force. This result is consistent with the
DPD simulations of dilute solutions of flexible “bead-spring” chains [21,23], but is in contrast to recent
characterization by Jamali et al. [41] for MDPD fluids, in which the athermal solvent leads to the
ideal-chain exponent of 0.5.
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A prominent feature of MDPD is the many-body nature of the repulsive part of the conservative
force, which depends on the local density. Due to the athermal condition of the attractive force,
the excluded volume effect must be induced by the difference in repulsions, leading to energetically
favorable polymer–solvent interactions. Moreover, constant repulsion strength suggests that the
preferential interaction between polymer and solvent beads is caused by the local density difference.
In order to provide quantitative evidence, the structural property of the polymer solution in the
athermal condition is further examined by the coordination numbers and radial distribution functions
(the calculations include the bonded, nearest neighbor beads). Figure 4 shows the time-averaged
coordination numbers of polymer and solvent beads up to the repulsion cutoff rd = 0.8. Although the
polymer chains are formed by matching the equilibrium bond distance to the nearest neighbor distance
of the solvent, the coordination number of the polymer beads is still slightly higher than that of the
solvent beads, which is caused by the existence of the bonded neighbors for polymer beads. The local
densities of a bead should scale with its coordination number. Thus, the repulsion between two
polymer beads will be larger than between a polymer bead and a solvent bead, leading to unfavorable
polymer–polymer interactions and the effective excluded volume effect. The radial distribution
functions in Figure 4 also confirm that the polymer beads interact preferentially with the solvent beads.

The reduction of polymer–solvent attraction strength increases the χ parameter and cancels the
excluded volume effect, leading to the collapse of the chains. The transition from good to poor solvent
occurs near Aps = −38.5, where the scaling exponent for radius of gyration becomes v = 0.51± 0.01.
The polymer coils behave like ideal chains in this theta solvent except for small N, as the ratio of the
mean-square end-to-end distance to the mean-square radius of gyration

〈
R2

1N
〉
/
〈

R2
g

〉
≈ 6 (see Table 1).

For even larger value of Aps, the scaling exponent decreases to v = 0.29± 0.03, corresponding to the
poor solvent condition and the associated globule state. Notably, the behavior of short polymers in
theta and poor solvents deviates from the power-law predictions. In Figure 3, the slope of the

〈
R2

g

〉
curve is significantly higher than 0.3 for short chains in the poor solvent (Aps = −36). This implies
that short chains are more extended than the ideal chains described in the theory, which is attributed
to the intrinsic chain rigidity induced by the many-body repulsion. The results show that the scaling
regime in MDPD generally requires chains having more than 10 beads. Thus, the effective persistence
length of the bead-spring chains in MDPD is longer than that in DPD, where even chains with as few
as five beads were found to follow the scaling relation well [20,22].
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The excluded volume effect and associated entropic cost for solvation of polymer can be
interpreted in the light of the scaled particle theory [66,67]. The theory considers a chain with N
beads of diameter d in a solvent of beads with the same diameter, where the volume of a single bead
is v = πd3/6. The polymer chains do not interact in dilute solutions—each independently occupies
a volume characterized by Rg. Therefore, the mean volume fraction of polymer is φp ∝ Nd3/R3

g
and the solvent volume fraction is φs = 1 − φp. Solvation of polymer requires work to form a
cavity in the solvent to accommodate the solute molecules. Considering consecutive insertions of
chain beads, the total work of cavity formation for a chain is given by Wp(N, d) = ∑N−1

j=0 Wj(d),
where j is the number of previously inserted beads. Upon the insertion of the jth bead, the chain
occupies volume fraction φp,j = φp j/N ∝ dj/(N − 1)3ν, and the total occupied volume faction is
φj = φp,j + φs. The work for individual bead Wj(d) is given by the scaled particle theory [67] as
Wj(d)/kBT = ln

(
1 + yj

)
+ 9yj + 15y2

j /2 + 3y3
j , where the ratio of occupied to unoccupied volume is

yj ≡ φj

(
1−φj

)
. According this expression, the entropic cost for cavity formation increases as the

solvent quality varies from good to poor, quantified by the scaling exponent ν. The increase of chain
length N leads to smaller entropic cost regardless of the solvent quality.

Table 1. Structural properties of dilute polymer solutions in the theta solvent condition. The mean-square

radius of gyration
〈

R2
g

〉
and mean-square end-to-end distance

〈
R2

1N
〉

were obtained by averaging over
all chains in the system for each frame, and then averaged over 5000 frames with a separation of 1τ

between consecutive frames.

N 〈R2
g 〉 〈R2

1N 〉 〈R2
1N 〉/〈R2

g 〉 Cn

5 0.43 2.22 5.23 1.14
8 0.74 4.12 5.57 1.21

10 0.95 5.41 5.68 1.23
20 2.06 12.06 5.85 1.30
30 3.20 18.89 5.90 1.34
40 4.36 25.87 5.94 1.36
50 5.39 31.71 5.89 1.32
80 8.74 52.64 6.03 1.37

100 11.21 66.91 5.97 1.38
140 15.82 92.87 5.8 1.37

Another measurement of the conformation and stiffness of polymer chains is the dimensionless
characteristic ratio, defined as the ratio of the measured mean-square end-to-end distance to the
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value of an ideal chain CN−1 =
〈

R2
1N
〉
/
[
(N − 1)

〈
l2〉]. Here,

〈
l2〉 is the mean-square bond length.

As the chain length increases, the characteristic ratio approaches a limiting value C∞ as shown in
Figure 5. Namely, the characteristic ratio decreases in a poor solvent and increases in theta and good
solvents. Table 1 tabulates the characteristic ratio of chains with different lengths in a theta solvent.
The asymptotic value C∞ is approximately 1.4, which is slightly larger than the value of 1.27 in the DPD
simulations [51]. This provides additional evidence of the enhanced excluded volume interactions
caused by the MDPD force law compared to the DPD model, which effectively increases chain rigidity.
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the standard deviations of the ensemble averages.

One major advantage of DPD and MDPD simulations over other coarse-grained techniques
such as Monte-Carlo and self-consistent field theory is the ability to simulate dynamical systems.
The dynamical properties of polymer chains in the theta solution are probed through diffusion
coefficient and relaxation time. The diffusion coefficient can be measured by calculating the
mean-square displacement of the center-of-mass coordinate for each chain,

〈
[rcom(t)− rcom(0)]2

〉
,

and utilizing the Einstein relation,
〈
[rcom(t)− rcom(0)]2

〉
= 6Dt. The value is extracted from the

linear fitting of the mean-square displacement. Notably, the diffusion behavior of polymer can still
suffer from strong finite-size effect even when L/Rg > 5 [23], but the influence on the scaling law
of the diffusion coefficient is negligible. Figure 6a shows the diffusion of polymer chains in MDPD
simulations with a fitting D ∼ N−0.52±0.05 for the theta solvent. The scaling exponent is consistent with
the Flory exponent v = 0.51± 0.01 obtained from the mean-square radius of gyration. The diffusion
of polymer chains in dilute solutions obeys the Zimm model, D ∼ N−υ [64]. Therefore, the MDPD
simulations correctly capture hydrodynamic interactions considered in the Zimm model. In addition,
the relaxation time is another important probe of the polymer dynamics, which can be extracted from
the conformational autocorrelation functions. Herein, the autocorrelation function of the end-to-end
vector of the chains R1N = r1 − rN is calculated, defined as C(t) = 〈R1N(t + t0) ·R1N(t0)〉/

〈
R2

1N
〉
.

The angle bracket means average over all chains and many time origins, t0. The longest relaxation
time τ is obtained by fitting the autocorrelation function to an exponential form, C(t) = C0exp(−t/τ).
The relaxation times of polymer chains having different lengths in the theta solvent are shown in
Figure 6b. Apparently, the linearity of the data point breaks down for long chain lengths, possibly due
to the finite-size effect and interactions between image chains across the periodic boundaries. The best
fitting of the relaxation time excluding chains of length N ≥ 80 yields τ = (0.73± 0.06)N1.52±0.02.
The Zimm model predicts that τ ∼ N3ν ∼ N1.5 for theta solvents, while the Rouse model overestimates
the relaxation time as τ ∼ N2. Again, the simulation results confirm the Zimm dynamics for the
modeled polymer chains.
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Figure 6. Log–log plots of: (a) the diffusion coefficient; and (b) the longest relaxation time as functions
of chain length in the theta solvent. The black dash-dot line in (a) indicates the diffusion coefficient of
the solvent beads. The dashed lines in (a,b) represent the power-law fittings of the data. The error bars
are smaller than the symbols.

3.3. Semidilute Solutions and Entanglements

In this section, the results of semidilute polymer solutions with volume fractions ranging from
0.02 to 0.7 are presented. The number of chains in this series of simulations is 100 and the chain length
is 30. The chains of this length exhibit reptation behavior in previous simulations [51,68]. Due to
considerably stronger density-dependent repulsion between MDPD beads than the standard DPD
repulsion, an MDPD system exhibits thermodynamic behavior quite different from that of a standard
DPD simulation [51]. Notably, the thermodynamics of polymer solutions with high volume fractions
or even polymer melts is significant influenced by the MDPD force law. Consequently, the MDPD
simulations typically require a stronger thermostat coupling to achieve stable temperature control.
This demands elevated thermostat parameters σ and λ (obeying the fluctuation-dissipation relation).
Using the standard parameter λ = 4.5 (σ = 3), the maximum temperature increase of 33% is observed
in a polymer melt system with φ = 1.0, which completely shifts the thermodynamic state of the system.
For semidilute polymer solutions, a value of λ = 50 (σ = 10) is applied to maintain the temperature
within 4% of the set value [51].

Figure 7 shows the dependence of the polymer conformational and dynamic properties on
the volume fraction in semidilute solutions. The excluded volume interactions are screened when
the polymer chains overlap with each other at high volume fractions. Therefore, the swelling of
the coils in a good solvent gradually diminishes as φ increases and can finally vanish in the melt.
The reduction of the degree of swelling, which is characterized by the mean-square radius of gyration,
is clearly depicted in Figure 7a. The simulation observation agrees well with the theoretical prediction.
In contrast, the chain morphology in a theta solvent does not exhibit φ dependence, since the coils
always behave as ideal chains in the theta condition.
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As the concentration increases, the polymer dynamics undergo a transition from the Zimm regime
to the reptation regime, in which the onset of topological constraints (entanglements) between chains
severely hinders thermal motion of polymers. Consequently, the diffusion and relaxation of chains
are slowed down significantly, as shown in Figure 7b. The MDPD results show the relaxation time
τ increases by a factor of 2 at the highest volume fraction investigated here. This increase is more
pronounced than the factor of 1.4 observed in comparable DPD simulations [23]. However, the value
is consistent with previous MD simulations [69]. Future analysis on entanglements is performed
to provide additional insights into the dynamics behavior of polymer chains in the MDPD model.
For coarse-grained simulations, there have been serious concerns about unphysical bond crossings of
the polymer chains (referred to as topology violations below) associated with the use of soft-repulsive
potentials [51,70–75]. An exemplary topology violation is illustrated in Figure 8. In order to accurately
predict behavior of the polymers in semidilute and concentrated solutions, chain entanglements must
be properly captured in the MDPD model.
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Quantitative measurement of topology violations is conducted by calculating the minimum
distance vector between bonds, dij [23,51,70,76]. The method has been detailed elsewhere [70].
The angle α between the two minimum distance vectors defined at time t and t + ∆t is given by the dot
product, cosα = d̂ij(t) · d̂ij(t + ∆t), where d̂ij = dij/

∣∣dij
∣∣ is the normalized unit vector. A topology

violation is detected when the direction of d̂ij = dij/
∣∣dij
∣∣ changes by 90◦ or more over a single time step,

i.e., α > 90◦ [23,51,76]. As pointed out in previous studies [23,76], this cross product rule may declare a
topology violation based on a “false positive” when the minimum distance vector point passes through
the vicinity of one of the bonded beads. It is possible in this case that the angle α exceeds 90◦ but no
bond crossing occurs. These false cases are carefully excluded in the present analysis [23]. Figure 9
plots the relative number of topology violations per 100τ for semidilute solutions with different
polymer fractions. As evident in Figure 9, the number of topology violations increases as φ increases.
The concentrated solution at φ = 0.7 generates topology violations 2.5 times as much as those in the
dilute solutions. The inset of Figure 9 also demonstrates the number of topology violations occurring
with a specific value of angle α. The results indicate that a majority of the bond crossings occur with a
change in orientation by angles close to 180◦. The distribution is consistent with the result of DPD
simulations [75]. Importantly, the number of topology violations per 100τ in the MDPD simulations is
on the order of 102 (see Table 2), which is two orders of magnitude smaller than the values measured
in the standard DPD simulations (~104) [23,51]. This implies that the MDPD force law is more effective
than the standard DPD force in preventing topology violations and capturing entanglements, which is
attributed to the stronger repulsion between beads. Additional bond–bond repulsive interactions may
be introduced to further reduce the number of topology violations [51,70,75,76].
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4. Conclusions

This work focuses on modeling polymer solutions on the mesoscale using many-body dissipative
particle dynamics. The polymer volume fraction of the solution is varied in a wide range from
0.008 to 0.7, corresponding to a gradual transition from dilute to semidilute regimes. A systematic
parameterization of MDPD interactions is conducted for MDPD systems with liquid–vapor coexistence.
By mapping onto the Flory–Huggins theory, a linear relation between the difference in MDPD attraction
parameter ∆a and the Flory–Huggins χ parameter is obtained, similar to previous DPD and MDPD
studies. The surface tension of MDPD binary mixtures as a function of the χ parameter agrees well
with the classical van der Waals theory, despite a higher critical point found from the fitting than the
classical value.

The static and dynamic scaling relations are characterized for dilute polymer solutions, where the
solvent quality is controlled by the polymer–solvent attraction parameter. Through the measurements
of the radius of gyration and end-to-end distance, the scaling exponents indicate that polymer chains
exhibit good solvent behavior in an athermal solution. The effective excluded volume interactions
are induced by the density-dependent repulsion of the MDPD force law. The dynamic scalings of the
diffusion coefficient and relaxation time of chains are consistent with the Zimm theory, which verifies
the existence of hydrodynamic interactions in MDPD.

As the volume fraction increases and the solution enters the semidilute regime, the spatial
overlapping of polymer coils results in the screening of excluded volume effect and the decrease
of the radius of gyration. Meanwhile, the increasingly dominant inter-molecular interactions and
chain entanglements significantly inhibit polymer dynamics. Due to the soft repulsion in MDPD,
quantitative analysis is carried out to measure unphysical topology violations. The results confirm
that entanglements are effective captured in the MDPD simulations.

Finally, it is noteworthy that the MDPD model of polymer solutions provides a powerful tool
for efficiently simulating polymeric systems with liquid–vapor coexistence. This is particularly
appealing for exploring the evaporation-driven dynamics of polymer chains and other inclusions
on the mesoscale, which has significant implications for exerting better control on the processing of
polymer thin films and polymer nanocomposites.
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