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Abstract: In this study, the corn straw after removing the lignin was grafted with
2-acrylamido-2-methylpropanesulfonic acid (AMPS) to prepare sulfonated cellulose. The grafting
copolymerization between the sulfonated cellulose and acrylic acid (AA) was performed using
potassium persulfate and N,N1-methylenebisacrylamide as the initiator and crosslinking agent,
respectively, to prepare corn straw-co-AMPS-co-AA hydrogels. The structure and properties of
the resulting hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray
diffraction, scanning electron microscopy, thermogravimetric analysis, and dynamic rheometry. The
effects of initiator, crosslinker, monomer neutralization degree, and temperature on the swelling
ratio of the hydrogels were studied. The water retention, salt resistance, and recyclability of the corn
straw-co-AMPS-co-AA hydrogels were also investigated. The optimum water absorptivity of the
corn straw hydrogels was obtained at a polymerization temperature of 50 ˝C with 1.2% crosslinker,
1:7 ratio of the pretreated corn straw and AA, 2% initiator, and 50% neutralized AA.

Keywords: corn straw; sulfonated cellulose; superabsorbent hydrogel; acrylic acid;
water absorption

1. Introduction

Superabsorbent hydrogels are a new class of polymeric material with strong hydrophilic
groups and can absorb 100–1000 times water of its own weight [1–3]. Owing to their super
strong water absorption ability, they have been extensively used in agriculture and forestry,
construction, medical [4,5] and public health, and daily life supplies [6–9]. In fact, ~90% of
superabsorbent hydrogels are disposable products [10,11], and most of them are synthesized by the
graft copolymerization between hydrophilic monomers with double bond such as acrylic acid (AA)
and acrylamide (AM). These hydrogels have some drawbacks such as high cost, hard to degrade,
and harmful to the environment [12,13]. With deficiency in petroleum products and from the
environmental perspective, and cost-effectiveness, superabsorbent hydrogels prepared from natural
polyhydroxyl materials have been a hot research field. Natural polyhydroxyl compounds such
as starch, cellulose, chitosan, sodium alginate, and humic acid are easy to degrade, prepare, and
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recyclable by microbes and plants. Therefore, polyhydroxyl compounds have been widely used to
synthesize superabsorbent polymers [2,3,14–16].

Straws are important recyclable resources in nature owing to their extensive source, low cost,
biodegradability, and high cellulose content [17]. Recently, using the term “super-absorbent” is
preferred, and besides preparing feed and alcohol, a large amount of straw is burned, resulting
in waste and environmental pollution [18,19]. Recyclability of waste straws for producing
superabsorbent hydrogels after simple pretreatment is not only a beneficial use of the natural
resource, but also decreases the cost of hydrogel production, thus overcoming the low efficiency
of straw disposal. Moreover, the residual lignin and hemicellulose can be used as fertilizer and
promoted in agriculture [20]. In recent years, significant studies have been reported on the synthesis
of superabsorbent hydrogels using straws [21–23]. Basta et al. [7] graft copolymerized rice straws with
sodium acrylate to prepare superabsorbent hydrogels and successfully used them to treat wastewater
containing heavy metals. Swantomo et al. [24] synthesized rice straw cellulose-acrylamide hydrogels
by γ-irradiation. Li et al. [21] copolymerized superabsorbent resin by wheat straw, AA, AM,
and dimethylhexadiene. Xie et al. [20] prepared superabsorbent hydrogels from wheat straw
and attapulgite; the prepared hydrogel has a releasing effect for nitrogen and boron fertilizer.
Liu et al. [23] synthesized superabsorbent hydrogels by the graft polymerization between chemically
modified wheat straw and AA by radical polymerization. Liu et al. [22] used wheat straw, AA,
and poly(vinyl alcohol) to synthesize cellulose-grafted poly acrylic potassium/poly vinyl alcohol
semi-interpenetrating network hydrogels. El-Saied et al. [25] synthesized environment-friendly and
low-cost hydrogels from straw. Currently, rice and wheat straws are the main straws used to
produce superabsorbent hydrogels. Wan et al. [17] prepared superabsorbent hydrogels by the graft
copolymerization between the corn straw, AA, AM, and 4-styrene sodium sulfate. Nevertheless, the
hydrogels exhibited high-temperature resistance and salt resistance.

2-Acrylamido-2-methylpropanesulfonic acid (AMPS) is a multigroup anionic amide monomer.
Its strong anionic nature, solubility, and good salt resistance result from the presence of sulfonic
groups. It has better stability towards hydrolysis and acid/base resistance, and thermal stability
because of the steric effect [26]. In particular, the AMPS products are inexpensive and therefore
have become more significant in the superabsorbent field. If corn straws can be used to synthesize
superabsorbent hydrogels with AMPS, not only “trash to treasure” can be achieved, but also the
high-temperature and salt resistances can be realized. In this study, corn straws were used as the
raw material; straw cellulose-AMPS-AA superabsorbent hydrogel was prepared by the radical graft
copolymerization of straw cellulose, AMPS, and AA. The microstructure, thermal stability, rheology,
salt resistance, and water retention ability of the as-prepared hydrogels were studied.

2. Materials and Methods

2.1. Materials

Analytical reagent grade sodium hydroxide, hydrogen peroxide, ethanol, acrylic acid (AA),
N,N1-methylenebisacrylamide (MBA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), and
potassium persulfate (KPS) were supplied by Tianjin Fuchen Chemicals (Tianjin, China). Corn straws
were purchased from Huji factory, Huimin, Binzhou, China.

2.2. Preparation of Sulfonic Cellulose by Pretreating Corn Straws

Dry corn straws were ground and sieved using a 40-mesh sieve. Then, the resulting corn straw
crash was made alkaline with 15% NaOH solution at 55 ˝C in a water bath for 2.5 h. The resulting
solution was oxidized and bleached by H2O2, dried, and ground to get cellulose. The obtained
cellulose was immersed in 17.5% NaOH solution and stirred for 1 h, followed by immersing in
deionized water for 3 h, washed and neutralized with deionized water, filtered, and dried to afford
alkaline fibers. The resulting alkaline fibers (1.6 g) and 100 mL deionized water were added to a
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250 mL three-neck flask. The resulting mixture was stirred for 10 min at 40 ˝C under N2, followed
by adding KPS. After 20 min, 4.8 g AMPS monomer was added. After another 4 h, the sulphonated
cellulose was cooled, washed successively with water and ethanol, and dried.

2.3. Synthesis of Superabsorbent Hydrogels

The as-prepared sulfonated cellulose (1 g) was dissolved in 10 mL water at 80 ˝C under N2.
After pasting for 10 min, the mixture was cooled in the temperature range 40–60 ˝C. KPS was added
to the resulting mixture, followed by adding a certain amount of AA neutralized by NaOH. After a
while, MBA was added until the hydrogels were produced. In addition, a control hydrogel sample
was synthesized from AA without adding the sulfonated cellulose. The formulation for the control
sample is listed in Table 1. The resulting hydrogels were dried at 80 ˝C in an oven for 24 h and then
ground. The dried product was milled and screened for a particle size of 100 mesh.

Table 1. Formulations and process parameters of superabsorbent hydrogels.

Number Pretreated
straw (g)

AA
(g)

MBA/AA
(%)

KPS/AA
(%)

Neutralization
value (%)

Temperature
(˝C)

SH-0 0 6 0.8 1.5 70 40
SH-1 0 6 0.4 1.5 70 40
SH-2 1 6 0.8 1.5 70 40
SH-3 1 6 1.2 1.5 70 40
SH-4 1 6 1.6 1.5 70 40
SH-5 1 6 2.0 1.5 70 40
SH-6 1 6 2.4 1.5 70 40
SH-7 1 4 0.8 1.5 70 40
SH-8 1 5 0.8 1.5 70 40
SH-9 1 7 0.8 1.5 70 40

SH-10 1 8 0.8 1.5 70 40
SH-11 1 9 0.8 1.5 70 40
SH-12 1 6 0.8 1.0 70 40
SH-13 1 6 0.8 2.0 70 40
SH-14 1 6 0.8 2.5 70 40
SH-15 1 6 0.8 3.0 70 40
SH-16 1 6 0.8 3.5 70 40
SH-17 1 6 0.8 1.5 30 40
SH-18 1 6 0.8 1.5 40 40
SH-19 1 6 0.8 1.5 50 40
SH-20 1 6 0.8 1.5 60 40
SH-21 1 6 0.8 1.5 80 40
SH-22 1 6 0.8 1.5 70 35
SH-23 1 6 0.8 1.5 70 45
SH-24 1 6 0.8 1.5 70 50
SH-25 1 6 0.8 1.5 70 55
SH-26 1 6 0.8 1.5 70 60

AA, acrylic acid; MBA, N,N1-methylenebisacrylamide ; KPS, potassium persulfate.

2.4. Characterization of Hydrogels

2.4.1. Measurement of Swelling Ratio Q

After sieving the dried hydrogels using a 40-mesh sieve, a certain amount of the sample was
transferred to a tea bag (100 mesh, 10 ˆ 12 cm2) and then immersed in deionized water for 48 h at
room temperature. After the swelling equilibrium was achieved, the samples were weighed.

The swelling ratio (Q) was calculated by using the following formula.

Q “ pW1 ´ W0q{W0 (1)

where W0 and W1 are the mass of the dry and swollen hydrogels, respectively.
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2.4.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis of Hydrogels

The corn straws, pretreated corn straws, and hydrogels were ground into fine powders, mixed
with KBr, and pressed into pellets for FTIR analysis. FTIR spectra were scanned in the wavelength
range 400–4000 cm´1.

2.4.3. Measuring the Swelling Dynamics of Hydrogels

A certain amount of hydrogels (a particle size of 100 mesh) was transferred to a tea bag. Then,
the tea bag was immersed into deionized water, until constant mass of achieved.

2.4.4. Salt Resistance of Hydrogels

NaCl, CaCl2, and AlCl3 solutions with different concentrations were prepared (NaCl, CaCl2, and
AlCl3 can be completely dissociated at different concentrations). The dry hydrogel samples with the
same mass were immersed in salt solutions. Salt resistance was determined by the swelling ratio
when the hydrogel sample reached saturated absorption in salt solutions at different concentrations.

2.4.5. Microstructure Analysis of Hydrogels

The hydrogels were freeze-dried (pre-freeze-dried at ´40 ˝C for 48 h under atmospheric
pressure, then freeze-dried at ´70 ˝C for 48 h, followed by freeze-drying for another 48 h at 10 Pa in
a vacuum frozen dryer. The surface of the hydrogel sample was coated with Au. The microstructure
of the hydrogel sample was measured using a Quanta 250 SEM (FEI Company, Hillsboro, OR, USA).

2.4.6. X-ray Diffraction (XRD) Characterization of the Composite Hydrogel

The freeze-dried hydrogel sample was ground into a fine powder. Diffraction pattern of the
dried powder was obtained using an X-ray diffractometer (Rigaku DMAX-2000, Rigaku industrial
corporation, Osaka, Japan), equipped with a copper target ray.

2.4.7. Thermal Gravity Analysis (TG)/Differential Thermal Gravity (DTG) Analysis of Hydrogels

The dried hydrogels (8–10 mg) were analyzed using an STA409C131F thermogravimetric
analysis (TGA, NETZSCH Company, Bavarian State, Germany) in the temperature range 30–600 ˝C
at a heating rate of 5 ˝C/min.

2.4.8. Water Retaining Analysis

The hydrogels (8–10 mg) were analyzed by TGA in the temperature range 25–150 ˝C at a heating
rate of 3 ˝C/min. The residual masses of the hydrogels were recorded at different temperatures.

2.4.9. Water Reabsorption of Hydrogels

A certain amount of hydrogels was swollen in distilled water to reach the equilibrium.
The saturated hydrogels were dried at 90 ˝C to a constant weight. The dried hydrogels were
reimmersed into deionized water until equilibrium was established. The “swell-dry-swell again”
process was repeated multiple times. In this study, the recyclability ratio (r) was proposed as the
index to describe the water reabsorption, where r is the swelling ratio after n times of drying/initial
swelling ratio.

2.4.10. Rheological Properties of Hydrogels

The saturated hydrogels were analyzed using a rheology meter (Anton Paar, Ashland, VA, USA,
PhisicalMCR302). The storage modulus was measured using a 50 mm parallel clamp at a slit width
of 0.5 mm, strain 2%, and frequency 0.1 Hz [27].
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3. Results and Discussion

3.1. FTIR Analysis

The initiator KPS can decompose to sulfates and sulfite radicals under heating. These free
radicals attack the hydroxyl groups on the cellulose polysaccharides substrates. The cellulose
polyacyloxy free radicals were produced by hydrogen abstraction. These macromolecular free
radicals can initiate the grafting reaction of AMPS/AA onto the backbone of corn straw cellulose.
The polymer chains formed a 3D network upon crosslinking with MBA. Scheme 1 illustrates the
mechanism of the graft copolymerization. FTIR spectroscopy was used to determine the functional
groups of the composite hydrogels.
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Scheme 1. Proposed preparation mechanism for corn straw-co-AMPS-co-AA hydrogel.

Figure 1 shows the FTIR spectra of the corn straw before and after the pretreatment.
The broad peak at 3409 cm´1 was attributed to the –OH stretching vibration in lignin, cellulose, and
hemicellulose molecules. The stretching vibrations of the C–H bonds of –CH2 moiety in cellulose and
hemicellulose molecules were observed at 2922 cm´1. The peak at 1731 cm´1 corresponded to the
stretching vibration peak of nonconjugated carbonyl groups in lignin molecules. The peaks at 1640
and 1401 cm´1 were attributed to the stretching vibration of the C=C backbone of the aromatic rings.
The peak at 1060 cm´1 was attributed to the stretching vibration of the glycosidic bonds on cellulose
and hemicellulose, confirming that the corn straw contains a significant amount of lignin, cellulose,
and hemicellulose. After the pretreatment, the intensities of the peaks at 3409 and 1731 cm´1

decreased, indicating that lignin was modified by the pretreatment. The –OH stretching peak at
3409 cm´1 became wide; the stretching peak of the C–H group in –CH2 at 2922 cm´1 decreased; the
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stretching peak of S=O in the sulfonic acid groups appeared at 1139 cm´1; and the stretching peak of
newly formed functional carboxyl functional group was observed at 1128 cm´1. The FTIR analysis
confirmed that AMPS was successfully grafted onto the treated corn straws.
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As shown in the FTIR spectrum of the superabsorbent hydrogel corn straw-co-AMPS-co-AA
(Figure 1), the stretching vibration peaks of the –OH group of cellulose and the S=O group of
sulfonic acid groups appeared at 3440 and 1139 cm´1, respectively. The stretching vibration peaks
at 1440 and 1596 cm´1 were attributed to the C=C backbone of the aromatic rings and –COO–
groups, respectively. All these peaks verified that AA was successfully grafted onto the pretreated
corn straws.

3.2. XRD Characterization

The XRD patterns of the corn straw, pretreated corn straw, and composite hydrogels are shown
in Figure 2. Two obvious diffraction peaks were observed in the XRD pattern of corn straw, indicating
that corn straws had a polycrystalline structure. However, the intensity and range of the diffraction
peaks of the pretreated corn straw (pretreated by NaOH and H2O2) significantly decreased, indicating
that after bleaching by H2O2, the hydrogen bonds in the crystalline regions of the straw cellulose
chains were broken, thus decreasing the degree of crystallinity. The sharp diffraction peaks of
the superabsorbent hydrogel disappeared and larger and wider diffusion peak appeared within
in a wider range, indicating that the crystallized structure of the corn straw transformed into an
amorphous structure, because the grafting reaction between the corn straw and monomers changed
the original aggregation state of the corn straw and completely destroyed the crystalline structure.
Therefore, the synthesized corn straw hydrogels had a noncrystalline structure.
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3.3. Effect of MBA on Q Value Of Hydrogel

Figure 3a shows the variation in the Q values of the hydrogels with MAA content. When
the amount of crosslinker was <1.2%, the Q of the hydrogels increased with increasing content of
crosslinker. When the crosslinker was >1.2%, the Q of hydrogel decreased with increasing content
of crosslinker, because no network structure was formed at a low concentration of crosslinker. Water
could be only absorbed by the hydrophilic groups on the surface of the hydrogels, thus the Q value
remained low. Nevertheless, very high concentration of crosslinker would result in excessively high
crosslinking and smaller voids in the network, thus decreasing the Q value [23].
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3.4. Effect of AA Content on the Swelling Ratio of Hydrogel

Figure 3b shows the effect of AA on the Q value of the hydrogel. With increasing concentration
of AA, the Q values of the hydrogels increased and then decreased. When AA amount was >7 g, the
Q values of the hydrogels decreased, because at higher AA concentrations, the collision probability
between monomers would increase, thus increasing the graft length of the sulfonated cellulose,
favoring the formation of a polymeric network at higher Q values of the hydrogels. High AA
concentrations would lead to self-polymerization and lower swelling ratio. The optimum ratio
between the sulfonated cellulose and monomer was determined as 1:7.

3.5. Effect of KPS on the Swelling Ratio of Hydrogel

Figure 3c shows the effect of KPS on the Q value of hydrogel. The Q values of the hydrogels
increased, followed by a decrease with increasing amounts of KPS. The maximum Q value was
observed at 2% KPS, because the polymerization was initiated by the free radicals generated from KPS
under heat. More initiators would produce more free radicals that can enhance the grafting efficiency.
Therefore, the hydrogel formation was enhanced, thus increasing the Q value. However, too much
initiator would produce too many free radicals, thus increasing the collision probability between free
radicals, eventually terminating the reaction [13]. The generated short graft chains would not form a
3D network easily, thus decreasing the Q value.

3.6. The Effect of Neutralization Degree of AA on Swelling Ratio

Figure 3d shows the effect of neutralization degree of AA on the Q value. When neutralization
degree was <50%, the Q value of the hydrogels increased with increasing degree of neutralization.
When the degree of neutralization was >50%, the Q values of the hydrogels gradually decreased,
relative to the polymerization activity of AA. At a low degree of neutralization, the grafting reaction
was too fast to control, thus easily forming a high-density polymer. In the meantime, AA molecules
were self-polymerized and highly crosslinked, thus decreasing the Q values. With increasing degree
of neutralization, the concentration of AA decreased and the concentration of hydrophilic sodium
acrylate (–COONa) increased, thus increasing the swelling ratio. The electrostatic repulsion among
the COO´ groups can expand the network of the hydrogels and decrease the reaction rate, favoring
higher Qs [16]. When the degree of neutralization was >50%, the activity of AA monomers decreased,
thus the reaction rate decreased and solubility increased, decreasing the Qs.

3.7. Effect of Temperature on Swelling Ratio of Hydrogel

Figure 3e shows the effect of temperature on the Q values of hydrogels after the pasting
reaction. The Q values increased and then decreased with increasing temperature, and reached to
the maximum at 50 ˝C. Less free radicals could be produced at such a low temperature, and thus
may decrease the rate of grafting reaction, resulting in low Qs. With increasing temperature, more
free radicals could be produced and the monomer reactivity may increase; therefore, the grafting
and chain growth rate increased [16], thereby increasing the Q values of the hydrogels. When the
temperature was >50 ˝C, the excessive free radicals generated from the decomposition of initiator
increased the reaction rate, thus decreased the grafting molecular weight and were partly crosslinked,
forming a less efficient network structure. All these decreased the Qs.

3.8. Effect of pH on Swelling Ratios of Hydrogels

Figure 3f shows the effect of pH on the Q values of the hydrogels, indicating that the Q values
of the hydrogels were sensitive to pH. When pH was <7, the Q value increased with increasing pH.
The protonation of most of the carboxyl acid groups resulted in weaker repulsion between anions,
thus decreasing Qs of the hydrogels. When pH was increased to seven, some carboxyl acid groups
dissociated, and the Q could be higher, because of the electrostatic repulsion between the carboxyl
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acid groups. When pH was >8, the Q value decreased with increasing pH, because the Na+ cations
from NaOH shield the –COO´ groups and prevent the anion–anion repulsion [16]. The swelling
ratios of SH-8 and SH-11 hydrogels were higher than that of the control hydrogel SH-0, because the
pretreatment of corn straws increased the amount of hydroxyl and sulfonic acid groups. The water
absorption was probably enhanced by the repulsion between the negatively charged groups.

3.9. Effect of Salt Solution on the Swelling Ratio of Hydrogel

Figure 4 shows the Q values of the hydrogels in different salt solutions. The Q values of the
hydrogels increased with increasing concentration of salt solution, especially within the concentration
in the range 0–0.05 M. Comparing the three salt solutions, the order of the Q values is as follows: NaCl
> CaCl2 > AlCl3. Based on the Flory equation, the Q would be lower at higher ion concentrations
and decreased because of decreasing ion concentration difference between the concentration of
dissociated ions inside the hydrogels and ion concentration in the solution [28]. Higher-covalent
cations would aggregate the hydrogels and decrease the swelling degree, thus increasing the internal
crosslinking degree and significantly decreasing the Q values of the hydrogels in salt solutions. The
higher the covalence, the more significant effect on the Q value [16].
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and ratio of SH-9 (14% pretreated straw) were higher than those of SH-2 (25% pretreated straw), 
indicating that the increased amount of corn straw may not result in better water absorptivity of 
hydrogels, because besides cellulose, corn straw contains a lot of lignin and hemicellulose. The phenol 
units in lignin can inhibit the polymerization, indicating that too excess corn straws would make  
the grafting reaction difficult and thus inhibit the formation of a 3D network. The swelling dynamics 
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3.10. Swelling Dynamics of Hydrogels

Figure 5 shows the dynamic curves of several hydrogels. In the first 15 min, the swelling ratio of
the hydrogels increased fast. After 15 min, the increasing rate decreased, and the swelling achieved
equilibrium at ~20 min. Compared to the control hydrogel (SH-0), the swelling ratios and swelling
rates of SH-2 hydrogel (25% pretreated corn straw) and SH-9 hydrogel (14% pretreated corn straw)
both increased. With more corn straw, there would be more grafting g points, favoring the grafting
reaction, forming a 3D network, thus increasing the water absorptivity. However, the swelling rate
and ratio of SH-9 (14% pretreated straw) were higher than those of SH-2 (25% pretreated straw),
indicating that the increased amount of corn straw may not result in better water absorptivity of
hydrogels, because besides cellulose, corn straw contains a lot of lignin and hemicellulose. The phenol
units in lignin can inhibit the polymerization, indicating that too excess corn straws would make the
grafting reaction difficult and thus inhibit the formation of a 3D network. The swelling dynamics of
the hydrogels agreed with the following exponential variation equation [29,30].

St “ Scp1´ e´t{τq (2)

where St (g/g) is the swelling ratio of hydrogels at t(s), Sc (g/g) is the swelling ratio at equilibrium, t
(s) is the absorption time, and τ (s) is the time required to reach 40% of the maximum swelling ratio.
The t values of SH-0, SH-7, and SH-9 hydrogels were 87.4, 90.2 and 120.3 s, respectively.
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3.11. Microstructure Analysis of Hydrogels

Figure 6a,b shows the SEM micrographs of the corn straw before and after the modification.
Figure 6a shows that the parallel fibers compacted and ordered into a fiber bundle. The micropores
were closed and many reactive hydroxyls were sealed. Figure 6b shows that after the pretreatment by
NaOH and H2O2, the surface morphology of the corn straw significantly changed. The fiber structure
became loose; the specific surface area of cellulose increased; some micropores were observed on the
fiber extension surface, thus decreasing the degree of crystallinity. All these factors enhanced the
surface wettability of cellulose to reagent and improved its reactivity.
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is because of the dehydration of the carbohydrate chains and breaking of the C–O–C glycosidic  
bond of the cellulose chain. The third stage shows a sharp weight loss in the temperature range  
415–490 °C, because of the oxidation of charred product. SH-2 and SH-7 hydrogels showed obvious 
differences in higher temperature range. The thermal decomposition for SH-2 hydrogel consists of 
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Figure 6 (SH-7, SH-9, and SH-11) shows the microstructure of the freeze-dried corn
straw-co-AMPS-co-AA hydrogels. No regular fiber tissue was observed on the surface, confirming
that cellulose reacted with AMPS and AA to form a 3D network. The surface of the hydrogels
corrugated and filled with micropores and capillaries. These structures were helpful to improve the
water absorptivity of the hydrogels. The surface morphologies of three different hydrogels were
significantly different. The surface of SH-7 hydrogel (20% pretreated straw) was the most corrugated
and filled with some micropores. The surface of SH-9 hydrogel (13% pretreated straw) was full of
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evenly distributed large pores, whereas the surface of SH-11 hydrogel (10% pretreated straw) was
moderately corrugated and filled with a few micropores. The size of the micropores of the hydrogels
is as follows: SH-9 > SH-7 > SH-11, and this is in accordance with the swelling ratio results.

3.12. Thermal Stability

The TG curves of the superabsorbent composites are shown in Figure 7, exhibiting three
degradation steps. At the first stage (<140 ˝C), the weight loss occurs because of the evolution of
absorbent and bound water in the network of hydrogels. The second stage (from 203–405 ˝C) is
because of the dehydration of the carbohydrate chains and breaking of the C–O–C glycosidic bond of
the cellulose chain. The third stage shows a sharp weight loss in the temperature range 415–490 ˝C,
because of the oxidation of charred product. SH-2 and SH-7 hydrogels showed obvious differences
in higher temperature range. The thermal decomposition for SH-2 hydrogel consists of the following
stages: first 19.2% weight loss in the temperature range 203–405 ˝C and another 24.9% weight loss in
the range 415–490 ˝C. Similarly, SH-7 first lost 18.6% weight from 203 to 405 ˝C and then lost 21.3%
weight from 415 to 490 ˝C. The result indicate that SH-7 is more thermally stable, perhaps because of
the fact that the cellulose chain has a higher thermal stability as compared to the carbohydrate chains,
and thus enhanced the overall thermal stability of SH-7 hydrogel.
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Figure 9 shows the water retainability curves of the hydrogels with increasing temperature.  
The water retainability of the straw and the composite hydrogel increased with increasing amount of 
the pretreated corn straw. When the corn straw content was 25%, the highest water retainability was 
observed for SH-7 hydrogel. The value remained 68% at 80 °C. At higher corn straw content, more 
crosslinking favored the grafting reaction, resulting in a better 3D network, thus effectively increasing 
the retainability of water molecules. In contrast, the pretreated straw (solfonated cellulose) contains 
hydrophilic functional groups such as carboxyl and amide groups, and carboxylate and sulfonate 
anions. During the absorption, the carboxylate and sulfonate anions dissociated, leading to 
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Figure 7. TGA curves of SH-2 and SH-7 hydrogels.

3.13. Storage Modulus Analysis of Hydrogels

Figure 8 shows the storage modulus of different hydrogels with different angular frequencies.
The storage modulii of the hydrogels increased gradually with increasing angular frequency. At the
same angular frequency, the storage modulus increased and then decreased with increasing amount
of AA. When the amount of AA was 7 g, SH-9 hydrogel showed the maximum storage modulus,
because more AA would increase the length of polymer, and the electrostatic repulsion could expand
the 3D network of the hydrogels, enhancing the toughness of polymer and strength of the hydrogels.
When AA was >8 g, the storage modulii of the hydrogels decreased, probably because of weaker
hydrogen bonds between the carboxyl and amide groups [17].
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3.14. Water Retainability

Figure 9 shows the water retainability curves of the hydrogels with increasing temperature. The
water retainability of the straw and the composite hydrogel increased with increasing amount of
the pretreated corn straw. When the corn straw content was 25%, the highest water retainability
was observed for SH-7 hydrogel. The value remained 68% at 80 ˝C. At higher corn straw content,
more crosslinking favored the grafting reaction, resulting in a better 3D network, thus effectively
increasing the retainability of water molecules. In contrast, the pretreated straw (solfonated cellulose)
contains hydrophilic functional groups such as carboxyl and amide groups, and carboxylate and
sulfonate anions. During the absorption, the carboxylate and sulfonate anions dissociated, leading
to electrostatic repulsion and the expansion of the carbon backbone. Meanwhile, the hydrophilic
carboxyl and amide would interact with water molecules through hydrogen bonds, forming a
network structure, thus water molecules will be difficult to diffuse from the saturated corn straw
hydrogels at certain temperatures.
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3.15. Recyclability of Hydrogels 

Table 2 shows the swelling ratio after “swell-dry-swell” process. After five times water 
absorption or salt absorption, the swelling ratio decreased slightly, but was still high. The swelling 
ratio of SH-2 and SH-9 were 196 g/g with an r value of 75% and 256 g/g with an r value of 78.5%, 
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r values. 
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4. Conclusions 

Corn straws were chemically modified to sulfonated cellulose by the grafting copolymerization 
with AMPS. Then, the pretreated corn straws were graft polymerized with AA to prepare corn  
straw-co-AMPS-co-AA hydrogels. The FTIR results confirmed the grafting copolymerization between 
the corn straw and AMPS, and the pretreated corn straw and AA. The XRD results showed that  
the degree of crystallinity decreased during the pretreatment and graft copolymerization. Corn 
straw-co-AMPS-co-AA hydrogels has a noncrystalline structure. The SEM results showed that after 
the treatment with NaOH and H2O2, the surface of the corn straw became loose and filled with 
micropores, thus enhanced the reactivity of cellulose. The microstructure of corn straw-co-AMPS-co-AA 
showed that the surface of hydrogels was corrugated and full of micropores, thus favoring  
the water absorption. With a higher amount of corn straw, high-temperature water retainability of 
the composite straw hydrogel increased. The experimental results confirmed that the optimum water 
absorptivity of the corn straw hydrogels was achieved under the following conditions: crosslinker 
content of 1.2%, pretreated corn straw/monomer ratio, 1:7, initiator content, 2%; AA neutralization 
degree of 50%; and temperature, 50 °C. Moreover, the water reabsorption capability of corn  
straw-co-AMPS-co-AA hydrogels was very strong, and the hydrogels were efficiently recycled. We 
believe that the corn straw-co-AMPS-co-AA hydrogels have potential applications in the controlled 
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3.15. Recyclability of Hydrogels

Table 2 shows the swelling ratio after “swell-dry-swell” process. After five times water
absorption or salt absorption, the swelling ratio decreased slightly, but was still high. The swelling
ratio of SH-2 and SH-9 were 196 g/g with an r value of 75% and 256 g/g with an r value of 78.5%,
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respectively. These results indicate that the corn straw hydrogels could be recycled owing to their
r values.

Table 2. The repetitive absorption of the hydrogel.

Number Repeat number 1 2 3 4 5

SH-2
Water absorption (g/g) 263 270 251 219 196

r 1 1.03 0.95 0.81 0.75

SH-9
Water absorption (g/g) 326 332 305 283 256

r 1 1.02 0.94 0.87 0.81

4. Conclusions

Corn straws were chemically modified to sulfonated cellulose by the grafting copolymerization
with AMPS. Then, the pretreated corn straws were graft polymerized with AA to prepare corn
straw-co-AMPS-co-AA hydrogels. The FTIR results confirmed the grafting copolymerization between
the corn straw and AMPS, and the pretreated corn straw and AA. The XRD results showed
that the degree of crystallinity decreased during the pretreatment and graft copolymerization.
Corn straw-co-AMPS-co-AA hydrogels has a noncrystalline structure. The SEM results showed
that after the treatment with NaOH and H2O2, the surface of the corn straw became loose and
filled with micropores, thus enhanced the reactivity of cellulose. The microstructure of corn
straw-co-AMPS-co-AA showed that the surface of hydrogels was corrugated and full of micropores,
thus favoring the water absorption. With a higher amount of corn straw, high-temperature water
retainability of the composite straw hydrogel increased. The experimental results confirmed that
the optimum water absorptivity of the corn straw hydrogels was achieved under the following
conditions: crosslinker content of 1.2%, pretreated corn straw/monomer ratio, 1:7, initiator content,
2%; AA neutralization degree of 50%; and temperature, 50 ˝C. Moreover, the water reabsorption
capability of corn straw-co-AMPS-co-AA hydrogels was very strong, and the hydrogels were
efficiently recycled. We believe that the corn straw-co-AMPS-co-AA hydrogels have potential
applications in the controlled delivery of bioactive agents in agriculture, construction, as well as fire
extinguishing agents.
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