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Abstract: Composite polymer electrolytes (CPEs) can significantly improve the performance in
electrochemical devices such as lithium-ion batteries. This review summarizes property/performance
relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim
of this review to provide a knowledge network that elucidates the role of nano-additives in the
CPEs. Central to the discussion is the impact on the CPE performance of properties such as
crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous
domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of
polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation
behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant
(ε) determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions
within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions.
Certain properties can be improved simultaneously by nanoparticle addition in order to optimize
the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical
properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion
battery applications.

Keywords: solid polymer electrolyte; ionic conductivity; lithium-ion battery; nanoparticle; dielectric
properties; transference number

1. Introduction

The emerging notion of fabricating nanoscale functional hybrid materials [1] supported by several
novel preparation and modification approaches [2,3] has been employed in various aspects of scientific
research [2,4,5]. The application of such hybrids in electrochemical devices such as lithium-ion batteries,
fuel cells and supercapacitors is of current interest [2–4,6].

The lithium-ion battery is one of the most important electrochemical devices for energy
storage [7–10]. A battery is composed of two electrochemically active electrodes [11] separated by
an ion conductive, electron insulating electrolyte medium [12]. Rechargeable batteries find widespread
usage as portable power sources because of their repeated charge and discharge capability [13].

The electrolyte is one of the critical components within the lithium-ion battery [14]. Electrolytes,
however, can have several drawbacks. For organic solvent-based electrolytes, problems include
intrinsically poor cycling efficiency and flammability [15]. For ionic liquid-based electrolytes,
a drawback is their relatively high viscosity which limits the attainable ionic conductivity [16–18].
Polymer electrolytes [19,20] have been considered with an aim to overcome such limitations.
Despite certain advantages, the archetype polymer electrolyte is based on poly(ethylene oxide)
(PEO) with lithium salt dissolved in it [21]. The semi-crystalline structure of PEO presents inherent
problems as a polymer matrix for Li+: (1) not sufficiently high ionic conductivity, especially at
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ambient temperature; (2) insufficient mechanical strength; (3) dendrite growth at the interface between
electrolyte and electrode which might cause internal short circuit [8].

In order to overcome these limitations, several avenues have been explored. One promising line
of investigation involves the introduction of nano-sized additives [22,23] in order to minimize the
concentration of PEO crystalline domains without harming the PEO flexibility and mechanical stability
over a wide temperature range. Such additives encompass inert oxide ceramics, molecular sieves and
zeolites, rare-earth oxide ceramics, solid super acids, ferroelectric materials and carbon [24]. The effects
of the inorganic additives have been analyzed in terms of Lewis acid-base interactions [22] between
the surface groups of the additives and active sites on the polymer chains. Different effects can either
impair or enhance the ionic conductivity. For example, inorganic additives change the interfacial
resistance between electrolyte and electrode [25]. When these effects are combined, the enhancing
effect may be dominant or otherwise the impairing effect may be stronger. This might explain the
different results of similar systems with nanoparticle addition.

Despite many studies concerning nano-sized additives for polymer electrolytes, several issues
remain unresolved [24,26]. The purpose of this review is to provide a knowledge network that helps
to assess the role of nano-additives in the CPEs, and to guide the readers toward directions that merit
further research effort. Although several types of polymers [27] can serve as matrices to dissolve lithium
salts, including polyacrylonitrile (PAN), poly(vinylidene difluoride) (PVdF), poly(methyl methacrylate)
(PMMA) [28], and poly(propylene oxide) (PPO) [29], in this review we focus on conducting matrices
based on PEO. And while several conducting cations have been considered, e.g., Ag+, Na+ [30–34],
this review focuses on Li+ for applications in lithium-ion batteries.

This review is founded on the premise that the CPE performance is determined by factors such
as structure and interactions between atoms/ions/nanoparticles within the system, and dielectric
properties as shown in Figure 1. These factors, in connection to each constituent of the CPE, are
addressed in Chapters 3 and 4, in combination with the corresponding conductivity change, in order
to elucidate the influence of these factors on the CPE performance.
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This is a comprehensive and up-to-date review focusing on polyether-based composite
polymer electrolytes for lithium-ion batteries that addresses property/performance relationships.
Previous reviews have either focused on different types of additives [22,24] or different polymer
matrices [20,26], or on other charge carriers, like Na+ [23], or on other electrochemical devices, like
fuel cells [2,35], or addressed the homogeneity [23] of the systems, or limited the discussion on the
structure and morphology of the polymer electrolytes [1,20,36].

Ion transport models for polymer electrolytes are introduced in Chapter 2. Crystallinity, chain
conformation, chain mobility and interactions between atoms/ions/nanoparticles within the CPE
system are discussed in Chapter 3. Chapter 4 addresses dielectric properties for an analysis of the
polymer relaxation behavior and an understanding of ion conduction behavior in CPEs. The factors
discussed in Chapter 3 and 4 critically determine the performance of the electrolytes. Thermal and
mechanical properties are reviewed in Chapters 5 and 6 in the context of electrolyte performance in
practical applications. Throughout this review we discuss how properties and interactions between
individual components within the CPEs affect the electrolyte performance.

2. Ion Transport in Binary and Composite Polymer Electrolytes

For the application of polymer electrolytes in lithium-ion batteries, the most critical requirement
is the ionic conductivity, the conductivity discussed in this review refers to ionic conductivity unless
indicated otherwise. Thus, we start by introducing ion transport models for polymer electrolytes.
These models are commonly used to describe the ion conduction behavior in binary polymer
electrolytes (i.e., systems consisting of polymer and lithium salt) and are also employed for ternary
polymer electrolytes (systems of polymer, lithium salt, and additive).

The Vogel-Tamman-Fulcher (VTF), Willams-Landel-Ferry (WLF), and Arrhenius equations [37,38]
are broadly utilized to describe the ion conduction behavior of CPEs. The VTF equation is mostly
applied for amorphous ionic conductivity, while the Arrhenius equation is often applied for crystalline
ionic conductivity [39,40]. For high molecular weight polymer electrolytes, amorphous ion conduction
is prevalent, thus we focus here on the VTF equation.

The VTF equation was developed to describe the viscosity of supercooled liquids [41]:

η = Cexp[B/(T − T0)] (1)

where the pre-exponent coefficient C ∝ T1/2, B is related to the activation energy, and T0 is a reference
temperature. When Equation (1) is combined with the Stokes-Einstein equation (Equation (2)) and the
Nernst-Einstein equation (Equation (3)), Equation (4) results:

σ =
nq2

kT
D (2)

D =
kT

6πriη
(3)

σ = σ0exp[−B/(T − T0)] (4)

In Equation (2), n is the carrier concentration, q is the carrier charge, D is the carrier diffusion
coefficient, and k is Boltzmann’s constant. In Equation (3), ri is a diffusion radius. In Equation (4), T0 is
a reference temperature roughly 50 K below the glass transition temperature [42]; the pre-exponent
coefficient σ0 ∝ T−1/2.

Although the VTF equation was initially an empirical expression, theories have been subsequently
employed to strengthen its validity. The free volume [43] and the “Corrected Free-Volume” [44]
theories both lead to an expression similar to the VTF form:

σ = AT−1/2exp[−Ea/(T − T0)] (5)
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Besides the free-volume theory that was put forward from a macroscopic, thermodynamic point
of view, from a microscopic view, the percolation [45,46] and the dynamic bond percolation [47] models
can also be applied for the case of solid polymer electrolytes where small particles (alkali ions) diffuse
within the dynamic motion of the medium (polymer).

Equation (5) has been applied to the ion conduction behavior in polymer electrolytes [48].
For example, parameters of the VTF equation are plotted in Figure 2 versus salt concentration for
a PPO-sodium triflate (sodium trifluoromethanesulfonate, CF3SO3Na) system [20]. In this system,
the pre-exponential factor (A) (frequency factor) in Equation (5) increased with increasing salt
concentration. The trend is similar for the activation energy Ea, which showed a turning point
at molar ratio n = O:Na+ = 8. This Ea trend informs the change of energy barriers for ion transport
in the polymer electrolytes. The glass transition temperature T0 (pure polymer T0,(n = ∞)) decreased
monotonically with dilution. An analysis of the dependence of these parameters on experimental
variables provides insights into the ionic conductivity change of polymer electrolytes.
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The Arrhenius equation is also commonly used to describe the ionic conductivity in crystalline
polymers [39,40]:

σ = σ0exp(−Ea/kT) (6)

Because of the easiness to obtain the activation energy (Ea) and pre-exponential factor (σ0), the
Arrhenius equation is also widely used to express ionic conductivity for amorphous conduction.
For the case of fast ionic conductors, the relation between σ0 and Ea in the Arrhenius equation can be
described by the semi-empirical Meyer-Neldel (MN) rule [49]:

logσ0 = αEa + β =
Ea

kTD
+ lnKω0 (7)

where TD is a characteristic temperature, k is the concentration term andω0 is the ion attempt frequency
(hopping rate between adjacent adsorption sites [50,51]) related to σ0 [23]. The Meyer-Neldel (MN) rule
is also applicable for mixed-phase (inhomogeneous polymer and additive that are not in a common
solvent) and blend-based (homogeneous solution of two components in a common solvent) polymer
electrolytes [52,53].

In closing, the VTF model for binary solid polymer electrolytes captures data for composite
polymer electrolyte systems reasonably well, which suggests that the conduction mechanism and
associated model do not change upon the incorporation of nano-additives.
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3. Nanoparticle Additives Affect the Polymer Electrolyte Structure

A key property of a polymer electrolyte is the conductivity [20,23,24,28,54]. The performance of
the polymer electrolyte is greatly determined by the polymer structure as it constitutes the matrix for
ion transport. The mobility of polymer chains [55] and the interactions of lithium ions [56,57] within
the polymer matrix greatly determine the conduction behavior of polymer electrolytes. The second
factor will be discussed in detail in Section 3.5. Regarding the first factor, for high molecular weight
polymer-based electrolytes, the amorphous polymer domains [58,59] account primarily for the ion
transport whereas the crystalline counterparts hinder ion movement. (Note that ion transport in
crystalline domains has been reported in low molecular weight PEO [60,61], but the discussion in
this review focuses on amorphous conduction.) The mobility of the polymer chains also affects ion
conduction. In the first three sub-sections of Chapter 3 we review the effects of nanoparticles on the
polymer chain (1) structure; (2) conformation; and (3) segmental movements.

3.1. Effect of Nanoparticles on Polymer Crystallinity

Given that the structure of polymer electrolytes (e.g., amorphous or crystalline) plays a prominent
role in facilitating ion transport, the effect of nanoparticles on the fraction of amorphous domains in
CPEs becomes critical. We start by discussing the crystallinity of polymer-nanoparticle systems in the
absence of lithium salt. The crystallinity of PEO (molecular weight = 100,000 g/mol, polydispersity
index Mw/Mn = 2.4)-sodium montmorillonite (cation exchange capacity 92.6 mmol/100 g, particle
size not reported) hybrids [62] (without lithium salt) is presented in Figure 3. When PEO < 70 wt %,
the crystalline peaks of X-ray diffractograms all disappear, which indicates that the hybrid system is
almost amorphous. However, when PEO > 70 wt %, the PEO crystallinity seems rather constant and
independent of the PEO content. The results were explained on the basis of two opposing effects: [62]
crystallization enhancement by the addition of inorganic fillers, and crystallization hindrance by the
coordination of alkali cations with polymer chains.
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differential scanning calorimetry (DSC) (filled circles), and Raman spectroscopy (filled diamonds)
data. Reproduced with permission from Chrissopoulou et al. [62]. Copyright 2011, American
Chemical Society.

When nanoparticles are added into a binary system of polymer with lithium salt, a different
behavior is observed. For example, CdO nanoparticles (2.5 nm diameter) were added to PEO
(400,000 g/mol)–LiI electrolyte at a fixed molar ratio of EO/Li+ = 12 (the CdO content in the system
was 0.05–0.20 wt %) [63]. Because of the LiI in the system, the crystallinity of the polymer was
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already lowered compared to the neat polymer (Table 1) because of the coordination of alkali cations
with polymer chains. The introduction of CdO at first decreased the crystallinity [63]. A minimum
value of crystallinity was achieved at 0.10 wt % CdO. Further addition of CdO led to a crystallinity
increase. This result is comparable with the following example, in which the EO/Li+ ratio was set as
a variable [64]. In PEO (300,000 g/mol)–LiClO4, a fixed amount of 10 wt % SiO2 (diameter = 10 nm,
Specific Surface Area = 956 m2/g) was introduced, which reduced crystallinity from 48.5% for the
SiO2-free sample to 44.3% in the temperature range −75–100 ◦C. As the EO/Li+ molar ratio increased
to 12, the polymer turned all amorphous.

Table 1. Comparison of thermal parameters obtained from differential scanning calorimetry (glass
transition temperature, Tg, melting temperature Tm, enthalpy change ∆H, and fraction of crystalline
region in the polymer referred to as crystallinity χc) of PEO-LiI-CdO composite polymer electrolytes
(CPEs). Adapted from Karmakar et al. [63].

CdO (wt %) Tg (◦C) (±2) Tm (◦C) (±2) ∆H (J·g−1) χc (%)

0 −36.4 55.9 51.9 24.3
0.05 −49.6 46.8 28.8 13.4
0.10 −48.9 45.1 25.3 11.8
0.15 −49.9 51.2 39.3 18.4
0.20 −49.6 53.2 41.0 19.2

The effect of CdO nanoparticles on crystallinity has also been evidenced in the Field Emission
Scanning Electron Microscope (FE-SEM) images of spherulites in PEO-LiI-CdO CPEs. The average
diameter of spherulites for the additive-free PEO-LiI electrolytes is around 120 µm. When CdO was
added into PEO-LiI electrolytes, the PEO spherulites increased in number and decreased in average
size to about 50 µm. This indicates that CdO addition is beneficial for the reduction of the PEO degree
of crystallinity [65,66]. As for the reason, CdO serves as a nucleation center for spherulite initiation and
because the number the sperulites increases, the size of an average spherulite is reduced. However, it
was noticed that as the CdO concentration increased, the spherulite size would not change appreciably
which might be explained in that not all CdO added could effectively act as nucleation sites. Aside
from this, the variation of the amorphous phase content was dramatic.

The importance of polymer crystallinity in the study of CPEs cannot be overrated. Crystallinity is
affected by temperature, amount of lithium salt and nanoparticle changes [26,62–64,67,68]. Crystallinity
underlies the performance of CPEs such as conductivity and mechanical strength.

3.2. Effect of Nanoparticles on Polymer Chain Conformation

The polymer chain conformation influences the dynamics of the lithium ions coordinated with
the polymer backbones [69] because Li+ ions exhibit different binding energies with the different
conformers [70]. The polymer chain conformation can change due to nanoparticle addition as shown
by Raman [62] and FTIR spectroscopy [67,71,72]. In the 700–1600 cm−1 Raman spectra of a PEO-sodium
montmorillonite system, there are four characteristic regions corresponding to four types of vibration
bands: CH2 rocking vibrations, C–O–C stretching vibrations, CH2 twisting vibrations and CH2 bending
vibrations [62]. As temperature changed or the PEO content of the system varied, the intensity in the
CH2 rocking vibrations region (750–970 cm−1) changed, suggesting conformation changes of polymer
chains [62]. As shown in Figure 4b, the gauche conformation in neat polymer accounts for 55%–60%
in the temperature range 75–180 ◦C. When sodium-activated montmorillonite (Na+-MMT) (cation
exchange capacity 92.6 mmol/100 g) was added, the gauche percentage increased to 72% at ambient
temperature [62]. Because salt may form transient crosslinks with polymer chains [36], the effect of salt
on the polymer chain conformation merits further investigation in the presence and in the absence of
nano-sized additives.
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Conformational perturbations would be expected to affect the dynamics of Li+ ion coordination
to the PEO backbone and ion mobility [69], which lead to conductivity changes. As for a quantitative
analysis of polymer chain conformation effects on polymer electrolyte conductivity, molecular dynamic
simulation studies are available [73,74] but experimental evidence appears difficult to obtain. This is
because the conformation change is brought by certain experimental conditions, e.g., temperature
variation or nanoparticle addition, which possibly exert a more significant effect on conductivity. Thus,
it is hard to isolate the contribution of conformation change to the ionic conductivity.

In addition to Raman, Fourier Transform Infrared (FTIR) spectroscopy can also be employed to
obtain information on polymer chain conformation in CPEs [67,72]. In the PEO–NaClO4 (EO:Na+ = 25)
system, results have been presented with a deconvolution of C–O–C within the wavelength range
of 950–1250 cm−1 [67]. Figure 5a–c shows FTIR spectra for PEO–NaClO4 (EO:Na+ = 25) and for the
same system but with 4.5 and 7.6 nm ZrO2 (5 wt %) addition. When sodium salt and nanoparticles
were added, the main absorption band of PEO in the polymer-salt complex shifted from 1112 cm−1

to a lower value of 1108 cm−1, and its full width at half maximum (FWHM) broadened to 53 cm−1.
This suggested the coordination of ions with ether oxygens. The peak at the 1059 cm−1 position
associated with the crystalline structure in pristine PEO almost disappeared, indicating a decrease of
crystallinity. Figure 5d shows the FTIR spectra of C–O–C vibrational mode of pristine PEO. Within the
fitted spectral region of 1200–1000 cm−1 of the FTIR spectrum, there are six peaks in the positions of
1014, 1033, 1059, 1094, 1112, and 1148 cm−1, which correspond to C–O–C symmetric and asymmetric
modes. The maximum of the peak is at 1112 cm−1 with FWHM = 29 cm−1. The changes of the spectra
revealed that different interactions within the system caused the deformation on the C–O–C bond
angle and changes in the stretching module, which led to changes of the integrated area ratio as shown
in Figure 5e.

Although its effect is not as strong as crystallinity, the chain conformation responds to various
conditions, e.g., particle size and temperature change. This conformation analysis contributes to
a better understanding of composite polymer electrolytes.
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3.3. Effect of Nanoparticles on Polymer Chain Segmental Movement

Following the discussion about “static” chain conformation in Section 3.2, we address here
the polymer segmental motion as a dynamic counterpart with an aim to understand how the
polymer matrix facilitates ion movement. In order to study the effect of nanoparticles on polymer
chain segmental mobility, nuclear magnetic resonance (NMR) has been employed to analyze two
characteristic temperatures, the glass transition temperature, Tg

NMR, and the temperature which
corresponds to the maximum spin-lattice relaxation rate, Tmax [75]. Additionally, the line widths (∆ν)
and the spin-lattice relaxation times (T1) of the 1H, 13C, and 7Li nuclei as affected by temperature have
been employed to study the mobility of the ions and the polymer chains [76,77].

Different samples of PEO/silica with lithium salts have been prepared and denoted as [X]n[Y]-Z,
where X is the polymer weight percentage, n is the average number of repeating units in polymer chains,
Y is the ratio of ether oxygens to Li+, Z is either I or II, standing for non-bonded (i.e., each silicate group
only bonded to each other through oxygen bridge in the silica phase) or bonded (silicate group bonded
to polymer chains by covalent bonds) complex structure, respectively [76]. As temperature changes,
the 7Li NMR line width (FWHM, ∆ν) would undergo narrowing, which is commonly associated with
chain motion increase. The corresponding temperature is close to the Tg value obtained from DSC
and thus is denoted as Tg

NMR. Another temperature that corresponds to the maximum spin-lattice
relaxation rate is denoted as Tmax, where transverse local field fluctuations suffice to maximize the rate
of spin-lattice relaxation at the Larmor frequency [76]. These two parameters, as listed in Table 2, have
been employed to analyze polymer chain mobility.

The results from Table 2 can be summarized as follows. For non-bonded complexes of type I:
(1) in Series 1, decreased Tg

NMR and Tmax when X > 80 indicate a reduced mobility of the polymer
domains adjacent to silica clusters; (2) in Series 2, longer chain length increased chain hindrance and
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thus increased Tg
NMR and Tmax [78]; (3) in Series 3, upon addition of silica, Tg

NMR and Tmax remain
approximately constant for samples with different amount of lithium salt, the result being different
from those systems without silica [79]. Thus, it can be concluded that polymer-silica interactions
weakened the effect of lithium salt on polymer chain mobility. For bonded complexes of type II: in
Series 4, salt addition led to increased Tg

NMR and Tmax as expected, since lithium ions form transient
crosslinks with polymer chains that reduce mobility.

Table 2. Trends for Tg
NMR, Tmax, and ∆ν with an increase of the X, n, and Y parameters of Types I and

II ormolytes (hybrid organic-inorganic ionic conductors). Adapted from Mello et al. [76].

Series 1 Series 2 Series 3 Series 4

Composition [41]6[4]-I [58]6[4]-I [58]6[4]-I [76]17[4]-II

[58]6[4]-I [58]12[4]-I [58]6[8]-I [76]17[8]-II

[73]6[4]-I [58]20[4]-I [58]6[10]-I [76]17[10]-II

[78]6[4]-I [58]6[15]-I [76]17[15]-II

[83]6[4]-I [58]6[30]-I [76]17[30]-II

[91]6[4]-I [58]6[80]-I

[95]6[4]-I

Tg
NMR (◦C)

Approximately constant
X < 80: −32 ± 5
X > 80: −48 ± 5

Increase
−37→−28

Approximately constant
−38 ± 5

Decrease
7→−16

Tmax (◦C)
Approximately constant

X < 80: 30 ± 5
X > 80: 21 ± 5

Increase
26→ 46

Approximately constant
19 ± 5

Decrease
81→ 43

∆υ (kHz) Increase
5.4→ 8.0

Approximately constant
6.4 ± 0.3

Decrease
6.4→ 2.7

Increase
5.7→ 6.7

A typical example that demonstrates the effectiveness of NMR in providing insights on the
conductivity change follows. Figure 6 is a plot of 7Li line width without 1H decoupling (∆ν) and 7Li
spin-lattice relaxation rate (T−1) versus temperature for three different nanocomposites: [58]12[4]-I,
[58]20[4]-I, and [76]17[4]-II. We can see an obvious Tg

NMR and Tmax increase of bonded sample of type II
as shown by a shift of the ∆ν and T−1 plot to the higher temperature, in contrast to non-bonded sample
of type I. This suggests that covalent bonding between silica particle and the PEO chains hinders
the polymer chain motion and also the Li+ mobility, accompanied by an ionic conductivity drop [76].
This result supports the general conclusion that polymer electrolytes containing nanoparticles (for
the case of non-bonded samples) exhibit improved conductivity. The chemical bonding between
nanoparticles and polymer chain does not always increase the CPE ionic conductivity.

Figure 6. Temperature dependence of the 7Li spin-lattice relaxation rate and line width without 1H
decoupling for the nanocomposites [58]12[4]-I, [58]20[4]-I, and [76]17[4]-II in Table 2. Reproduced with
permission from Mello et al. [76]. Copyright 2000, American Chemical Society.
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3.4. Effect of Nanoparticles on Polymer Self-Assembly and Anisotropic Conductivity

We are interested in polymer self-assembly in composite polymer electrolytes because (i) nanoparticles
in the system affect the micro-phase separation of the polymer matrix [80–82] and (ii) polymer
self-assembly (microphase separation or phase transition) creates different environments for ion
conduction and both ionic and electric conductivities vary accordingly. We address this topic here
briefly; however, extensive efforts have been devoted to block copolymer thermodynamics [5,83–85]
in the melt state [86–90] and in solution [90–93]. The introduction of nanoparticles into block
copolymer electrolyte systems typically leads to an increase of the segregation strength (χN) to
generate different microphase separated morphologies [94–96]. Block copolymers can change from
the disordered state to form spherical, cylindrical, lamellar, gyroid or other morphologies depending
on factors such as the block ratio, solvent medium, and hydrogen bonding of the ligands [97] with
polymer chains [98–100]. Here we highlight (1) the effect of nanoparticles on the segregation of block
copolymer-salt electrolytes [101] and (2) how self-assembly can affect the performance of CPEs.

Anisotropic ion transport behavior was reported in microphase-segregated electrolyte membranes
of (PEO114)-b-poly(methyl acrylate) with azobenzene mesogen [PMA(Az)47]–LiCF3SO3 as shown in
Figure 7 [102]. Upon comparing the perpendicular conductivity (where cylindrical domains of PEO
are perpendicular to the electrodes, thus current moves along the cylindrical domains of PEO) with the
parallel conductivity (cylindrical domains of PEO are parallel to electrodes, thus current transverses
the cylindrical domains of PEO), it was found that the perpendicular conductivity σ⊥ facilitated by
a perpendicularly aligned PEO cylindrical array was always higher than the parallel conductivity σ‖.
The parallel conductivity σ‖ exhibited a monotonic increase as the temperature increased for samples
with EO:Li+ = 20:1 and 4:1. The perpendicular σ⊥ attained a maximum at around 377 K, followed by
a drop [102].
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Figure 7. Anisotropic ion conductivity of PEO114-b-PMA(Az)47–LiCF3SO3 complexes plotted as
a function of temperature for EO:Li+ ratios of 20:1 and 4:1, in the micro-domains perpendicular
(open symbols) and parallel (solid symbols) to the substrate. Reproduced with permission from
Li et al. [102]. Copyright 2007, American Chemical Society.

Similarly, for a poly(ethylene oxide)-b-6-(4′-cyanobiphenyl-4-yloxy)-hexyl methacrylate)
(PEO-b-PMA/CB) polymer matrix doped with LiClO4 (EO:Li+ = 120:1), a magnetic field was used
to induce micro-domains of highly aligned hexagonally packed cylinders [103]. The conductivity of
parallel PEO cylinders (σ‖) was lower than that of randomly oriented sample (σrand) by more than
one order of magnitude at room temperature. The perpendicular PEO cylinder conductivity (σ⊥) was
higher than that of a randomly oriented sample by one order of magnitude as shown in Figure 8a.
In Figure 8b, σ⊥, σ‖ and σrand overlapped at high temperatures until TODT, i.e., the temperature where
order-disorder transition (ODT) occurred. When T < TODT, σ⊥, σ‖ and σrand responded differently
with temperature increase. The origin of distinct behaviors of conductivity in aligned samples below
TODT was still unclear [103].
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aligned in 5 T magnetic field in two orthogonal directions; the nonaligned material conductivity is
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(x-axis reversed). Reproduced with permission from Majewski et al. [103]. Copyright 2010, American
Chemical Society.

Further research can examine the effect of nanoparticles on other micro-phase separated
morphologies, e.g., aligned lamellae or bicontinuous structures. The number of nanoparticles that
could be accommodated in the polymer matrix remains unresolved. It is postulated that a stronger
interaction between ligand and the polymer chains allows a higher incorporation level and the ordered
polymer structure can be maintained at a higher content of additive [97]. In closing, the effect of
nanoparticles on block copolymer segregation and the anisotropic conductivity of block copolymer
electrolytes is a topic of continuous interest [101,104].

As mentioned at the beginning of Chapter 3, atom/ion/nanoparticle interactions within the
polymer matrix greatly affect the conduction behavior of polymer electrolytes [56,57]. After the
discussion about the polymer matrix structure, polymer chain conformation and segmental movement,
and block copolymer self-assembly, we now proceed to discuss the interactions between atoms, ions,
and nanoparticles inside the polymer matrix. Thus, in what follows, we address (1) interactions within
CPEs in Section 3.5; (2) lithium salt dissociation versus ion pairing and ion aggregates in Section 3.6;
and (3) cation transference number t+ as the contribution of lithium ion to the charge transport in
Section 3.7.

3.5. Interaction of Nanoparticles with Polymer Chains

Ion transport can be either hindered or facilitated by interacting polymer chains and nanoparticles.
The introduction of nanoparticles increased conductivity as reported by many authors [22–24,26].
Oxygen vacancies at the surface of nanoparticles (e.g., SnO2) are thought to act as Lewis acids
to coordinate with either ether oxygens of polymer chains or anions of lithium salt as Lewis
bases. Based on this understanding, we need to obtain information about the “oxygen vacancy
percentage” on the surface of nanoparticles. Such information can be obtained from X-ray photoelectron
spectroscopy (XPS). According to XPS spectra of oxygen of SnO2 nanoparticle for the system PEO
(600,000 g/mol)–LiClO4 (EO:Li+ = 8)–SnO2 (d = 3–4 nm, weight ratio of SnO2:PEO = 0.05, 0.10, 0.15,
0.20) [105], two types of oxygens are seen: (1) structural O, from Sn–O bond and (2) absorbed O,
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from O2 and CO2 in the atmosphere. By peak deconvolution, the percentage of structural O in the
systems and its ratio to Sn can be estimated (Table 3) [105]. The theoretical Sn/O ratio is 0.5 for SnO2.
Assuming the Sn atom amount in each sample is 100, the results in Table 3 show much larger Sn/O
value. This indicates many oxygen vacancies present on the surface of SnO2 nanoparticles [105].

Table 3. Structural and adsorbed oxygen percentage of Sn atoms in SnO2 nanoparticles within the
system PEO (600,000 g/mol)–LiClO4 (EO:Li+ = 8)–SnO2 (d = 3–4 nm, weight ratio of SnO2:PEO = 0.05,
0.10, 0.15, 0.20). Adapted from Xiong et al. [105]. Samples B, C and D were obtained by calcining
sample A (synthesized SnO2) at 400, 600 and 800 ◦C for 3 h.

Sample A B C D

Structural O atoms 86% 87% 89% 83%
Adsorbed O atoms 45% 39% 36% 44%

Figure 9 illustrates the interaction of nanoparticles within polymer electrolytes. The oxygen
vacancies on the nanoparticle surface (as Lewis acid) coordinate in two ways: (1) with ether oxygens of
the polymer chain, to hinder PEO crystallization and produce higher amorphous fraction; and (2) with
oxygens from anions of lithium salt (LiClO4) [105–108], to reduce the ion pair (Li+–ClO4

−) and release
more free Li+ ions. Both effects contribute to enhance the conductivity of the CPEs. After the “oxygen
vacancy percentage” on the surface of nanoparticles has been obtained, this notion can be combined
with the topic of “free ion percentage” in Section 3.6 for more detailed interaction analysis.
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Figure 9. Schematic of Lewis acid-base interactions between a PEO–LiClO4 electrolyte host and a
nanoparticle guest.

In order to improve the details of the scheme shown in Figure 9, the distance between lithium ions
and carbons of polymer chains (Li+–Carbon distance) and the coordination number (the number of
oxygens coordinated with one lithium ion) are required. Rotational Echo Double Resonance (REDOR)
has been employed to measure dipolar and quadrupolar coupling values between NMR active nuclei
to determine intermolecular distances in the solid state [109,110]. For example, 7Li–13C quadrupolar
signals indicated that Li–C distance = 3.14 Å [111]. This result compared favorably with that of
2.23–4.27 Å obtained from neutron powder diffraction [112].

3.6. Single Ions versus Ion Pairs and Ion Aggregates within Composite Polymer Electrolytes

After the discussion of interactions between nanoparticles and binary polymer electrolytes, we
now focus on the lithium salt. In the polymer electrolyte, lithium salt ions exist in the forms of
(1) single ions; (2) ion pairs and (3) ion aggregates [56,57] but only single ions contribute to the ionic
conductivity. Thus it is desirable to enhance the ion dissociation in the polymer matrix in order to
improve the CPE performance. The percentage of free lithium ions can be studied by FTIR, Raman
and NMR [67,110,113].
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The addition of nanoparticles into polymer electrolytes can enhance the salt dissociation
to produce more free cations for conductivity. The percentage of free anions in PEO
(1,000,000 g/mol)–NaClO4 (EO:Na+ = 25) system was 68% [67]. When 5 wt % of ZrO2 (d = 4.5 nm) was
added, this percentage increased to 81% as obtained from the FTIR peak integration ratio. However,
larger ZrO2 particle size (d = 7.6 nm) caused a slight decrease in the percentage of free anions. This was
attributed to stronger Lewis acid-base interaction resulting from comparatively larger surface area
of 4.5 nm ZrO2, which produce more free ClO4

− ions in the solid polymer electrolyte system [67].
Fitted Gaussian-Lorentzian peak of the ClO4

− of FTIR pattern [67] is shown in Figure 10a: the ClO4
−

band has been well fitted into two peaks centered at wavenumber of 624 and 633 cm−1 corresponding
to free anions and contact ion pairs, respectively [114,115].
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have been fitted to a convolution curve consisting of two Lorentzian components. Reproduced with
permission from Schantz et al. [113]. Copyright 1988, American Institute of Physics; (c) Heteronuclear
Overhauser Spectroscopy: Evolution of the 19F–7Li Nuclear Overhauser Effect (NOE) signal with the
mixing time for two lithium salts. LiBF4 forms strong ion pairs while LiPF6 is dissociated. Data from
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The free ion percentage is affected not only by nanoparticle addition but also the lithium salt
concentration. Figure 10b shows Raman spectra of the anion symmetric stretching mode for ClO4

− for
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different salt concentration in the system poly(propylene glycol) (4000 g/mol)–LiClO4 (O:Li = 30, 10,
8, 5) [113]. The fraction of ion pairs increased with salt amount for all concentrations.

The effect of different anions on lithium salt dissociation has been studied by NMR which
also provides estimates about ion pairing and contact between certain solvent moieties by homo- or
hetero-Nuclear Overhauser Effect measurements (abbreviated as NOESY or HOESY) [110]. The HOESY
methodology can be used, for example, to study the ion-pairing between LiBF4 and LiPF6 in PEO
melt. Figure 10c presents a comparison of the NOE effect for both LiBF4 and LiPF6 in block oligomer
C5H11NHCONH(CH2CH2O)11NHCONHC5H11. The bell-shaped profile of LiBF4 salt indicated strong
ion-pair formation in the 100–500 ms timescale; while the quasi null Nuclear Overhauser Effect (NOE)
effect for LiPF6 ions revealed the much stronger dissociation of this salt in the PEO matrix [110].

The free ion percentage is important in CPEs because the free ions contribute to ion conduction
whereas ions pairs and ion aggregates do not. Research on this topic continues [116].

3.7. Effect of Nanoparticles on Transference Number of Composite Polymer Electrolytes

Following the discussion of polymer structure and interactions in CPEs, we proceed to address
a parameter that is related to the ion conduction inside the polymer matrix. The transference number
directly describes the charge transport and thus the current of a specific ion [117]. Specifically, the
lithium ion transference number t+ indicates the fraction of the current carried by the cation (Li+) in
the electrolytes. It is desirable to achieve a high t+ in order to enhance the electrode reaction kinetics
and to eliminate the concentration gradients within the battery so that the internal voltage drop could
be lowered and the output current increased [64]. The cation transference number is most commonly
calculated by Equation (8) [118,119].

t+ =
µ+

µ+ + µ−
=

D+

D+ + D−
(8)

In Equation (8), t+ is the transference number of cations. D+ and D− stand for the cation and anion
self-diffusion coefficients, µ+ and µ− are the mobility [120,121] of the cation and anion, respectively.

High lithium transference number (tLi
+) at ambient temperature contributes to efficient

battery performance [122,123]. In view of the importance of t+, we discuss here two factors that
influence t+: electrolyte state of matter (liquid, gel or solid) and nanoparticle surface properties
(acidic/basic/neutral).

The transference number of ions (t+ and t−) can be obtained from AC impedance spectroscopy [124,125],
DC polarization electrochemical method [126,127], potentiometric measurements [128], and
NMR [118,129–131]. A comparative study of these methods has been presented [132]. Table 4 gives t+

values for different systems [133]. In these samples, PEO (4 × 106 g/mol) is denoted as 4mPEO and
the organic solvents used were ethylene carbonate (EC) and diethyl carbonate (DEC), EO:Li = 10:1.
The size of the nano-sized fumed silica added (content = 10 wt %) was not reported.

Table 4. Transference number of gel electrolyte membranes. Adapted from Aihara et al. [133].

Sample t+
NMR

a t+
pol

b

1M LiBF4 in EC–DEC 0.52 -
G4mPEO swelled by EC–DEC 0.14 0.34

G4mPEO–10 wt % SiO2, swelled by EC–DEC 0.11 0.40
a t+

NMR = values determined by NMR; b t+
pol = valued determined by electrochemical technique.

We can see in Table 4 that the highest value of t+
NMR was 0.52 for the organic solvent-based liquid

electrolyte of 1 M LiB4 in ethylene carbonate and diethyl carbonate mixture (EC–DEC), while in the
Gel Polymer Electrolytes (GPE) t+ decreased to 0.14 and 0.11 for the system of G4mPEO (GPE with
4mPEO matrix swelled by EC-DEC), without and with 10 wt % fumed silica, respectively. Thus, the
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fumed silica decreased the t+. Also, the lower t+ matched the result [133] of lower conductivity for
GPE at room temperature. Note that the t+

pol values obtained from electrochemical analysis were
different from the t+

NMR from NMR, something that was ascribed to the motive forces of these two
techniques [133]. Moreover, as shown in Figure 11, the larger values of the self-diffusion coefficients
of the anion are higher than those of Li+, which indicates faster diffusion of the anion. This has been
attributed to the interaction of Li+ with the polymer matrix [133].Polymers 2016, 8, 387 15 of 36 
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is provided in the text). Reproduced with permission from Aihara et al. [133]. Copyright 2002, Royal
Society Chemistry.

The second factor affecting t+ is the active sites on the nanoparticle surface. For the system
PEO–LiCF3SO3 (EO:Li+ = 20)–10 wt % Al2O3 (basic, neutral or acidic, d = 5.8 nm), the transference
number t+ increased in the sequence of updoped (t+ = 0.46) < basic Al2O3 (t+ = 0.48) < neutral Al2O3

(t+ = 0.54) < acidic Al2O3 (t+ = 0.63) [134]. As for the explanation, the hydrogens of acidic ceramic
surface (Lewis acid) form hydrogen bonds with the lithium salt anions and the ether oxygens (Lewis
base) [134], which promote salt dissociation and also decrease the PEO crystallinity [123,134]. In this
way, the transference number t+ increased. As for the neutral and basic Al2O3, the number of Lewis
acid sites decreased leading to weaker increase in t+. This discussion would be more informative if the
number of acidic sites on the surface could be quantified in combination with oxygen vacancy analysis.
This would reveal the “efficiency of acidic site” on the t+ increase.

We discuss above factors affecting the lithium transference number t+. However, how is t+ related
to conductivity? Conductivity and tLi

+ results have been compared for CPEs, with the additive being
ionically active/inert SiO2 particles (active SiO2 was mesoporous silica SBA-15 absorbing plasticizers of
ethylene carbonate (EC)/propylene carbonate (PC); inert SiO2 was mesoporous silica SBA-15 without
plasticizers) and organic solvent additive. As seen in Figure 12, for PEO (300,000 g/mol)–LiClO4

(EO:Li+ = 16)–SiO2 (1000 m2·g−1), the conductivity initially increased with addition of active SiO2,
attained a maximum at 10 wt % active SBA-15 at a value of about 2.4 × 10−5 S·cm−1, followed by
a decline with further loading of active SBA-15 [64].
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For comparison, the ionic conductivity with inert SBA-15, as well as that with EC/propylene carbonate
(PC), is also presented. Reproduced with permission from Wang et al. [64]. Copyright 2007, American
Institute of Physics.

As a comparison, at the same optimum content of 10 wt % active SiO2, tLi
+ reaches a maximum

value of 0.54 [64]. This has been attributed to the competition of –OH on the surface of SBA-15
with Li+, both as Lewis acid, to coordinate with ether oxygens on the PEO chains and ClO4

− anions,
both as Lewis base, which led to the promotion of desired Li+ transport by occupying more Lewis
base coordination sites and thus tLi

+ was enhanced. In the range of tLi
+ increase with SBA-15

doping lower than 10 wt %, there are not enough –OH sites available for Lewis acid-base interaction.
At content higher than 10 wt %, the trend of decreasing tLi

+ could be ascribed to the aggregation of
nanoparticles [64]. The simultaneous increase of tLi

+ and conductivity from 0–10 wt % active SBA-15
loading indicates an effective way to increase conductivity by improving tLi

+. The increase of both tLi
+

and conductivity is required [135] for achieving high performance in lithium-ion batteries.

4. Nanoparticle Additives Affect the Polymer Electrolyte Dielectric Properties

The dielectric properties of the polymer matrix are central to the understanding of the ion
conducting behavior of polymer electrolytes. They are an important counterpart to polymer structure
in determining the performance of CPEs as discussed in Chapter 3. However, the attention placed on
this topic in the literature is much less than that on polymer structure. In this chapter, we review the
effect of nanoparticles on dielectric properties of polymer electrolytes.

4.1. Dielectric Constant (εr or ε’) and Dielectric Loss (εi or ε”)

The polymer dielectric constant and dielectric loss are of particular significance for the purpose of
ion conduction [136]. On one hand, the dielectric constant determines the polymer’s ability to dissolve
salts. High dielectric constant reduces ion-ion interactions and also inhibits crystal formation [137].
The dielectric constant of PEO below its melting temperature is reported in the range 3–4 [138], which
is rated as a medium polarity. On the other hand, the dielectric loss helps to probe the relaxations,
e.g., α relaxation [139,140] related to crystalline dipole rotation, β relaxation [141,142] related to dipole
orientation in amorphous regions, and γ relaxation [143] related to the movement of side groups or
end-groups in the amorphous phase.

A plot of dielectric constant (ε’) against frequency at different temperatures for PEO
(8 × 106 g/mol)–LiClO4 (EO:Li+ = 11)–LiAlO2 (d = 41 nm, nnanoparticle/nLi = 1.5) is presented in
Figure 13 [144]. The ε’ decrease with frequency increase can be ascribed to the lag of the dipole
oscillating frequency compared to the frequency of the applied field [145]. At room temperature,
the incorporation of LiAlO2 nanoparticles within the matrix increased the dielectric permittivity
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ε’ to 1.22 × 106 F/m from the range of 9.8 × 103–2.93 × 105 F/m for additive-free samples [146].
An increasing temperature facilitates the dipole orientation and thus enhances the dielectric
constant [147]. The temperature dependence of the dielectric constant at different frequencies can be
roughly divided into two stages, a weak dependence at lower temperatures (293–303 K) due to the
crystalline-to-amorphous transition [145], and a strong dependence at higher temperatures (303–318 K)
due to a decrease of the CPE viscosity [147]. The frequency and temperature dependence of the
dielectric loss (ε”) exhibit a similar trend with that of ε’ for different reasons [144]. The dielectric loss
decrease with increasing frequency was attributed to high periodic reversal of the field, while the
dielectric loss increase with temperature increase was due to the dipole relaxation and the decrease in
the relaxation time [144]. Studies of ε’ and ε” in CPEs containing montmorillonite or carbon nanotubes
(CNT) have been reported elsewhere [148,149].
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4.2. Dielectric Relaxation Strength (∆ε), Electrical Modulus (M) and Tangent Loss (tanδ)

Further analysis of ε’ and ε” can reveal insights into the dielectric behavior of CPEs and how
this behavior affects CPE performance, e.g., ionic conductivity. After the dielectric constant (εr) and
dielectric loss (εi) have been obtained, the electrical modulus Mr (real part) and Mi (loss part) can be
introduced. The electric modulus spectra provide information about the ionic conduction relaxation
process and they are calculated from the following equations [148]:

Mr(ω) =
εr

(εr2 + εi
2)

(9)

Mi(ω) =
εi

(εr2 + εi
2)

(10)

The tangent loss [148] is given by:

tanδ =
εi

εr
=

Mi

Mr
(11)

For example, these equations have been applied for the analysis of the system PEO
(600,000 g/mol)–LiClO4 (EO:Li+ = 20)–x wt % MMT (Nano clay, Polymer Grade V, a product of
Nanocor®) with varying amount of MMT [150]. The dielectric relaxation strength ∆ε measures the
ionic polarization of the CPE. It equals the real part of dielectric constant at low frequencies ε’s minus
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that at high frequency ε’∞, ∆ε = ε’s − ε’∞ [151]. ∆ε can be estimated by using ε’ values at 1 kHz and
1 MHz. ∆ε = ε’ (1 kHz) − ε’ (1 MHz). At a fixed salt concentration of EO:Li+ = 20, the enhancement
of ∆ε in Table 5 indicated an increase of ionic polarization as the MMT concentration increased [150].
As for the reason, it was speculated that the exfoliated MMT nanoplatelets helped reduce ion pairing,
leading to a higher concentration of unpaired ions [150]. This result can be connected with the free ion
percentage study highlighted in Section 3.6.

Table 5. Values of real part of permittivity ε’ at 1 kHz and 1 MHz, dielectric relaxation strength
∆ε = ε’ (1 kHz) − ε’ (1 MHz), dielectric relaxation time τε, loss tangent relaxation time τtanδ,
conductivity relaxation time τσ, and DC ionic conductivity σdc of ball mill blended solution-cast
electrolyte films PEO–LiClO4 (EO:Li+ = 20)–x wt % MMT. Adapted from Choudhary [150]. Copyright,
2013, National Institute of Science Communication and Information Resources (NISCAIR).

x wt % MMT ∆ε τε (µs) τtanδ (µs) τσ (µs) σdc × 107 (S/cm)

0 18.39 17.11 7.58 3.46 0.54
1 21.19 11.58 5.35 2.24 0.66
2 29.14 7.99 3.42 1.47 1.62
3 29.45 9.53 4.00 1.64 1.60
5 94.59 9.29 2.71 0.10 3.91

Besides the dielectric relaxation strength ∆ε for the understanding of ionic polarization, the
polymer chain relaxation time reflects the mobility of polymer chains. Several relaxation times can be
employed in order to describe the polymer chain relaxation behavior:

τε = 1/2π fp(εi)
(12)

τσ = 1/2π fp(Mi)
(13)

τtanδ = 1/2π fp(tanδ) (14)

In the above equations, f p stands for the frequency at the peak position in Figure 14. The subscripts:
ε” (or εi) is dielectric loss; tanδ is tangent loss; and M” (or Mi) is loss part of electric modulus. Plots of
ε”, tanδ and M” (or Mi) against frequency are shown in Figure 14. The electric modulus (M) spectra can
be employed to study the ionic conduction relaxation process of CPEs [152–154]. This ionic conduction
relaxation frequency (fσ) is determined at the intersection of M’ and M” spectra as shown in the inset of
Figure 14b [149] for CPE film of PEO (600,000 g/mol)–LiCF3SO3 (EO:Li+ = 20)–x wt % MMT. The ionic
conduction relaxation time (τσ) shown in column five in Table 5 was determined by τσ = (2πfσ)−1,
wherein the ionic conductivity relaxation frequency (fσ) corresponds to a change in ion transport from
DC to AC.
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From Table 5, we can see that the relaxation times (τε”, τtanδ, and τM”) decrease with an increase of
MMT concentration, which confirms the increased segmental motion of Li+ cations that are coordinated
with PEO polymer chains [150]. Such segmental motion facilitates the ion transport and thus results in
an ionic conductivity improvement of the electrolytes.

4.3. AC/DC Conductivity and Impedance Spectroscopy

The conduction behavior of the CPEs under the condition of different AC frequency or DC is
addressed in the section. The frequency dependence of the real part of AC conductivity (σ’) for PEO
(600,000 g/mol)–LiCF3SO3/LiClO4 (EO:Li+ = 20)–x wt % MMT films has been reported [149,152]. The σ’
values of the MMT-filled CPEs were found higher than those without MMT, which was attributed to
increased ion conduction paths resulting from the intercalated MMT structures [156,157]. All the σ’
spectra exhibit typically two linear slopes in the low and high frequency regions, respectively, due to
the semi-crystalline PEO. At the low frequency range, a straight line fit of σ’ data was used to evaluate
the DC ionic conductivity (σdc) of these CPEs [149], as shown in column six of Table 5. The high
frequency σ’ spectra of samples follow Jonscher’s power law [152] as shown in Equation (15).

σ’(ω) = σdc + Aωn (15)

In this equation, A is a pre-exponential factor, n is a fractional exponent in the range 0–1 for ion
conducting electrolytes, andω = 2πf is the angular frequency.

The deviation of the σdc value in lower frequency (σdc decreases with frequency increase) is due
to the electrode polarization (EP) effect [150], which occurs due to the formation of Electric Double
Layers (EDLs). These layers are built up by the free charges at the electrolyte/electrode interface
in plane geometry [151]. This EP effect causes an increase of the effective impedance between the
electrodes, and thus decreases the AC conductivity. This electrode polarization relaxation frequency
corresponds to the peak of the tanδ spectra [158–160] as shown in Figure 14c.

For the analysis of σdc change, we can also go back to its definition:

σdc = ∑ niµiqi (16)

In this equation, ni denotes the charge carrier density, µi the ion mobility and qi is the charge of
the i ion. Consequently, σdc can be attributed to (1) increased charge carrier density ni by reduced
ion-paring effect; and (2) increased ion mobility µi by increased polymer chain segmental dynamics.

The complex impedance plane plots of Z” against Z’ are shown in Figure 15 for PEO
(600,000 g/mol)–LiClO4 (EO:Li+ = 20)–x wt % MMT systems, and the inset shows the zoom-in
view of the plots at the high frequency range. (The frequency values increase from right to left in
these plots.) The semicircular arcs in the high-frequency region correspond to properties of the bulk
material; the spike in the lower-frequency region shows gradual increase of Z” values as the frequency
decreases [149,150], which indicates a build-up of EDLs capacitance at the electrode/electrolyte
interface. The DC impedance (Rdc) is given by the extrapolated intercept on the real axis Z’ of the
common part of two arcs. Rdc can then be used to estimate the σdc value by the following equation:

σdc = t/SRdc (17)

In Equation (17), t is the thickness of the electrolyte film and S is the effective area of the cell
electrode. This estimated σdc value can be compared with the result from Jonscher’s power law
(Equation (15)).
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The impedance data (Z’ and Z”) can be related to dielectric properties (ε’ and ε”) by the
following equations:

ε’ =
Z”

ωC0(Z’2 + Z”2)
(18)

ε” =
Z’

ωC0(Z’2 + Z”2)
(19)

In these equations, C0 is the vacuum capacitance of the electrode, ε’ and ε” are real and imaginary
permittivity respectively. Equations (18) and (19) connect the knowledge discussed in Section 4.3 to
that of Sections 4.1 and 4.2.

In summary, analysis of dielectric constant (ε’) and dielectric loss (ε”) leads to electric modulus
(M’ and M”), loss tangent (tanδ), and various relaxation times: τε, τtanδ, τσ, corresponding to the
relaxation behaviors of coordinated polymer chains as given by Equations (11)–(14) [149,151,152,161–163].
Such analysis reveals two types of polarization: the ionic conduction polarization (also known
as Maxwell-Wagner interfacial polarization) and the electrode polarization [151,162]. The ionic
conductivity relaxation frequency (fσ) corresponding to change in ion transport from DC to AC
can be determined at the intersection of M’ and M” spectra [149]. The electrode polarization relaxation
frequency f p(EP) is determined by the maximum in tanδ [151]. The Jonscher’s power law describes
the frequency dependence of AC conductivity (σ’) at the high frequency range and estimates DC
ionic conductivity (σdc) at the low frequency range. Such dielectric studies (highlighted in Chapter 4)
are as important for CPEs as the ion motion and polymer chain dynamics analysis (discussed in
Chapter 3) [164,165].

5. Nanoparticle Additives Affect the Polymer Electrolyte Thermal and Mechanical Properties

We discuss the effect of nanoparticles on polymer structure and interactions in Chapter 3 and on
dielectric properties in Chapter 4 in order to provide fundamental explanations for the performance of
CPEs, typically the ionic conductivity. With support of this knowledge we discuss in this chapter other
elements of CPE performance, including mechanical and thermal properties, which are also important
for the lithium-ion battery applications.
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5.1. Thermal Properties

Thermal properties, on one hand, reflect structure changes and, on the other hand, affect the
performance of CPEs. For example, thermal parameters like the glass transition temperature (Tg),
melting temperature (Tm), and melting enthalpy (∆H) reflect polymer chain flexibility/rigidity and
amorphous/crystalline percentage of the polymer. These thermal parameters also determine the
operating temperature range of CPEs in lithium-ion batteries.

For example, in a system where nano-sized CdO (d = 2.5 nm) was added into PEO
(400,000 g/mol)–LiI electrolyte at a fixed ratio of EO/Li+ = 12 (CdO = 0.05–0.20 wt %), the values
of Tg, Tm and ∆H of PEO (400,000 g/mol)–LiI suddenly dropped with a small amount of added
CdO as shown in Table 1 [63]. The lowest values were achieved simultaneously at 10 wt %
CdO. Further addition of CdO caused less than 1 ◦C change for Tg, while Tm and ∆H increased.
The crystallinity (χ = ∆H/∆HPEO, ∆HPEO = 213.7 J/g [166]) decrease followed the same trend as that
of ∆H, because the CdO nanoparticles lowered the reorganization tendency of PEO chains by the
interaction with ether oxygens, leading to the formation of an amorphous interface region around the
nanoparticles [167].

Examples of the effect of lithium salt concentration on thermal properties have been reported [64].
At a fixed amount (10 wt %) of active SBA-15 (A = 1000 m2·g−1 mesoporous silica containing plasticizer)
introduced into PEO (300,000 g/mol)–LiClO4 polymer electrolyte with EO:Li+ = 12, Tg increased from
−30.4 ◦C for additive-free sample to −21.2 ◦C, and Tg dropped to a value −32 ◦C [64] when the
concentration of lithium salts further increased (Figure 16).
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to its low melting temperature 66–75 °C. The binary systems with lithium salt do not exhibit an 
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additives became a topic of research in order to further improve the mechanical strength of CPEs for 
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A report that nanoparticles had negligible effect on the Tg or crystallization of PEO [168] may be
attributed to nanoparticle aggregation, resulting in only a small fraction of the nanoparticle surface
being available to interact with the polymer chains.

5.2. Mechanical Properties

Polymer electrolytes are promising to avoid drawbacks of the liquid state electrolytes and help
to expand the operating conditions, even in harsh conditions, e.g., high temperature. However, the
mechanical strength of pristine PEO is not satisfactory especially at a high working temperature due to
its low melting temperature 66–75 ◦C. The binary systems with lithium salt do not exhibit an obvious
improvement of mechanical strength despite the transient crosslinks [39] formed between lithium
ions and ether oxygens. Thus, the mechanical properties of polymer electrolytes with nano-additives
became a topic of research in order to further improve the mechanical strength of CPEs for batteries.
In this section, we discuss how nanoparticles can improve mechanical properties such as tensile
strength, yield strength, rheology, elastic and viscous modulus.
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5.2.1. Tensile Strength and Yield Strength

The tensile modulus and yield strength of PEO (300,000 g/mol)–LiClO4–(mSBA-15:
silane-functionalized mesoporous silica) increased with increasing amount of mSBA-15 in the
0–15 wt % range as shown in Figure 17a [169]. This enhancement is due to the added silica which
acted as crosslinking media inside the polymer matrix by their surface interactions [170]. However, the
enhancement was not always monotonic. For PEO (100,000 g/mol)–LiClO4–(montmorillonite–CNT),
the optimized tensile strength was achieved upon 5 wt % filler incorporation as shown in Figure 17b.
The result is 160% tensile strength increase compared to PEO electrolyte [171]. This reinforcement has
been ascribed to the large aspect ratio and surface roughness of the clay–CNT hybrid filler, which lead
to strong interactions with the polymer [171]. The different surface roughness may also explain the
difference in the optimized nano-additive amount for maximized tensile strength between Figure 17a,b.
In combination with the knowledge [63,64] that the maximum conductivity value occurred at 10 wt %
nano-additive, the incorporation of 10 wt % nano-additive appears to offer an optimal combination
of reinforced mechanical properties as well as improved ion conductivity. Of course, the surface
conditions, e.g., roughness, functionalization, and surface defects may cause the final result to deviate.
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MMT–Alk < MMT–OH < MMT–Ar. The following reasons have been presented to explain this trend: 
for MMT–Alk additive, the weak interactions between the aliphatic chains of substitution and 
polymer chains made the rheology of the composite similar to that of the neat polymer; for the MMT–
OH additive, the hydrogen bonding between the polar groups of substitution and the PEO ether 
oxygens made the elastic modulus increase; and for the MMT–Ar additive, charge transfer between 
benzene and ether oxygens exerted the greatest impact on the rheology of the composite, a result 
consistent with a more negative Flory-Huggins interaction parameter [175]. 

Figure 17. (a) Tensile stress–strain curves for PEO (300,000 g/mol)–LiClO4–mSBA (silane-functionalized
mesoporous silica) CPE films with various amounts of mSBA-15; the inset shows their yield
strength (room temperature). Data from Wang et al. [169]; (b) Tensile strength with varying hybrid
filler content; the inset shows stress−strain curves of pristine PEO and PEO (100,000 g/mol)–
LiClO4–(montmorillonite–CNT) samples with varying filler content. Data from Tang et al. [171].

5.2.2. Rheology, Elastic and Viscous Modulus

As the mechanical strength is an important property of high molecular weight polymer-based
CPEs for advanced lithium-ion batteries [172,173], for the low molecular weight counterpart
CPEs, the corresponding rheological properties should be studied. The rheology of polymer
composites (without lithium salt) is strongly influenced by the surface chemistry of the nanoparticles.
For example, the rheology behavior of PEO (8000 g/mol) composite with different montmorillonites
(MMT) (commercially available [174], particle size not reported) without lithium salt at 75 ◦C is
shown in Figure 18 [174]. MMT with different substitutions of octadecyltrimethyl ammonium
(MMT–Alk), hydroxide (MMT–OH) or aromatic groups (MMT–Ar) were employed for comparison.
As shown in Figure 18, within the rheological window, the storage modulus of the composites was
higher than that of the neat polymer. The storage modulus of hybrids increased in the sequence
MMT–Alk < MMT–OH < MMT–Ar. The following reasons have been presented to explain this trend:
for MMT–Alk additive, the weak interactions between the aliphatic chains of substitution and polymer
chains made the rheology of the composite similar to that of the neat polymer; for the MMT–OH
additive, the hydrogen bonding between the polar groups of substitution and the PEO ether oxygens
made the elastic modulus increase; and for the MMT–Ar additive, charge transfer between benzene
and ether oxygens exerted the greatest impact on the rheology of the composite, a result consistent
with a more negative Flory-Huggins interaction parameter [175].
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The similar trend of storage and loss modulus crossover frequency indicated the non-terminal
relaxation mode of PEO (8000 g/mol)–MMT samples, and suggested the formation of interconnected
network structure in the composites [176–180]. In future studies, such different functionalized MMT
additives may also be applied to the analysis of nanoparticle effects on the viscosity and conductivity
of CPEs with lithium salt present.

In a similar study [181] for CPEs with oligomer PEO (Mw ≈ 200 g/mol) matrix, rheology and
conductivity data revealed no obvious change with the addition of different types of functionalized
fumed silica (having silanol, alkyl, or PEO as surface groups). At high fumed silica content, the
conductivity decreased only marginally [181]. It was speculated that for the case of a liquid oligomer
matrix, the viscosity increase from nanoparticle doping impaired ion conduction. In contrast, for
a solid polymer matrix, the surface functionalization of nanoparticle has been shown to be an effective
way to simultaneously enhance conductivity and mechanical strength of CPEs [169,171]. Clearly, the
nanoparticle effects differ depending on the liquid or solid state of the CPEs.

6. Processing Conditions Affect Composite Polymer Electrolyte Properties

Following the discussion on how the properties of composite polymer electrolytes are influenced
by their constituent components, this section discusses the effects on the CPE performance of various
experimental or processing conditions, including thermal history, aging, and humidity. All these
conditions should be taken into consideration when the effects of other parameters are analyzed.

6.1. Thermal History

A typical study of the thermal history dependence concerns conductivity data for the system PEO
(2,000,000 g/mol)–LiBF4 (EO:Li+ = 8)–TiO2 (20 wt %, with average d = 21 nm) [182,183]. Before the
conductivity measurement, the sample was heated to 150 ◦C, equilibrated for 30 min and then quenched
to 0 ◦C. During the heating process, the conductivity increased when the sample was held at different
temperatures as shown in Figure 19a. This conductivity enhancement with holding time at different
temperatures was attributed to dipole–dipole interactions [184]. At a high temperature of 150 ◦C, the
thermal energy is sufficiently high to disrupt dipole–dipole interactions, and the TiO2 nanoparticles
were in constant motion. Then the samples were cooled down slowly to temperature nodes of 100, 80,
60, 40, 20 and 0 ◦C for conductivity measurements [182,183]. The conductivity decreased marginally
during the cooling process when the sample was held at a specific temperature above 20 ◦C. The
dipole-dipole interactions were gradually restored, leading to the formation of charge double layer
around the nanoparticles. However, a pronounced conductivity drop occurred at 20 ◦C, attributed
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to kinetic hindrance to PEO nucleation and crystallization in the presence of TiO2 particles [182]. It
was also pointed out that (1) conductivity is higher in the cooling scan comparing to the heating scan
from the comparison of Figure 19a,b; (2) Slow annealing during cooling scan helps to bring structural
order in favor of ion conductivity [182]. Such a “structural order in favor of conductivity” appears to
be a promising route for improving the overall performance of CPEs, as an alternative to tuning the
CPE composition.
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where σ(t) is the measured conductivity at time t [183]. The time dependence of conductivity for the 
amorphous sample PEO (2,000,000 g/mol)–LiClO4 (EO:Li+ = 8:1)–Al2O3 (20 wt %, 24 nm) at 20, 30, 40, 
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Figure 19. (a) Conductivity of PEO (2,000,000 g/mol)–LiBF4 (EO:Li+ = 8)–TiO2 (20 wt %, d = 21 nm)
CPE heat-treated at 150 ◦C for 30 min and then quenched to 0 ◦C; (b) Conductivity of the same CPE
heat-treated at 150 ◦C for 30 min. The conductivity was measured while the specimen was slowly
cooled from the high temperature and then stabilized at the temperature of measurement. Data from
Kumar et al. [182].

6.2. Physical Aging

The second processing aspect to be discussed here is the aging effect on the composite polymer
electrolyte conductivity by affecting the relaxation and crystallization. The conductivity relaxation of
composite electrolytes at a given temperature can be expressed by Equation (20)

σ’(t) = σ(∞)±
n

∑
i=0
σie−νit (20)

where σ’(t) represents the theoretical conductivity at time t; σ(∞) is the equilibrium conductivity;
σi stands for the relaxation amplitude; νi is the relaxation frequency (1/τi); and τi is the relaxation
time. Equation (20) is simplified by assuming that only one type of relaxation mechanism is effective
in the early stages of physical aging [182]:

σ(t) = σ’(t)− σ(∞) = σ0e−ν0t (21)

where σ(t) is the measured conductivity at time t [183]. The time dependence of conductivity for the
amorphous sample PEO (2,000,000 g/mol)–LiClO4 (EO:Li+ = 8:1)–Al2O3 (20 wt %, 24 nm) at 20, 30,
40, 50, 60 and 70 ◦C is presented in Figure 20: the relaxation times τ0 obtained were 93, 36.6, 33.4,
31.45, 37 and 88.5 h, respectively. The lowest τ0 value of 31.45 h indicates that 50 ◦C is the temperature
to facilitate fast structural stabilization. The conductivity relaxation was tracked only up to 24 h but
physical aging may take months in order to reach an equilibrium [167].
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drop below the melting temperature Tm was due to the elimination of a small fraction of PEO 
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For longer time scales, the time dependence of conductivity for PEO (600,000 g/mol)–LiClO4

(EO:Li = 8:1, 10:1)–Al2O3 (d = 4.8 ± 1.3 nm, concentration = 0, 5, 10, 25 wt %) [185], demonstrated the
effect of crystallization on conductivity. Below the melting point (T < 65 ◦C), the conductivity decreased
by several orders of magnitude because of the crystal structures formed after day 14. At temperatures
above the melting point, the sample at day 1 and day 14 exhibited almost identical conductivity,
even with different nanoparticle loading. It was thus noticed that for time scales within one day, the
relaxation kinetics (relaxation time τ0) affected the conductivity, whereas for time scale longer than τ0,
the crystallization of the sample dominated the conductivity change. Another conductivity relaxation
study for the PEO (high molecular weight)–LiClO4 (EO:Li = 8)–10 wt % TiO2 (d = 13 nm) system at
31 ◦C showed an obvious drop between day 7 and day 8 due to the recrystallization kinetics that were
speculated to be critically dependent on the annealing conditions [167].

6.3. Humidity

Humidity is another experimental or processing factor to influence the CPE conductivity by
disturbing the PEO crystallinity. Samples of PEO (600,000 g/mol)–LiClO4 (EO:Li = 8:1, 10:1)–Al2O3

(d = 4.8 ± 1.3 nm, amount = 0, 5, 10, 25 wt %) were exposed to air of 50% relative humidity for 3 days.
As shown in Figure 21, conductivity increases were observed under humid conditions regardless of
either nanoparticle concentration or temperature [185]. It was inferred that the weaker conductivity
drop below the melting temperature Tm was due to the elimination of a small fraction of PEO
crystallinity by the water present in humid samples [185].
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γWater(T) =
σX%NP,Humid

σX%NP,Dry
(22)

γWater+NP(T) =
σX%NP,Humid

σ0%NP,Dry
(23)

The conductivity increases caused by “water boost” (γwater) and “water + NP boost” (γwater+NP)
are obtained by Equations (22) and (23). As shown in the example of Figure 22, when Al2O3

nanoparticles were added into the PEO (600,000 g/mol)–LiClO4 (EO:Li+ = 6) polymer electrolytes,
(1) for all samples, the “conductivity boosts” below Tm (dashed lines) were significantly higher than
those above Tm (solid lines); (2) when nanoparticles were introduced, the “conductivity boost” above
Tm remained independent of the nanoparticle concentration while nanoparticles affected conductivity
significantly below Tm. These two phenomena have been explained by the dominant contribution
of polymer chain mobility to conductivity above Tm; (3) for EO:Li+ = 8:1 samples, the “water boost”
was stronger than the “water + NP boost”, while for EO:Li+ = 10:1 samples, with 5 and 10 wt %
nanoparticles, the “water boost” alone was less significant than that of “water + NP boost”; (4) the
highest boost was achieved by the 10:1 sample as 5 wt %. The synergistic function of water and
nanoparticles was described as follows: the nanoparticles preferentially aggregated in lithium-poor
regions (pristine PEO) to allow more water in lithium-rich domains (PEO–LiClO4, EO:Li+ = 6) [185].
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on PEO and conducting charge of Li+ from different lithium salts as shown in Table 6. We follow the 
basic principle that properties such as the structure and dielectric behavior of a CPE determine its 
performance in lithium-ion batteries. In order to explain the conductivity change of CPEs, we 
highlight studies that analyze each of the three components of the CPEs and their interactions, 
including (1) polymer matrix [58,59,62,63,65,66], with aspects of crystallinity, chain mobility and 
conformation [57,76–79,110], and dielectric properties [138,141,144,148–152,161,162]; (2) lithium salt, 
which deals with, e.g., cation transference number and free ion percentage; and (3) nanoparticle/salt 
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Figure 22. Conductivity boosts (“water boost”: γwater and “water+NP boost”: γwate+NP) at 80 and 22 ◦C
at lithium concentrations of (A) 8:1 and (B) 10:1. The water fractions (wt %) above each nanoparticle
concentration are the data for 22 ◦C. Data from Fullerton-Shirey et al. [185].

7. Summary and Outlook

Polymer electrolytes have attracted significant attention in electrochemical devices on the basis
of their ability to overcome limitations of organic solvent-based electrolytes. Of particular interest
are nanoparticles as additives to form composite polymer electrolytes (CPE) for applications in
rechargeable batteries [22–24,26]. In this review, we focus on CPEs with conducting matrices based
on PEO and conducting charge of Li+ from different lithium salts as shown in Table 6. We follow
the basic principle that properties such as the structure and dielectric behavior of a CPE determine
its performance in lithium-ion batteries. In order to explain the conductivity change of CPEs, we
highlight studies that analyze each of the three components of the CPEs and their interactions,
including (1) polymer matrix [58,59,62,63,65,66], with aspects of crystallinity, chain mobility and
conformation [57,76–79,110], and dielectric properties [138,141,144,148–152,161,162]; (2) lithium salt,
which deals with, e.g., cation transference number and free ion percentage; and (3) nanoparticle/salt
ion/ether oxygen interactions. These are followed by a discussion of application-related thermal and
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mechanical properties of CPEs, and finally a presentation of processing conditions that may affect the
CPE performance.

Table 6. Chemical structures of lithium salts and organic solvents mentioned in this review.

Lithium trifluoromethanesulfonate, lithium triflate (CF3SO3Li)
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In CPE research, the main objective of high ionic conductivity (10−3 S/cm at room
temperature [135]) has rarely been reached, and an improvement of one performance aspect usually
impairs another [186]. Generally, CPEs with 5–12 wt % nanoparticles (depending on additive type and
surface activity, typically at 10 wt %) and molar ratio EO:Li+ = 6–20 (typically at 8–10) yield an optimal
ionic conductivity. CPEs with optimized conductivity present lowest crystallinity (χc), decreased glass
transition temperature (Tg) and melting temperature (Tm). Meanwhile, the tensile strength can be
improved several times compared to the undoped sample [63,64,133,167]. Of the processing factors
discussed in Chapter 6, humidity is the most effective one to change the CPE ionic conductivity by
more than one order of magnitude, this enhancement being more obvious at lower temperatures;
thermal history affects the ionic conductivity close to an order of magnitude only for slowly cooled
down samples at the room temperature range; the aging effect on conductivity is weak but more
obvious in the temperature range 30–50 ◦C. These thermal and mechanical properties, together
with processing factors should all be taken into consideration in the context of CPE performance in
practical applications.

Although the CPEs under investigation are experiencing a bottleneck in that the highest ionic
conductivity reported for solid state CPEs just got close to 10−3 S/cm at room temperatures [187–189],
this topic is still promising. Future research in this field may fall into two broad directions. The first
direction is the easier and more practical way to adjust the CPE composition, with incorporation in the
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CPE of certain other additives beyond the three basic ingredients of polymer matrix, lithium salt and
nanoparticle [64,190–192]. The second direction encompasses three-dimensional nano-level structural
organization [1–3,171], such as the formation of ion tunnels [60] or ion paths [193], to facilitate ion
conduction. Polymer matrix modification by side chain grafting [194,195] or attaching a different-type
block [196–198] on the polymer backbone can also be viewed as part of this direction if it enables
the formation of ordered structure. Only a few researches [171,189,199] have followed this second
direction. The knowledge network presented in this review can be applied for the study of newly
designed CPEs.
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