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Abstract: The photostabilization of poly(vinyl chloride) (PVC) films having five Schiff’s bases
derived from sulphamethoxazole has been investigated. The casting method was used to
produce PVC films containing sulphamethoxazoles (0.5% by weight), in tetrahydrofuran. The
photostabilization activities of five additives were determined by monitoring the hydroxyl, polyene
and carbonyl indices with irradiation time. In addition, the quantum yield of the chain scission
(Φcs) and the changes in viscosity average molecular weight of PVC films containing Schiff’s basses
were evaluated with irradiation time. The rate of photostabilization for PVC films in the presence
of five Schiff’s base additives was found to be the highest in the case of 2-hydroxybenzylidene
derivative and the lowest in the unsubstituted benzylidene derivative. Several mechanisms have
been suggested to explain the photostabilization of PVC in the presence of Schiff’s bases that mainly
act as UV absorbers and radical scavengers for photostabilizers.

Keywords: photostabilizer; photochemistry; UV-Vis spectroscopy; PVC; sulphamethoxazoles;
UV absorber

1. Introduction

Photodegradation of polymeric materials take place when exposed to ultraviolet (UV) radiation.
Ultraviolet absorbers (UVAs) are chemicals that can absorb ultraviolet radiation and reduce their
damaging effects. Such chemicals can act as ultraviolet stabilizers and can be added to various
polymeric materials. Various ultraviolet light stabilizers are known and have been used in various
interesting materials such as cosmetics, plastics and films [1]. Photochemical degradation can take
place as a result of chemical reaction, or photochemical degradation, which could be initiated through
the energy from UV solar radiation. Antioxidant materials are known as heat and light stabilizers that
can be added to plastics to avoid its deterioration [1].

The photo-crosslinking and photodegradation of polymers caused by the sun and artificial
ultraviolet can be prevented by the use of UV-stabilizers. Many ultraviolet light stabilizers
incorporate inorganic and organic (aromatic and heterocyclic) moieties. The most common inorganic
UV-stabilizers contain chromic, titanium, iron and chrome oxides as well as carbon black. The
uneven distribution of such additives within polymeric materials leads to reduction of their
incompatibility within the polymer matrix. As a result, inorganic UV-stabilizers are not very common
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for industrial applications since their concentration within the polymer matrix is low [2]. Organic
UV-stabilizers usually have low molecular weights such as the ones containing phenyl benzoate,
hydroxybenzophenone, benzotriazoles and fluorescent moieties. A number of problems such as
volatility, incompatibility, solvent extraction and migration could be obtained as a result of the
addition of organic UV-stabilizers to polymeric materials (plastic) that might lead to polymeric
materials strong diminution. The use of reactive UV-stabilizers [3] with compatible side chains,
for example, could overcome some of the limitations associated with the use of UV-stabilizers [4].
The UV-resistance within the polymeric materials could be increased by the use of high molecular
weight UV-stabilizers that can be synthesized through monomer copolymerization in the presence
of reactive UV-stabilizers. The compatibility between high molecular weight UV-stabilizers and
polymer matrices are essential [5]. It is highly important to stabilize synthetic polymers to reduce
or prevent the damaging effect that can be caused by heat, light and air. Therefore, it is essential
to consider photostabilization of polymers that involves various photochemical reactions within
polymer chains during the irradiation process.

A number of UV-stabilizers are known in which the mode of action is highly dependent on the
direct UV absorption, radical scavengers, peroxide decomposers, excited state quenchers and light
screeners, for example [6–15]. Recently, we have reported the use of various additives to increase
photostabilizing efficiency and photochemical stability of polymeric materials [16–19] as part of our
interest in the synthesis of polymeric materials with interesting applications [20–22]. In this paper,
we report the successful use of Schiff’s bases derived from sulphamethoxazole as UV-stabilizers in
the photostabilization of polyvinyl chloride (PVC).

2. Experimental Section

2.1. General

The Fourier transform Infrared (FT-IR) spectra were recorded on FTIR-8300 Shimadzu
Spectrophotometer (Shimadzu Cooperation, Kyoto, Japan) within the frequency range of
400–4000 cm´1. The ultraviolet-visible (UV-Vis) spectra were recorded on Shimadzu UV-Vis
160A-Ultraviolet Spectrophotometer (Shimadzu Cooperation, Kyoto, Japan) within the range of
200–1100 nm. The surface morphology images of PVC films were recorded on the Meiji Techno
Microscope (New York Microscope Company, New York, NY, USA).

2.2. Synthesis of Schiff’s Bases 1–5

Several Schiff’s bases 1–5 (Table 1 and Figure 1) having sulphamethaxazole moiety were
synthesized based on a literature procedure [23] from reactions of sulphamethoxazole and
aromatic aldehydes, namely 2-hydroxybenzaldehyde, 4-dimethylaminobenzaldehyde,
3-nitrobenzaldehyde, 4-bromobenzaldehyde and benzaldehyde, in ethanol in the presence of
few drops of glacial acetic acid as a catalyst under reflux condition for 12 h. The mixture
was left to cool down and the solid produced was filtered, washed ethanol and recrystallized
from ethanol to give 4-(2-hydroxybenzylideneamino)-N-(5-methylisoxazol-3-yl)benzene
sulfonamide (1), 4-(4-(dimethylamino)benzylideneamino)-N-(5-methylisoxazol-3-yl)benzene
sulfonamide (2), N-(5-methylisoxazol-3-yl)-4-(3-nitrobenzylideneamino)benzene sulfonamide
(3), 4-(4-bromobenzylideneamino)-N-(5-methylisoxazol-3-yl)benzene sulfonamide (4) and
4-(benzylideneamino)-N-(5-methylisoxazol-3-yl)benzene sulfonamide (5). The structures of Schiff’s
bases 1–5 were confirmed by various spectroscopic techniques and their data were found to be
consistent with those previously published [23].
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Table 1. Structure of Schiff’s bases 1–5 used as additives along with poly(vinyl chloride) (PVC).

Compound Name

1 4-(2-Hydroxybenzylideneamino)-N-(5-methylisoxazol-3-yl)benzene sulfonamide
2 4-(4-(Dimethylamino)benzylideneamino)-N-(5-methylisoxazol-3-yl)benzene sulfonamide
3 N-(5-Methylisoxazol-3-yl)-4-(3-nitrobenzylideneamino)benzene sulfonamide
4 4-(4-Bromobenzylideneamino)-N-(5-methylisoxazol-3-yl)benzene sulfonamide
5 4-(Benzylideneamino)-N-(5-methylisoxazol-3-yl)benzene sulfonamide
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Figure 1. Structure of compounds 1–5. 

2.3. Film Preparation 

The commercial PVC was precipitated from its tetrahydrofuran solution by the addition of 
ethanol in a dropwise manner. The solid obtained was collected by filtration and dried under reduced 
pressure for 24 h at room temperature. The PVC polymeric films (30 μm thickness) were prepared by 
the use of a Digital Vernier Caliper 2610A micrometer (Vogel GmbH, Kevelaer, Germany) in which  
a fixed PVC concentration, as a solution in tetrahydrofuran (5 g/100 mL), was used. The PVC 
polymeric films were mixed with the synthesized Schiff’s bases 1–5 (0.5% by weight). In addition,  
a PVC sample was used as a blank without addition of any of Schiff’s bases. To maintain the high 
optical quality and to limit the turbidity of the mixture, the hygrometry during casting and the rate 
of solvent ˃evaporation should be controlled. The film transmission should be high ( 80%) within  
the near-UV range. The evaporation technique was used to produce the films for 24 h at room 
temperature. The tetrahydrofuran residues were removed by drying PVC at room temperature for  
3 h. Fixation of the PVC films were carried out by the use of aluminum plate stands (0.6 mm in 
thickness) that have been supplied by the Q-Panel Company (Homestead, FL, USA) [13]. 

2.4. Accelerated Testing Technique 

The polymeric PVC films were irritated in air by the use of accelerated weather-meter QUV 
tester (Q-Panel Company; Homestead, FL, USA) at 6.02 × 10−9 ein·dm−3·s−1 light absorption intensity. 
The accelerated weathering tester has a stainless steel plate with two holes in the front side and  
a third at the back. There is a UV-B fluorescent ultraviolet lamp (40 W), in each side, giving a spectrum 
at 290–360 nm range in which maximum wavelength is 313 nm. To insure that the UV incident 
radiation is perpendicular on the samples, the PVC polymeric films were fixed vertically and parallel 
to the lamps. Samples were rotated from time to time to ensure that the intensity of incident light is 
the same on all samples [24]. 
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2.5.1. Measuring the Photodegradation Rate of PVC Polymeric Films Using Infrared Spectrophotometry 

An FTIR 8300 Shimadzu Spectrophotometer (Shimadzu, Tokyo, Japan) was used to follow-up 
the progress of PVC polymeric films photodegradation within the 400–4000 cm−1 range. The carbonyl, 
polyene and hydroxyl groups’ absorptions took place at 1724, 1631 and 3400 cm−1, respectively.  
The changes in carbonyl, polyene and hydroxyl absorption peaks indicated the photodegradation 
progress at various irradiation times. The comparison between the FTIR absorption peaks at 1724, 
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ethanol in a dropwise manner. The solid obtained was collected by filtration and dried under reduced
pressure for 24 h at room temperature. The PVC polymeric films (30 µm thickness) were prepared by
the use of a Digital Vernier Caliper 2610A micrometer (Vogel GmbH, Kevelaer, Germany) in which
a fixed PVC concentration, as a solution in tetrahydrofuran (5 g/100 mL), was used. The PVC
polymeric films were mixed with the synthesized Schiff’s bases 1–5 (0.5% by weight). In addition,
a PVC sample was used as a blank without addition of any of Schiff’s bases. To maintain the high
optical quality and to limit the turbidity of the mixture, the hygrometry during casting and the rate
of solvent evaporation should be controlled. The film transmission should be high (>80%) within
the near-UV range. The evaporation technique was used to produce the films for 24 h at room
temperature. The tetrahydrofuran residues were removed by drying PVC at room temperature for
3 h. Fixation of the PVC films were carried out by the use of aluminum plate stands (0.6 mm in
thickness) that have been supplied by the Q-Panel Company (Homestead, FL, USA) [13].

2.4. Accelerated Testing Technique

The polymeric PVC films were irritated in air by the use of accelerated weather-meter QUV tester
(Q-Panel Company; Homestead, FL, USA) at 6.02 ˆ 10´9 ein¨dm´3¨ s´1 light absorption intensity.
The accelerated weathering tester has a stainless steel plate with two holes in the front side and a
third at the back. There is a UV-B fluorescent ultraviolet lamp (40 W), in each side, giving a spectrum
at 290–360 nm range in which maximum wavelength is 313 nm. To insure that the UV incident
radiation is perpendicular on the samples, the PVC polymeric films were fixed vertically and parallel
to the lamps. Samples were rotated from time to time to ensure that the intensity of incident light is
the same on all samples [24].

2.5. Photodegradation Measuring Methods

2.5.1. Measuring the Photodegradation Rate of PVC Polymeric Films Using Infrared
Spectrophotometry

An FTIR 8300 Shimadzu Spectrophotometer (Shimadzu, Tokyo, Japan) was used to follow-up the
progress of PVC polymeric films photodegradation within the 400–4000 cm´1 range. The carbonyl,
polyene and hydroxyl groups’ absorptions took place at 1724, 1631 and 3400 cm´1, respectively.
The changes in carbonyl, polyene and hydroxyl absorption peaks indicated the photodegradation
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progress at various irradiation times. The comparison between the FTIR absorption peaks at 1724,
1631 and 3400 cm´1 and the reference peak (1328 cm´1) allows the calculation of carbonyl (Ico),
polyene (Ipo) and hydroxyl (IOH) indices [25]. Such a method is known as the band index method, as
presented in Equation (1).

Is “ As{Ar (1)

where Is = the index of group under study, As = the absorbance of peak under study and Ar = the
absorbance of reference peak. The actual absorbance, the difference between the absorbance of top
peak and base line (a top peak–a baseline), can be calculated by the use of baseline method [25].

2.5.2. Measuring the Photodegradation by Weight Loss

The calculation of weight loss percentage of the photodegraded PVC films in the presence and
absence of Schiff’s base additives allows the determination of the stabilizing effectiveness, as shown
in Equation (2) [26].

Weight loss % “ rpW1 ´W2q {W1s ˆ 100 (2)

where W1 = the weight of PVC sample before irradiation and W2 = the weight of the PVC sample
after irradiation.

2.5.3. Measuring the Photodegradation by Morphology Study

A laboratory microscope (New York Microscope Company, New York, NY, USA) was used to
study the surface morphology (top surface) of PVC polymer films after and before irritation in which
an irradiation time of 250 h was used.

2.5.4. Determination of Viscosity Average Molecular Weight by Using Viscometry

Viscosity is a simple and widespread method to calculate the average molecular weight of
polymeric materials [27]. The average molecular weight is proportional to the viscosity of polymeric
material solution. Equation (3), the Mark–Houwink relation, is used to calculate the relative
molecular weight.

rηs “ KMα
V (3)

where [η] = the intrinsic viscosity, MV = average molecular weight of polymeric material, α and K =
constants which depend on the polymer-solvent system at a particular temperature. Ostwald U-tube
viscometer was used to measure the intrinsic viscosity of a PVC polymeric solution (g/100 mL).

The relative viscosity (ηre) and specific viscosity (ηsp) for polymeric solution (g/100 mL) can be
calculated by the use of Equations (4) and (5), respectively.

ηre “
t
t0

(4)

ηsp “ ηre – 1 (5)

where t = the flow time for PVC polymeric solution and to = the flow time for pure solvent.
The single-point measurements were converted to intrinsic viscosities by the use of Equation (6).

rηs “
´?

2{C
¯

`

ηsp ´ Inηre
˘

1
2 (6)

where C = the PVC polymeric concentration in solution (g/100 mL).
Molecular weights of PVC polymeric materials in tetrahydrofuran as a solvent, in the presence

and absence of Schiff’s base additives, can be calculated from intrinsic viscosities. Equation (7) was
used to calculate the quantum yield of main chain scission (ΦCS) from viscosity measurement.

ΦCS “
`

CA{MV,O
˘

rprηos { rηsq
1
α ´ 1s{Iot (7)
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where C = the concentration, A = Avogadro’s number, MV,O = the initial viscosity´average molecular
weight, Io = incident intensity, t = the irradiation time in second, [ηo] = intrinsic viscosity of PVC
polymeric films before irradiation, [η] = intrinsic viscosity of PVC polymeric films after irradiation
and α = constant.

3. Results and Discussion

3.1. Photochemical Study of the PVC Films by FTIR Spectroscopy

Schiff’s bases 1–5 were used as additives for the photostabilization of PVC films. Previous studies
showed that the most effective concentration of additives was 0.5% by weight [16,17]. Therefore,
Schiff’s bases 1–5 were used at a concentration of 0.5% by weight for the photostabilization of
PVC polymeric films. Exposing the PVC films to light over various radiation times leads to clear
changes in their FTIR spectra (Figure 2). The two absorption bands appeared at 1770 and 1724 cm´1

were attributed to the carbonyl groups formation, chloroketone and aliphatic ketone, respectively.
The bands that have appeared 1631 and 3400 cm´1 were attributed to the formation of C=C bond
conjugated to a carbonyl group and hydroxyl groups of the hydroperoxide and alcohol, respectively
(Scheme 1). The figures for the absorption bands in question are in agreement with the recently
published work [16]. However, the work reported by Gardette et al. in 1989 [28] have attributed
the absorption bands resonated at 1785 and 1745 cm´1 for the carbonyl groups of acid chloride and
α,α’-dichloroketone, respectively in which hydroperoxides, chloroketones, acid chlorides, carboxylic
acids were the main products from photooxidation of PVC. The indices for the carbonyl (ICO),
polyene (IPO) and hydroxyl (IOH) groups were monitored along with irritation time by the use of
FTIR spectrophotometry to study the activities of Schiff’s bases 1–5 as additives for PVC films’
photostabilization [29]. The relationships between the irradiation time and indices for the carbonyl
(ICO), polyene (IPO) and hydroxyl (IOH) for photostabilization of PVC films in the presence of
Schiff’s bases 1–5 as additives are represented in Figures 3–5. Figures 3–5 clearly indicated that
compounds 1–5 have a lower growth rate with irradiation time compared to PVC in the absence
of any additives (blank) [30]. Therefore, such additives can be considered as photostabilizers for PVC
polymeric films in which compound 1 was found to be the most efficient photostabilizer among the
ones used in this study, followed by 2, 3, 4 and 5.
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(b) after irradiation 

Figure 2. The FTIR spectra for PVC films (30-μm thickness) with Schiff’s base 1 (0.5% by weight) as 
additive before (a) and after (b) irradiation. 
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Figure 3. The relationship between the irradiation time (h) and carbonyl index (ICO) for PVC films  
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Figure 5. The relationship between the irradiation time (h) and hydroxyl index (IOH) for PVC films  
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3.2. Determination of the Stabilizing Efficiency by Weight Loss Method

The calculation of weight loss percentage of the photodegraded PVC films, by the use of
Equation (2), allows measurement of the stabilizing effectiveness. Weight loss occurs due to formation
volatile and low molecular weight by-products that resulted from photodegradation of PVC on
exposure to light. The weight loss of PVC films increased as degradation time increases [31].
Figure 6 shows the relationship between the weight loss percentages as a function of irradiation
time. The results obtained showed that Schiff’s bases 1–5 have a significant stabilization effect against
photodegradation of PVC films in which compound 1 was the most effective among the others.
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Figure 6. The relationship between the irradiation time (h) and weight loss (%) for PVC films (30 µm
thickness) with Schiff’s bases 1–5 (0.5% by weight) as additives.

3.3. Surface Morphology for Poly(vinyl chloride) Films

The morphological study of the surface of polymers has many advantages. For example,
it gives a clear picture about the surface irregularity, defects and the crystalline case [32]. In
addition, it allows monitoring the changes within the surface of the polymeric material as a result
of photodecomposition or stabilization of polymers when exposed to ultraviolet radiation in which
decomposition process can occur as chain scission [33]. The surface morphology images of the
non-irradiated PVC films in the presence and absence of Schiff’s base additives are shown in Figure 7.
It is clear that the PVC film surface was smooth in which no white spots were detected.
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The PVC films were irritated for 250 h and the morphology images have been recorded (Figure 8).
It is clear that the blank PVC film, irritated for 250 h, was full of white spots and grooves as
a result of photodegradation of polymeric materials due to elimination of HCl. In addition, the
morphological image of irritated PVC (blank) showed cracks within its surface and color changes [34].
However, in other cases where Schiff’s base additives were used, the surface was almost smooth
and fewer white spots exist indicating efficient stabilization effects. Clearly, Schiff’s base additives
1–5, and in particular compound 1, reduce the photodegradation of PVC film through inhabitation
of dehydrochlorination.
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The number of average chain scission (S) was calculated by the use of Equation (9) [36].

S “ MV,O {MV,t ´ 1 (8)

where MV,O = the viscosity average molecular weight at the initial time (0), MV,t = the viscosity
average molecular weight at t irradiation time. Figure 10 shows the relationship between the
irradiation time and changes in the number of average chain scissions (S) and clearly indicated a
degree of cross-linking and branching.
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Figure 10. The relationship between the irradiation time (h) and main chain scission (S) for PVC films
(30 µm thickness) with Schiff’s bases 1–5 (0.5% by weight) as additives.

In the initial stages of photodegradation, randomly distributed weak bonds can be broken
quickly [37]. The degree of deterioration (α) was calculated by the use of Equation (10).

α “ m.S{MV (9)

where m = the initial molecular weight. Figure 11 shows the relationship between the irradiation time
and degree of deterioration (α). Clearly, the α values for the irradiated PVC samples with Schiff’s base
additives were lower compared to the case where no additive (blank) was used. The α values were
found to be increased rapidly with irradiation time in the initial stages of photodegradation of PVC
films, which could be due to a random polymeric chain bonds breaking.
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Figure 11. The relationship between the irradiation time (h) and degree of deterioration (α) for PVC
films (30 µm thickness) with Schiff’s bases 1–5 (0.5% by weight) as additives.
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The quantum yield of the chain scission (Φcs) can provide further evidence for the PVC
photodegradation reaction [18]. The Φcs values for PVC films in the presence of additives were
calculated by the use of Equation (7) and the values are reported in Table 2.

Table 2. Quantum Yield (Φcs) for the chain scission for PVC films (30 µm thickness) in the presence
and absence of additives (0.5% by weight) after irradiation (250 h).

Additive (0.5 wt %) Quantum Yield of Main Chain Scission (Φcs)

PVC (blank) 6.3 ˆ 10´05

PVC + compound 1 5.4 ˆ 10´09

PVC + compound 2 8.4 ˆ 10´09

PVC + compound 3 1.3 ˆ 10´08

PVC + compound 4 1.7 ˆ 10´08

PVC + compound 5 3.1 ˆ 10´08

From Table 2, it was clear that the Φcs values in the presence of additives were smaller than that
for the PVC additive free (blank). The reason for the Φcs low values could be due to the fact that the
energy was absorbed at one site and the electronic excitation was distributed over a large number of
bonds within PVC macromolecules. As a result, the possibility to break a single bond becomes low
or energy absorption can be dissipated by non-reactive processes [38].

3.5. Suggested Mechanisms for the Photostabilization of PVC Films in the Presence of Schiff's Bases 1–5

The efficiency of Schiff's bases 1–5 as photostabilizers for PVC films was found to follow the
order 1 > 2 > 3 > 4 > 5 based on the changes in the hydroxyl, carbonyl and polyene concentration.
The Schiff’s bases 1–5 can stabilize PVC films through various mechanisms including energy transfer
from the polymers excited chains to the additives, cross-linking between PVC polymeric chains and
additives’ UV absorption [16,39–42]. The stabilization of PVC films could take place as a result of
the direct absorption of UV radiation by the Schiff’s bases 1–5 in which energy can be dissipated as a
heat (Scheme 2). Similarly, it is believed that the isoxazole ring itself could stabilize the PVC through
direct absorption of UV radiation, but the substituents on the imine bond clearly had the predominant
stabilization effect.
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Scheme 2. Possible photostabilization of PVC through direct absorption of UV radiation by Schiff’s 
base additives 1–5. 
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The interaction between the PVC polymeric chains and Schiff’s base additives has been
suggested to be dependent on the coordination between the heteroatoms within Schiff’s bases, and,
in particular, the nitrogen of imine bonds, and the polarized carbon-chlorine bonds within the PVC
polymeric chains [16]. It is believed that strong interactions between PVC polymeric chains and
Schiff’s bases could lead to an effective energy transfer. Therefore, the attraction between PVC chains
and Schiff’s bases 1–5, as a result of the polarities of oxygen atoms within isoxazole ring, nitrogen of
imine bonds and PVC carbon-chlorine bonds has been suggested to stabilize the polymeric materials
through dissipation of the energy from the PVC excited state by energy transfer (Scheme 3). However,
there is no experimental evidence to support such speculation.
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Since the performance of Schiff’s bases tested is different, it is likely that the nature of
substitution on the phenyl ring had an effect on the level of PVC films’ stabilization. Compound 1
was found to be the most effective additive towards stabilization of the PVC films. Such effect
could be due to the presence of hydroxyl groups on the phenyl ring attached to the imine bond.
It was reported that the stabilization of PVC films in the presence of Schiff’ base compounds could
be explained through a proton transfer for the singlet excited state (S1) of the additive followed by
internal conversion (IC), proton transfer and then dissipation of energy as a heat [42]. In addition, it
was reported that stabilization of PVC can take place through intersystem conversion (ISC) of the S1

state of the additive to the triplet excited state (T1) followed by a proton transfer and then conversion
to the ground state (S0) in which energy was dissipated as heat [42]. Therefore, photostabilization of
PVC films through a proton transfer and intersystem crossing (ISC) in the presence of Schiff’s base 1
was suggested in Scheme 4.
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Finally, the hydroxyl group in Schiff’s base 1 could act as radical scavenger in the PVC
photostabilization process (Scheme 5).
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5. Conclusions 

Schiff’s bases containing sulfamethoxazole moiety have been proven to act as photostabilizers 
for the photostabilization of poly(vinyl chloride). The order of photostabilization activity was  
1 > 2 > 3 > 4 > 5, based on decreases in carbonyl, polyene and hydroxyl indices as well as the weight 
loss for PVC films. 4-(2-Hydroxybenzylideneamino)-N-(5-methylisoxazol-3-yl)benzene sulfonamide 
(1) was found to be the most efficient Schiff’s base in the photostabilization process of PVC mainly 
due to the presence of hydroxyl group as well as sulfamethoxazole moiety. Various mechanisms were 
suggested to explain the photostabilization of PVC in which Schiff’s bases act as photostabilizers 
through dissipation of the energy as heat, electrostatic attraction between the PVC and additives and 
direct absorption of UV radiation. 
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