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Abstract: We use Brownian dynamics (BD) simulation of a coarse-grained (CG) bead-spring model of
DNA to study the nonequilibrim dynamics of a single DNA molecule confined inside a rectangular
nanochannel being squeezed with a sliding gasket piston or “nanodozer”. From our simulations
we extract the nonequilibrim density profile c(x, t) of the squeezed molecule along the channel
axis (x-coordinate) and then analyze the non-equilibrium profile using a recently introduced
phenomenological Nonlinear Partial Differential Equation (NPDE) model. Since the NPDE approach
also fits the experimental results well and is numerically efficient to implement, the combined
BD + NPDE methods can be a powerful approach to analyze details of the confined molecular
dynamics. In particular, the overall excellent agreement between the two complementary sets of
data provides a strategy for carrying out large scale simulation on semi-flexible biopolymers in
confinement at biologically relevant length scales.

Keywords: DNA; nanochannel; coarse-grained model; polymer physics; Brownian dynamics;
nonlinear diffusion equation; statistical mechanics

1. Introduction

Confined semiflexible polymers offer a variety of interesting phases and dynamics as a function
of the confining length scale, such as the diameter D of the confining channel and the flexibility of
the chain measured in terms of its persistence length Lp [1]. For a fully flexible polymer chain it is
easy to see that a quasi-one-dimensional (1D) confinement leads to a series of “blobs” [2,3] of size of
the confining length D, each with energy ∼kBT [4–6]. In the other extreme limit when the persistence
length Lp � D, Odijk [7] showed that it is profitable for the chain to deflect from the confining wall

and meander its way through the channel with the characteristic deflection length λ ∼
(

D2Lp
)1/3.

More recently other intermediate phases have been introduced by Tree et al. [8–10] where the nature
of fluctuations is different in each phase. In this paper we present results for the case where a
semi-flexible polymer in a quasi-1D confinement along a narrow channel is pushed along the channel
axis and thereafter allowed to relax. Evidently, the nature of the compressed state will depend on the
relative ratio of channel width D and the chain flexibility. As a matter of fact, recently it has become
possible to watch the real time non-equilibrium dynamics of a nanochannel confined DNA [11,12].
Due to recent technological breakthrough it has been possible to straighten DNA fragments of several
thousand to a few millions base pairs inside nanochannels [13–18] and characteristic patches in a
sequence consisting of several thousand base pairs called “barcodes” [19,20] have been determined
from different melting probabilities of AT (Adenine-Thymine) and GC (Guanine-Cytosine) bonds.
Equilibrium DNA conformations have also been studied inside a tapered nanochannel so as to study
the effect of confinement in a continuous fashion [21]. Equilibrium results for confined DNA have
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been quantified using scaling concepts of polymer physics [2], supplemented by a large number of
simulation studies both in three dimensions (3D) [8–10], and in two dimensions [22–24]. Compared
to the well-established equilibrium results, non-equilibrium dynamics of confined DNA are poorly
understood, with only a few studies [11,12,25,26]. The earlier experiment of Reccius et al. [25] studied
the sudden expansion of a confined DNA strand by turning off the electric field and watched the
expansion of the strand in real time. Reccius et al. used the expression of equilibrium free energy of a
confined flexible polymer [4,5] generalized for a semi-flexible chain by Schaefer et al. [27] to explain
their findings [6]. Pelletier et al. observed the real time force compression dynamics of bacterial
chromosome by using a “micro-piston” [26]. More recently, Khorshid et al. [11,12] studied dynamics of
compression and subsequent relaxation of a squeezed DNA inside a 1D nanochannel using an optically
trapped nanosphere (a “nano-dozer”). In another experiment, the same group has shown using the
same compression technique that it is possible to observe knot formation along the DNA and the
subsequent unraveling of the knots at the molecule free ends [28]. The evolving density profile c(x, t) of
such a process has been obtained from phenomenological nonlinear partial different equation (NPDE)
based approach [12]. Compared to Brownian dynamics (BD) simulations on coarse-grained (CG)
models of polymers, the NPDE approach is very fast, and thus can be used as a supplementary tool for
analyzing experimental results for confined DNA and other biopolymers. On the other hand, unlike
BD, it does not provide details of the subchain conformations and dynamics. Thus a combination of
these two complementary methods (NPDE + BD) can be quite powerful to unravel dynamics of DNA
and other long biomolecules. In this paper, we explore the advantage of this hybrid multiscale method.
The organization of the rest of the paper is as follows. In the next section we provide some details of
the BD simulation and the NPDE approach. In Section 3 we present the data for the BD simulation
and fit these data with NPDE formalism. We provide a summary and an outlook of this approach for
future work in Section 4.

2. DNA Simulation Approaches

In this section we introduce two approaches for studying the dynamics of DNA squeezed inside
a nanochannel. In the first approach, we use a coarse-grained (CG) bead-spring model of DNA
incorporating semiflexibilty and excluded-volume. This model retains the key features for modelling
DNA polymer conformation at scales greater than the chain persistence length. Our second approach
is based on a phenomenological NPDE formalism, where the initial conditions and the boundary
conditions respect the chain connectivity. The NPDE approach yields the time-evolution of the density
profile c(x, t) along the channel axis (x-axis). The density profile from the NPDE formalism is then
fit to the density profile obtained from the BD simulation. The NPDE approach is computationally
less demanding than the bead-spring model. In particular, by suitably interpreting the CG parameters
of the BD simulation model, the NPDE approach can be used to bridge the length and time scales
between BD simulations and the experimental data. A combination of the two approaches can be
enormously profitable to study DNA dynamics at various length and time scales.

2.1. Bead-Spring Model and BD Simulation

We have used a “bead-spring” model of a polymer chain (Figure 1) originally introduced for
a fully flexible chain by Grest and Kremer [29]. The model has been studied quite extensively by
many groups using both Monte Carlo (MC) and various molecular dynamics (MD) methods. Recently
we have generalized the model for a semi-flexible chain and studied both equilibrium and dynamic
properties [30]. Comparison of our BD results with those obtained for very large self-avoiding chains on
a square lattice reveals robustness of the model for certain universal aspects, e.g., scaling of end-to-end
distance and transverse fluctuations [22–24,30], providing more confidence in using this model to study
nonequilibrim dynamics of confined polymers. Here, we will also observe that the overall agreement
of the results from the BD approach with those obtained from the NPDE approach is remarkable,
which we believe will enable us to compare results for very long length and time scales.
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Figure 1. A bead-spring model of semi-flexible chain confined inside a nanochannel of width D being
pushed by a sliding gasket piston (nano-dozer). The green beads are connected via anharmonic spring
potentials and interact at long-range via excluded-volume. The red wall particles are at a fixed distance
from each other on a square lattice and move together at the piston velocity. The chain always remains
confined inside the channel.

Figure 1 shows the CG model of the system that we used to carry out BD simulation.
A double-stranded DNA (dsDNA) (experiments are carried out with λ-phage or T4 [11,12]) is
modelled as a bead-spring polymer chain. The diameter of each bead σb (Equation (1)) is an adjustable
parameter to be interpreted to compare results for a specific system. The Hamiltonian incorporates
an excluded volume (EV) interaction, an anharmonic spring bond potential and a bending potential
(Equations (1)–(3) respectively).

Specifically, the EV effect, acting between any two beads along the chain, is implemented as
a short range purely repulsive Lennard-Jones (LJ) potential (Equation (1)).

ULJ(rb) = 4ε

[(
σb
rb

)12
−
(

σb
rb

)6
]
+ ε for rb ≤ 21/6σb

= 0 for rb > 21/6σb , (1)

where ε is the strength of the potential, σb is the diameter (size) of the beads and rb is the distance for
any pair of beads. The LJ potential is nonzero only within a cutoff range of 21/6σb. The confining walls
consist of equally spaced immobile LJ particles of the same diameter σb. The EV interaction between
the polymer beads and the confining wall particles are given by Equation (1). The piston is modelled
as beads of diameter σb held at fixed separation on a square lattice. The purely repulsive DNA-piston
interaction is also described by Equation (1). Constructing the piston this way ensures that the piston
is impermeable to polymer particles.

The bond potential acting between any two successive monomers (beads) along the chain is
modelled as a finitely extensible nonlinear elastic (FENE) interaction [29]

UFENE(rm) = −
1
2

kR2
0 ln

(
1− r2

m/R2
0

)
, (2)

where k is the spring constant, rm is the distance between two consecutive monomers, R0 is the allowed
maximum bond length. The bending energy of the chain is described by an angle dependent potential

Ubend = κ (1− cos θ) , (3)
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where θ is the angle made by two successive bonds and κ is the controlling parameter for the rigidity of
the chain. In three dimensions, for κ 6= 0, the persistence length Lp of the chain is related to κ via [31]

Lp =
κ

kBT
, (4)

where kB is the Boltzmann constant and T is the temperature. While this relation is strictly valid
for a worm like chain [3] without the EV interaction, we have verified from BD simulation on the
same bead-spring model of a semi-flexible chain that Equation (4) remains valid in presence of the EV
interaction (this is necessarily so, as the chain persistence length is a local phenomenon) and even for
low values of κ [23]. For the results reported in this paper Equation (4) is well obeyed. We use the
following Langevin dynamics equation of motion to advance the position of the ith monomer

mr̈i = −∇(ULJ + UFENE + Ubend + Uwall + Upiston)− γvi + Ri, (5)

where γ is the monomer friction coefficient, and Ri is a Gaussian random force with zero mean at
temperature T, and satisfies the fluctuation-dissipation relation 〈Ri(t) · Rj(t′)〉 = 2DdkBTγ δij δ(t− t′)
in d dimensions. Here kB, D and δij are the Boltzmann constant, the diffusion constant and the
Kronecker delta (δij = 0 for i 6= j and δij = 1 for i = j) respectively. The numerical integration
of Equation (5) is implemented using the algorithm introduced by Gunsteren and Berendsen [32].
Length and energy units are respectively σb and ε; m represents the mass of the order of a nucleotide.

Consequently, the reduced units for length, time and the temperature are σ, σ
√

m
ε , ε/kB respectively.

Our previous experience with BD simulation suggests that appropriate parameter specifications are
γ = 0.7, k = 30, R0 = 1.5, and the temperature T = 1.2. These parameters values are stable for a long
time and do not lead to unphysical crossing of a bond by a monomer [23,24]. The average bond length
stabilizes at bl = 0.97± 0.002 with negligible fluctuation regardless of the chain size and rigidity [23,33].
We further assume that the electrostatic interactions are heavily screened and the EV, bond stretching
and bond bending potentials (Equations (1)–(3)) are adequate to represent the physical system.

2.2. The Nonlinear Partial Differential Equation (NPDE) Approach

Here we briefly discuss the relevant points of this approach for comparison to our BD simulation
results. More details can be found in our previous publications [11,12]. The concentration profile c of
the confined chain (hereafter concentration c is defined as the number density of the beads) can be
modeled via the diffusion equation:

∂c
∂t
− ∂

∂x

(
Dc(c)

∂c
∂x
− cV

)
= 0. (6)

Here Dc(c) is the cooperative diffusion constant, itself a function of the local polymer
concentration. The quantity V is the compressional velocity, which we identify with Vpush.
By analyzing the structure of the steady-state ramp obtained from experiments, we can, —on a
purely phenomenological basis, —find Dc as a function of c. In particular, the linear structure of
the steady-state profile implies that Dc is linearly proportional to c, a relation we parameterize via
Dc = Do(c/co) with co the equilibrium concentration of the extended chain and Do a constant that can
be extracted from knowledge of the steady-state ramp slope (e.g., Figure 3f).

Equation (6), taken in isolation, would predict that an initially localized concentration distribution
c(x, t) would decay to zero in the limit of large times. Of course, in the context of a single polymer,
such behavior is unphysical: chain connectivity implies that the concentration distribution must
remain bounded and finite. A compressed molecule will relax to reach a bounded concentration
distribution with the character of a uniform plateau with constant concentration co. To build in this
requirement, we supplement Equation (6) by two other equations, applied to the chain ends, that halt
the relaxation process when c = co. For the purposes of this model, we assume that the concentration
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at the chain edges falls off over a scale that is small in comparison with ro and on order of the blob
size [2,6,8,9] (in our case r0 ∼ D). The first equation determines how external forces at the chain edges,
including osmotic pressure and the frictional force due to the sliding speed, induce edge motion:

ξi
dxi
dt

= ∓ΠD2 + ξiV. (7)

Here the quantity Π is the osmotic pressure at the chain edges, also a function of c(xi, t).
The subscripts i = 1 and 2 refer to the left and right chain edges respectively. Likewise, ξi’s are
the friction factors for the chain edges. The remaining equation is the flux balance equation for the
chain edges and is given by

c(xi, t)
dxi
dt

= − Dc
∂c
∂x

∣∣∣∣
x=xc

+ c (xi, t)V. (8)

Equations (6)–(8) can be solved self consistently to obtain c(x, t). A crucial input for solving
Equations (6)–(8) that was used by Khorshid et al. [12] is an expression for the free energy per chain
for the extended de Gennes regime

f
kBT

=
A
rb

[
− r

r0
+
( r0

r

)2
]

, (9)

from which the dependence of the osmotic pressure Π can be obtained in terms of c(x, t).

Π = Π0

[
− c0

c
+

(
c
c0

)2
]

. (10)

We use the same set of equations to fit the BD simulation data as shown in Figures 3–6. Note that
the concentration and extension of the equilibrium chain (co and ro) can be used to normalize
concentration and length scales in the problem; all results are shown in terms of reduced concentration
and position variables c/co and x/ro. Moreover, the constant Do, with units of diffusivity, introduces
a time-scale τ = r2

o/Do which can be used to introduce a velocity scale Vo = ro/τ. The steady-state
ramp-slope for a profile in reduced concentration and position variables has the value V/Vo so that
Do = (V/Vo)ro (see [12]). In order to apply the NPDE model, we adopt exactly the same procedure
used to analyze the experimental data in [12]. We first obtain Do from the slope of the linear ramp in
the steady state profile. We then solve the NPDE model for an initial concentration profile c(x, t = 0)
appropriate to the problem. For the compression problem, c(x, 0) is a uniform equilibrium profile
with concentration co. For the retraction problem, c(x, 0) is the steady-state ramp-profile created by
the initial chain compression. However, there is still a missing parameter: the edge friction ξi. In the
NPDE model this is a purely phenomenological parameter that must be obtained from least-squares
fitting. When applying the NPDE approach to profiles expressed in reduced variables, we extract the
dimensionless parameter α = ξDo/Π0D2ro.

Lastly, when fitting the NPDE results to the BD output, we must deal with an extremely
subtle issue: the presence of thermal fluctuations of the molecule extension that have the effect
of broadening the profile edges. We choose, for the purposes of this preliminary study, to argue
that the extensional fluctuations can be described by convolving the NPDE output with a Gaussian
function: G(x− y) = (1/

√
2πσ) exp

(
−(x− y)2/2σ2) with σ the “width” of the convolution function.

To explain on a heuristic basis why this might be reasonable, imagine a population of particles in a
harmonic trapping potential. If no thermal fluctuations are present, the particles are all trapped at the
potential equilibrium position, e.g., constituting a delta-function concentration profile. If fluctuations
are present, the delta-function is smeared into a Gaussian shape with a width σ given by the
rms excursion of a particle in the well. To a very crude first approximation, we can imagine our
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coarse-grained polymer as a superposition of harmonic trapping sites: the polymer segments at a given
position and at short-times are harmonically bound and fluctuate about the equilibrium position of the
confinement potential (e.g., given by Equation (9)). If we assume that each trapping site varies slowly
enough, e.g., on times scales slow compared to the relaxation time in the trap, then we argue that the
concentration profile on long time-scales can be assumed to evolve through the NPDE equations with
the short-time fluctuations handled by the Gaussian convolution. Note that even in this approximation,
we might expect the width of our convolution function–corresponding to the rms excursion of a
polymer segment at a given position–to depend on the local concentration. We choose to ignore this
complication and assume that σ is constant. In particular, we obtain σ from fits to the initial profile.
For the compression results, we do allow for the edge of the molecule closest to the gasket to have less
thermal broadening (e.g., we assume distinct σ-values for edge near gasket and the edge opposite the
gasket); for the retraction results we assume that both edges have the same degree of broadening.

3. Results

We now show the BD simulation results along with the those obtained from the NPDE approach.
In setting up our BD simulation we closely followed Ref. [11,12] to mimic the actual experiment. All of
our simulations are carried out for a chain of length N = 1024 confined in a rectangular nanochannel of
width D = 16. For most of the results we have set the chain flexibility parameter κ = 3.2 (or persistence
length, Lp = κ/kBT = 2.4); however, for a few cases we have studied the effect of increasing the
chain persistence length. However, for all of our cases studied here, the ratio Lp/D ≤ 1.0, so that
the equilibrium configurations are either in the de Gennes or in the extended de Gennes regime [8,9].
The coarse-grained chain concentration is obtained from summing the number of bond lengths in
bins of size 2 and then normalizing to the total chain length. The profiles are further averaged over
an ensemble of 10 independent runs. We measure time in units of “snapshots” (=1000 simulation
iterations) or MD time units (=100 iterations or 0.1 snapshots). As in the experiment of Ref. [12],
the piston approaches the polymer chain (right end in Figure 1) at a sliding speed of Vpush = 0.05
(units of bond length per snapshot), and then retracts at a speed of Vretract = 4Vpush. A first look at the
simulation results is shown in Figure 2.

Figure 2. (a) The evolution of the maximum (green), minimum (red) and the x-coordinate of the center
of mass (COM) (black) (along the channel axis) during the simulation are shown, the extension of the
chain The piston is approached from the xmax side. When the COM’s speed becomes the same as Vpush,
the steady state of the polymer chain is achieved; (b) The same as in (a) but compares the effect of
two different piston speeds 0.005 and 0.002 respectively.
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We plot the x-coordinate of the chain center of mass (COM), XCOM, the chain left and right edge
(xmin and xmax respectively) and the chain extension r = xmax − xmin during the compression process.
The chain is confined in a rectangular nanochannel that for all practical purposes extends to infinity
along the negative x-axis. The channel geometry’s translational symmetry ensures that the molecule
is free to move in the direction of the velocity of the nano-dozer along the x-axis and that the chain
sees the same confinement when displaced horizontally. For our model parameters the equilibrium
extension of the chain along the channel ro = 235 (in units of bond-length bl). At the very outset of
the compression process, the molecular contour will build up locally at the chain edge adjacent to the
moving nanodozer. The chain will then undergo transient compression with the chain dynamically
evolving from a uniform equilibrium to a ramped steady-state profile. Once the steady-state is reached,
as the chain is free to slide down the channel, the entire chain will translate at the piston speed while
the profile shape maintains the ramped steady-state structure. In particular, as shown in Figure 2a,
after an initial transient phase the respective slopes of XCOM, xmin, and xmax will become equal and the
chain extension X = xmax− xmin will approach a constant steady-state value. At higher speed the chain
will become more compressed and the steady state chain extension is reduced. The steady-state chain
density is plotted in Figure 3 for different piston speeds and compared to the predicted steady-state
profile for the NPDE approach. The NPDE steady-state profile is simply a linear ramp, in accord with
experimental observations [11]. Note that the presence of thermal fluctuations leads to an effective
“broadening” of the chain profile. We treat this broadening in a purely descriptive fashion by applying
a Gaussian convolution to the NPDE model-output with a width determined by fitting to the chain
initial profile. The extension versus sliding speed, shown in Figure 3e, appears to asymptote to the
power law r ∼ V−0.5

push , suggesting that these simulations results were obtained for a sliding speed
on order of the critical speed identified in [11]. In addition, we find that the ramp slope is linearly
proportional to the sliding speed (Figure 3f, again in agreement with [11]).

1.0

3.0

5.0

–0.8 –0.5 –0.2

1.0

3.0

5.0

–0.8 –0.5 –0.2

c/
c o

c/
c o

x/ro

(a)

x/ro

(b)

(c) (d)

0.5

0.8

0.002 0.004

5.0

10.0

15.0

r/r
o

sl
op
e

0.001

0.3

0.5

0.8

Vpiston

r/r
o

(e)

(f)

Vpiston

Figure 3. The steady state chain density c(x, t) along the channel axis for (a) a piston velocity
Vpush = 0.05; (b) Vpush = 0.02; (c) Vpush = 0.01 and (d) Vpush = 0.005. (units of bond length per
snapshot). The red lines are Brownian dynamics (BD) simulation output and the black lines represent
the linear ramp steady-state profile predicted by the Nonlinear Partial Differential Equation (NPDE)
model. Note that the linear ramp is convolved with a Gaussian function to represent the effect of
thermal fluctuations that create an effective broadening of the profile shape. The extracted extension
and ramp-slopes from the NPDE model fits (a–d) are shown in (e,f). The inset to (e) shows the same
data on a log-log scale against a power law ∼ V−0.5

push (dashed-line). The bold line in (f) is a best linear fit
showing that the extracted slopes are linearly proportional to the pushing speed.

Next we focus on the non-equilibrium configurations in the transient phase during the approach
to steady state. Figure 4 shows a time-series of chain concentration profiles c(x, t) when the chain is
dynamically compressed.
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Figure 4. Time evolution of the normalized chain density c(x, t)/c0 along the channel axis for various
times during compression with a sliding gasket moving at speed Vpush = 0.05. The channel width
D = 16 and the persistence length Lp = 2.5. Time-values are shown in snapshot units, with one
snapshot corresponding to 1000 iterations. The red circles correspond to the BD simulation data;
the black solid lines correspond to the fitted prediction from the NPDE model. The NPDE model is
solved with a Do = 0.74 (bond unit squared per snapshot, obtained from the ramp-slope in steady-state);
this Do value leads to a τ = 75, 000 (snap-shot units). The best-fit β = 0.07. The σ values were
determined from a fit of a uniform concentration profile model to the profile at t = 0. For the edge near
the gasket, σ = 0.008ro. For the edge opposite the gasket, σ = 0.05ro.

Typical chain configuration snapshots for these times are shown in Figure 5 when the chain
density progressively increases. When the steady state is achieved (as evident from the plateau in
Figure 2) then the chain is allowed to retract. Figure 6 shows a time-series of chain concentration
profiles c(x, t) for this retraction phase.

Please note that both Figures 4 and 6 BD-results (red circles) are compared to NPDE model output
(solid black lines).

Note that our BD results have a qualitative character very similar to the experimental results
in [12]. At t = 0 right before the piston starts to slide, the chain density shows a uniform plateau
along the channel axis. When the gasket contacts the molecule, the transient compression process
begins with a “shockwave” of locally enhanced concentration growing near the piston edge and then
propagating down the chain. The concentration profile in this regime is a combination of the unaffected
plateau and the shock-wave. When the shockwave reaches the chain edge opposite the sliding gasket,
the plateau disappears and the profile slowly evolves towards its steady-sate configuration, with the
edge concentration gradually rising to its steady-state value

tt=0

t=5400

t=10,200

t=20,400

t=40,800

t=81,600

Figure 5. The corresponding snapshots of the simulated chain configuration for different c(x, t)
in Figure 4.
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t=800 t=1000 t=2000 t=3000

t=4000 t=5000 t=10000 t=15000

Figure 6. Time evolution of the normalized chain density c(x, t)/c0 along the channel axis during
bead retraction. The channel width D = 16 and the persistence length Lp = 2.5. The chain profile
is compressed by moving the gasket at a sliding speed Vpush = 0.05; the bead is then retracted at
speed Vretract = 4Vpush, inducing relaxation of the profile. Time-values are shown in snapshot units,
with one snapshot corresponding to 1000 iterations. The red circles correspond to the BD simulation
data; the black solid lines correspond to the fitted prediction from the NPDE model. The dashed blue
curves for t > 400 correspond to fits to a parabolic concentration model. The NPDE model is solved
with a Do = 0.74 (obtained from the ramp-slope in steady-state); this Do value leads to a τ = 75,000.
The best-fit β = 0.26. The value of σ = 0.013ro, determined from a fit of a broadened ramp profile
model to the profile at t = 0.

The relaxation process begins with a fast evolution of the initial ramped concentration profile
(t < 400). This evolution gradually drives the concentration profile into an approximately parabolic
profile shape for intermediate times (400 < t < 5000). At longer times, the profile shape approaches
a flat equilibrium profile at the equilibrium concentration co. In order to remove the effects of
center-of-mass diffusion from the retraction profiles, which would lead to additional broadening
of the profiles, the profiles at different times have been shifted so that the position of the center-of-mass
remains constant. The agreement between the BD-results and NPDE model is excellent but not perfect.
The NPDE model captures the BD results extremely well on a semi-quantitative basis, for example
predicting the evolution of the shock-wave and the gradual approach towards the steady-state profile
(Figure 4). There are details, however, that the NPDE approach does not capture, for example the
concentration tail at t = 2600 in Figure 4 is not described correctly.

This is also seen in Figure 7 which shows the BD chain extension and profile maximum
concentration cmax versus time for the profiles in Figures 4 and 6. We note that the NPDE-approach
slightly underestimates the correct steady-state extension-value (Figure 7a). These issues probably
arise from the crude way that thermal fluctuations are handled. The relaxation process (Figure 6) is
more difficult for the NPDE approach to capture. While the short-time behavior is described extremely
accurately (t < 200), the intermediate profiles are not described as well. The BD-results do have
an approximately parabolic character, as predicted in [12], but the NPDE model underestimates the
chain maximum. Note that to emphasize the parabolic character of the retraction profiles, and also
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obtain a better measure of the maximum concentration (e.g., that averages over thermal fluctuations
present in the profiles).

Figure 7. The chain extension and maximum concentration for a dynamic compression (a,b) and
retraction (relaxation) process (c,d). The red line corresponds to BD results; the black curve corresponds
to NPDE model output corresponding to the profile fits shown in Figures 4 and 6. The maximum
profile concentration for the BD output for the transient compression process is obtained by taking
a three-point running average of the simulation data to suppress concentration fluctuations at the
peak position. The maximum profile concentration for the BD output for the retraction process
is obtained by performing a fit of the concentration profile to a parabolic concentration model.
The approach minimizes the influence of thermal fluctuations on the concentration maximum as
the profile approaches equilibrium.

We have fitted the retraction profiles to a parabolic concentration model convolved with
a Gaussian (the extracted parabola amplitude is what is shown in Figure 7d). At longer times,
we also see that the BD-profiles are broader than that predicted by the NPDE approach: this effect
probably arises as the assumption of a fixed degree of extensional fluctuations is too crude. Extensional
fluctuations become stronger at lower concentration, leading to an increased smearing of the profiles.
One alternative is to fix σ using the degree of broadening present at very long times; naturally,
this approach leads to an overestimate at short-times (see Figure 8).
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Figure 8. The red circles are results of coarse-graining BD-simulations for the retraction profile.
The bold black curve is the NPDE model output with the degree of extensional fluctuations determined
from the initial profile (σ = 0.013ro); the dashed bold curve is the NPDE model output with the degree
of extensional fluctuations determined by fits to the equilibrium profile (σ = 0.06ro). The degree of
thermal broadening clearly increases at longer times as the profile approaches equilibrium.
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4. Summary and Outlook

In summary, motivated by recent experimental results, we have studied the steady state as well
as the nonequilibrim dynamics of compression and relaxation of a dsDNA confined and squeezed
inside a nanochannel using BD simulation with a bead-spring model of polymer. We find that a NPDE
approach recently introduced by Khorshid et al. [12] fits the BD simulation data very well. The cases
reported here are for Lp/D ≤ 1 so that the chain persistence length is small compared to the channel
width, and the equilibrium phases belong to either de Gennes or extended de Gennes regimes. Here we
find that the NPDE approach is a very powerful phenomenological approach to fit the experimental as
well as the simulation data. However, for Lp/D ≥ 1 the equilibrium configurations will correspond to
the Odijk [7] deflections segments from the wall. Thus one can imagine that the squeezed states of
these stiff polymers can be very different than those reported here. A different free energy expression
than the one used by Khorshid et al. [12] (Equation (9) in this paper) might be necessary for ready
convergence of the NPDE equations. Whatever they are, the physical origin of the parameters in the
NPDE equations (e.g., A and rb in Equation (9)) can not be deciphered. The evolving configurations
from the BD simulation can be immensely useful in constructing an approximate free energy landscape
to start and in principle will provide all the details of the time dependence from the CG bead level to
collective conformation and dynamics of the entire chain. In this paper we have provided some results
of these comparisons to demonstrate the success of the approach. In future we would like to explore
nonequilibrim dynamics of stiffer chains using a larger parameter space, clarify the edge friction by
varying molecule length and sliding speed and explore approaches to more effectively capture the
time and concentration dependent thermal broadening present in the profiles.
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