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Abstract: This paper describes the synthesis and thermal properties in solution and bulk
of poly(2-alkyl-oxazoline)s (PAOx) containing a methyl ester side chain. Homopolymers
of 2-methoxycarbonylethyl-2-oxazoline (MestOx) and 2-methoxycarbonylpropyl-2-oxazoline
(C3MestOx), as well as copolymers with 2-ethyl-2-oxazoline (EtOx) and 2-n-propyl-2-oxazoline
(nPropOx), with systematic variations in composition were prepared. The investigation of the
solution properties of these polymers revealed that the cloud point temperatures (TCPs) could be
tuned in between 24 ˝C and 108 ˝C by variation of the PAOx composition. To the best of our
knowledge, the TCPs of PMestOx and PC3MestOx are reported for the first time and they closely
resemble the TCPs of PEtOx and PnPropOx, respectively, indicating similar hydrophilicity of the
methyl ester and alkyl side chains. Furthermore, the thermal transitions and thermal stability
of these polymers were investigated by DSC and TGA measurements, respectively, revealing
amorphous polymers with glass transition temperatures between ´1 ˝C and 54 ˝C that are
thermally stable up to >300 ˝C.
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1. Introduction

Smart polymeric materials can change their physical properties in response to external stimuli,
such as temperature, ionic strength, pH, chemical and biological stimuli, light or electromagnetic
radiation [1–3]. Thermoresponsive polymeric behavior has most extensively been studied and,
in particular, polymers that undergo a temperature induced phase transition. One of the
best-characterized thermoresponsive polymers is poly(N-isopropyl acrylamide) (PNIPAAm), which
displays a lower critical solution temperature (LCST) of 32 ˝C, just below body temperature [2–5].
Other classes of thermoresponsive polymers that have emerged in recent years are for example
poly(oligo ethylene glycol acrylate)s [2,6], polyisocyanopeptides grafted with oligo(ethylene glycol)
side chains [7–9], poly(2-oxazine)s [10] and poly(2-oxazoline)s [3,5,11–17]. These types of
polymers can be applied in temperature sensors, [18] protein chromatography [19] and various
biomedical applications such as drug delivery and tissue engineering [1,20]. For these latter
applications thermoresponsive polymers are needed that are biocompatible and that can be
conveniently functionalized.

A polymer class that fulfills these requirements is the class of poly(2-alkyl/aryl-2-oxazoline)s
(PAOx) as they are biocompatible, thermoresponsive, and have tunable properties [15,21,22].
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Poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx) are interesting for
biomedical applications because they show stealth behaviour similar to poly(ethylene glycol)
(PEG) [15,21–25]. Furthermore, PEtOx and poly(2-propyl-2-oxazoline)s (PPropOx) show
thermoresponsive properties. PEtOx has an LCST of ~60 ˝C, poly(2-n-propyl-2-oxazoline)
(PnPropOx) of ~25 ˝C, poly(2-cyclopropyl-2-oxazoline) (PcPropOx) of ~30 ˝C and poly(2-isopropyl-
2-oxazoline) (PiPropOx) of ~38 ˝C [3,5,15,26]. Cloud point temperatures (TCPs) can be tuned from 9 ˝C
to 100 ˝C by varying the molecular weight and composition of the polymer by incorporation of more
hydrophobic or hydrophilic monomeric units, either by copolymerization or post-polymerization
modification [5,11–13,27,28].

Functional groups, often protected, can be introduced into PAOx by making use of a functional
monomer or initiator during the living cationic ring opening polymerisation (CROP, Scheme 1) of
2-oxazoline monomers or by using a functional terminating agent, yielding well-defined PAOx with
control over number and type of functionalities [15,29–38]. Methyl esters are especially interesting,
because they can undergo a direct amidation with a variety of amines to easily introduce other
functional groups such as alcohols, hydrazide and amines [39–42]. Moreover, the ester can be
hydrolyzed to the corresponding carboxylic acid providing a versatile handle for conjugation as
well as a means to introduce pH responsiveness. Although the potential of side-chain methyl
ester-containing PAOx copolymers is well established, there is remarkably little known about their
thermal features and thermoresponsive behavior [33,43–47].
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Scheme 1. (A) Cationic ring-opening polymerisation of 2-oxazolines with methyl p-toluenesulfonate 
as initiator and piperidine as terminating agent and (B) Monomer structures of EtOx (1), nPropOx (2), 
MestOx (3) and C3MestOx (4). 

In this paper we describe the synthesis and thermal properties of methyl ester-containing PAOx. 
Homopolymers and statistical copolymers, with near ideal random monomer distributions [38],  
of 2-ethyl-2-oxazoline (EtOx, 1) and 2-n-propyl-2-oxazoline (nPropOx, 2) with 2-methoxycarbonylethyl-
2-oxazoline (MestOx, 3) and 2-methoxycarbonylpropyl-2-oxazoline (C3MestOx, 4) were prepared 
with 10, 20, 30, 50, and 70 mol % methyl ester content. The thermal solution and bulk properties of 
these polymers were determined by turbidimetry, differential scanning calorimetry (DSC), and 
thermal gravimetric analysis (TGA), respectively. 

2. Experimental Section  

2.1. Materials 

2-chloroethylamine hydrochloride, methyl p-toluenesulfonate (MeOTs), and sodium carbonate 
were purchased from Acros Organics. EtOx was kindly donated by Polymer Chemistry Innovations. 
All other reagents were purchased from Sigma Aldrich and used as received. EtOx and methyl  
p-toluenesulfonate (MeOTs) were purified by distillation over barium oxide and stored under argon. 
Dry solvents were obtained from a solvent purification system from J.C. Meyer, with aluminum oxide 
drying system and a nitrogen flow. MestOx [37], C3MestOx [38], and nPropOx [48] were prepared 
according to literature procedures. 
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In this paper we describe the synthesis and thermal properties of methyl
ester-containing PAOx. Homopolymers and statistical copolymers, with near ideal random
monomer distributions [38], of 2-ethyl-2-oxazoline (EtOx, 1) and 2-n-propyl-2-oxazoline (nPropOx,
2) with 2-methoxycarbonylethyl-2-oxazoline (MestOx, 3) and 2-methoxycarbonylpropyl-2-oxazoline
(C3MestOx, 4) were prepared with 10, 20, 30, 50, and 70 mol % methyl ester content. The thermal
solution and bulk properties of these polymers were determined by turbidimetry, differential
scanning calorimetry (DSC), and thermal gravimetric analysis (TGA), respectively.

2. Experimental Section

2.1. Materials

2-Chloroethylamine hydrochloride, methyl p-toluenesulfonate (MeOTs), and sodium carbonate
were purchased from Acros Organics. EtOx was kindly donated by Polymer Chemistry Innovations.
All other reagents were purchased from Sigma Aldrich and used as received. EtOx and methyl
p-toluenesulfonate (MeOTs) were purified by distillation over barium oxide and stored under argon.
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drying system and a nitrogen flow. MestOx [37], C3MestOx [38], and nPropOx [48] were prepared
according to literature procedures.

2.2. Instrumentation

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DMC300 (300 MHz for
1H, 75 MHz for 13C) (Bruker: Billerica, MA, USA).

Polymerization reaction mixtures were prepared in a VIGOR Sci-Lab SG 1200/750 Glovebox
system (Vigor: Houston, TX, USA), with purity levels of less than 1 ppm for O2 and H2O.

Polymerizations were carried out in a Biotage Initiator Microwave System with Robot Sixty
utilizing capped reaction vials. These vials were heated to 120 ˝C overnight, allowed to cool to room
temperature and filled with nitrogen prior to use. All microwave polymerizations were performed
with temperature control (IR sensor).

Size exclusion chromatography (SEC) was performed on an Agilent 1260 (Agilent Technologies:
Santa Clara, CA, USA): series HPLC system equipped with a 1260 online degasser, a 1260 ISO-pump,
a 1260 automatic liquid sampler, a temperature controlled column compartment, a 1260 diode array
detector (DAD) and a 1260 refractive index detector (RID). Analyses were performed on a PSS Gram30
column (PSS Polymer Standards Service GmbH: Mainz, Germany) in series with a PSS Gram1000
column at 50 ˝C. N,N-dimethylacetamide (DMA, Sigma-Aldrich: Zwijndrecht, The Netherlands),
containing 50 mM of LiCl, was used as an eluent, at a flow rate of 0.593 mL¨min´1. The SEC traces
were analyzed using the Agilent Chemstation software with the GPC add on. Number average
molecular weights (Mn) and dispersity (Ð) values were calculated against poly(methyl methacrylate)
PMMA standards.

Turbidity measurements were performed on an Avantium Crystal 16 platform (Avantium:
Geleen, The Netherlands). Solutions of the polymers were prepared in milliQ (WaterPro PS polisher
from Labconco: Kansas City, MO, USA) water with a conductivity of 18.2 M
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2.3. Polymer Synthesis

Polymerization mixtures with a total monomer concentration of 4 M in acetonitrile, an overall
[M]/[I] ratio of 100 and MeOTs as initiator, were prepared in the glovebox under argon and the reactor
vials were crimped air-tight inside the glovebox. Polymerizations were carried out under microwave
irradiation at 140 ˝C for 20 min aiming for full conversion [37,38]. After cooling to room temperature,
the polymerizations were quenched by the addition of piperidine. After removal of the solvents
under reduced pressure, the polymers were re-dissolved in dichloromethane and precipitated in cold
diethyl ether twice. The polymers were dried in the vacuum oven at 50 ˝C before further analysis.

2000



Polymers 2015, 7, 1998–2008

3. Results and Discussion

Series of homopolymers and copolymers of EtOx and nPropOx with MestOx and C3MestOx
were prepared [37,38] with varying feed ratios of 10, 20, 30, 50, and 70 mol % MestOx or C3MestOx
and a constant monomer to initiator ratio of [M]/[I] = 100, yielding four sets of copolymers. All
polymers were terminated with piperidine instead of the widely used methanolic sodium hydroxide
to avoid saponification of the methyl ester. All polymers were characterized by 1H NMR spectroscopy
and SEC and were obtained with the desired composition and a narrow dispersity (Ð < 1.21, Table 1).

Cloud point temperatures (TCPs) of the homo- and copolymers were determined by turbidimetry
of 5 mg¨ mL´1 aqueous solutions, under stirring as this gives more reliable dissolution data when
cooling down the samples. All polymers, expect EtOx49–MestOx51, showed reversible LCST behavior
covering a broad temperature range (24–108 ˝C, Table 1) depending on the polymer composition with
nearly no hysteresis between heating and cooling cycles (See Supplementary Information Figures
S1–S21). In some cases the TCP in the cooling cycles was slightly higher than in the heating cycles;
this can be possibly explained by the fact that re-dissolution of these polymers was a rather slow
process, leading to temporary lower concentrations in solution during cooling and thus an increase
of TCP. However, the precipitates were fully dissolved when the solution cooled down completely.

Interestingly, the homopolymers of MestOx (PMestOx) and C3MestOx (PC3MestOx) also
showed thermo-responsive properties. PMestOx displayed a shallow transition with a TCP of 102 ˝C
and 80% transmission at 92 ˝C similar to PEtOx with a degree of polymerization of 100 (Figure 1A),
whereas PC3MestOx exhibits a sharp transition at 26 ˝C (Figure 1B) comparable to PnPropOx. When
the polymers were heated above 100 ˝C during the turbidimetry measurements, the TCP slightly
increased during every run (Figure 1 and Figures S2–S11 in Supplementary Information), which is
ascribed to partial hydrolysis of the methyl ester groups resulting in the corresponding carboxylic
acid, as was confirmed by 1H NMR spectroscopy (Supplementary Information Figures S22, S23).
Partial precipitation or crystallization of the sample could be excluded after visual inspection of the
samples. The determined average TCP of all heating and cooling cycles are reported in Table 1, except
for the polymers that were heated above 100 ˝C for which the TCP in the first heating and cooling
runs are listed.
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Figure 1. Turbidity measurements for (A) PMestOx and (B) PC3MestOx.

The TCPs of the different copolymers (Table 1) are plotted as a function of the copolymer
composition in Figure 2. The relationship between the TCPs and EtOx content of the EtOx–C3MestOx
copolymers is linear (Figure 2A), and, thus with this monomer combination the TCP can
straightforwardly be tuned between the TCPs of the corresponding homopolymers by varying
the polymer composition. A linear relationship between copolymer composition and TCP
was previously also described for P(iPropOx–nPropOx), P(iPropOx–EtOx) and P(cPropOx–EtOx)
copolymers [13,14,27].
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Table 1. Overview of synthesis and characterisation data of studied (co)polymers.

Monomer 1 Monomer 2
Feed ratio
(M1:M2)

Composition a

(M1:M2)
SEC b TCP (˝C) c

Tg
d (˝C)

TGA (˝C) e

Mn (103 g/mol) Ð Heating Cooling 5% 50%

MestOx - 100:0 100:0 19.4 1.10 101 102 39 258 353
C3MestOx - 100:0 100:0 24.1 1.12 26 26 ´1 325 360

EtOx * - 100:0 100:0 14.0* 1.19 * 91 * 91 * 54 * - -
nPropOx - 100:0 100:0 16.6 1.10 27 23 35 312 406

EtOx MestOx 90:10 91:9 18.9 1.14 93 96 53 322 403
EtOx MestOx 80:20 82:18 16.9 1.14 99 102 45 293 389
EtOx MestOx 70:30 70:30 17.4 1.13 103 106 44 310 376
EtOx MestOx 50:50 49:51 19.3 1.14 # # 39 306 365
EtOx MestOx 30:70 29:71 22.8 1.16 102 104 38 296 359

nPropOx MestOx 90:10 90:10 21.0 1.12 25 24 30 327 393
nPropOx MestOx 80:20 79:21 15.5 1.12 27 30 30 306 385
nPropOx MestOx 70:30 68:32 16.3 1.13 32 36 30 303 377
nPropOx MestOx 50:50 48:52 20.6 1.15 40 40 32 310 367
nPropOx MestOx 30:70 27:73 29.3 1.19 55 54 35.0 309 367

EtOx C3MestOx 90:10 90:10 21.1 1.13 89 89 43 334 399
EtOx C3MestOx 80:20 82:18 21.8 1.14 78 79 39 313 382
EtOx C3MestOx 70:30 70:30 21.6 1.14 71 78 27 316 377
EtOx C3MestOx 50:50 50:50 22.7 1.14 56 56 17 322 369
EtOx C3MestOx 30:70 30:70 24.1 1.14 42 43 -2 320 363

nPropOx C3MestOx 90:10 90:10 19.2 1.21 24 25 28 321 399
nPropOx C3MestOx 80:20 79:21 20.7 1.15 25 32 18 328 385
nPropOx C3MestOx 70:30 68:32 21.0 1.15 25 31 15 332 379
nPropOx C3MestOx 50:50 48:52 16.7 1.21 26 27 12 311 368
nPropOx C3MestOx 30:70 28:72 18.8 1.16 25 30 5 304 361

* Literature values [27]; # no cloud point temperature observed up to 110 ˝C; a determined by 1H NMR spectroscopy; b determined by SEC against PMMA standards; c determined
by turbidimetry measurements; d determined by DSC measurements; 5%: loss of 5 wt % after loss of solvents; for some polymers it was difficult to determine the point where all
solvents were removed and for these the start of the flatter area was used for calculation of the 5% weight loss temperature. 50%: loss of 50 wt % from the total mass.
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All TCPs of the nPropOx–C3MestOx copolymers were in between 24 and 26.5 ˝C (Figure 2B),
revealing that varying the polymer composition hardly changed the thermo-responsive behavior.
This behavior was expected as the hydrophobicity of both monomers and the TCPs of the
homopolymers are comparable.

In the nPropOx–MestOx copolymer series, the TCPs exponentially increased with increasing
MestOx content (Figure 2C), also the 80% transmission values are plotted in this graph, showing
comparable TCP values for the copolymers and a clear difference for PMestOx. A similar trend was
also reported for EtOx–nPropOx copolymers [14,28]. The hydrophobic nPropOx monomer seems to
be more dominant in determining the overall polymer hydrophilicity and TCP than the hydrophilic
MestOx monomer.Polymers 2015, 7, page–page 
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Figure 2. Cloud point temperatures (TCP; determined at 50% transmittance unless otherwise stated) 
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Figure 2. Cloud point temperatures (TCP; determined at 50% transmittance unless otherwise
stated) as a function of polymer composition of (A) P(EtOx–C3MestOx), (B) P(nPropOx-C3MestOx),
(C) P(nPropOx–MestOx, and (D) P(EtOx–MestOx); lines are added to guide the eye.

Copolymers of EtOx and MestOx displayed TCPs in between 93 ˝C and 103 ˝C at EtOx-MestOx
comonomer ratios of 90:10, 80:20, 70:30, and 30:70 (Figure 2D, Table 1), whereas surprisingly the
copolymer with a 50:50 comonomer ratio did not show a transition up to 110 ˝C. Additionally,
here the 80% transmission values are plotted in this graph, showing comparable TCP values for the
copolymers and a clear difference for PMestOx. This observation indicates more efficient polymer
hydration and/or decreased polymer-polymer interactions, which both may be related to near
random placement of the smaller ethyl and larger methoxycarbonylethyl side chains.

The thermal bulk properties of the homo- and copolymers were further investigated by
differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All polymers showed
a clear glass transition (Figure 3, ESI Figure S24–S27, Table 1), indicating that they are amorphous.
The Tgs of the homopolymers PMestOx (Tg = 39 ˝C) and PnPropOx (Tg = 35 ˝C) are comparable,
while PC3MestOx has a Tg of ´1 ˝C and PEtOx has a Tg of 54 ˝C. The rather low Tg of PC3MestOx
indicates high chain mobility induced by the side chain.
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Figure 3. DSC traces of second heating run (10 K¨ min´1) of PMestOx, PC3MestOx, and
PnPropOx homopolymers.

The Tgs of the copolymers are plotted in Figure 4. In the P(EtOx–MestOx) copolymer series,
the Tgs did not change much up to 40 wt % EtOx (Figure 4A) and from this point on it increased
linearly towards the Tg of PEtOx. The Tg of the MestOx homopolymer is slightly higher than the Tg of
P(EtOx–MestOx, 30:70), indicating that the polymer chain mobility is lower, which may be ascribed to
more efficient (dipole-dipole) interactions between the polyamide backbones in the homopolymers.
A very similar trend in Tg was observed for P(EtOx–C3MestOx) copolymers (Figure 4B), with the
exception that after already 20 wt % incorporation of EtOx the glass transition temperature started
to increase linearly with increasing amount of EtOx, possibly due to the larger difference in Tg of
the homopolymers.
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was recently reported for copolymers of 2-cyclopropyl-2-oxazoline (cPropOx) and EtOx [27], and this 
can be ascribed to suppression of interchain interactions. The Tg of nPropOx–C3MestOx copolymers 
increased linearly with increasing nPropOx content (Figure 4D), so with this combination of 
monomers the glass transition can be accurately tuned between the Tgs of the corresponding 
homopolymers by varying the monomer ratios. 

TGA analysis revealed that the PMestOx homopolymer was thermally stable up to 250 °C 
(Figure 5A), while all other homo- and copolymers were stable at least up to 300 °C (Figure 5, Table 1, 
and Figures S28–S30 in Supplementary Information). The lower stability of PMestOx is rather 
surprising, especially compared to PC3MestOx and may indicate that the close proximity of the 
secondary amide to the ester group decreases the stability of the latter. In Table 1 the temperature for 
5% and 50% weight loss are listed, whereby the 5 wt % loss was determined after loss of solvents. 
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For the P(nPropOx–MestOx) copolymers all measured Tgs were lower than those of the
homopolymers (Figure 4C) and the Tgs only vary 5 ˝C within the composition range. A similar
trend was recently reported for copolymers of 2-cyclopropyl-2-oxazoline (cPropOx) and EtOx [27],
and this can be ascribed to suppression of interchain interactions in the copolymers. The Tg of
nPropOx–C3MestOx copolymers increased linearly with increasing nPropOx content (Figure 4D), so
with this combination of monomers the glass transition can be accurately tuned between the Tgs of
the corresponding homopolymers by varying the monomer ratios.

TGA analysis revealed that the PMestOx homopolymer was thermally stable up to 250 ˝C
(Figure 5A), while all other homo- and copolymers were stable at least up to 300 ˝C (Figure 5,
Table 1, and Figures S28–S30 in Supplementary Information). The lower stability of PMestOx is
rather surprising, especially compared to PC3MestOx and may indicate that the close proximity of the
secondary amide to the ester group decreases the stability of the latter. In Table 1 the temperature for
5% and 50% weight loss are listed, whereby the 5 wt % loss was determined after the loss of solvents.
However, not all polymers show a plateau after loss of solvent and for these the start of the flatter
area was used for calculation of the 5% weight loss temperature. The 50% loss is reported as the 50%
loss of the total weight. In general, when more (C3)MestOx was incorporated into the copolymers,
the thermal stability slightly decreased, because the P(C3)MestOx homopolymers are less stable than
PEtOx or PnPropOx homopolymers, most likely due to decomposition of the methyl ester units.
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4. Conclusions 

Homo- and copolymers of MestOx and C3MestOx with EtOx and nPropOx were successfully 
synthesized. All polymers, except P(EtOx49–MestOx51), showed TCPs that varied in between 24 °C and 
108 °C depending on the composition, at a concentration of 5 mg/mL in water. Interestingly, 
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copolymers with more (C3)MestOx were found to be less stable. Nonetheless, the stabilities will allow 
thermal processing, e.g. hot-melt extrusion, at temperatures well above room temperature. 
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4. Conclusions

Homo- and copolymers of MestOx and C3MestOx with EtOx and nPropOx were successfully
synthesized. All polymers, except P(EtOx49–MestOx51), showed TCPs that varied in between
24 ˝C and 108 ˝C depending on the composition, at a concentration of 5 mg/mL in water.
Interestingly, PC3MestOx has a low TCP of 26 ˝C making it interesting for biomedical applications.
DSC measurements revealed that all polymers are amorphous with Tgs between ´1 ˝C and
54 ˝C. For P(EtOx–MestOx), P(EtOx–C3MestOx), and P(nPropOx–C3MestOx) copolymers the glass
transition temperature can be tuned in between the Tgs of the homopolymers. However, for
P(nPropOx–MestOx) copolymers, the Tgs of all copolymers are lower than the ones of both
homopolymers, indicating suppression of interchain interactions. All homo- and copolymers are
thermally stable up to at least 250 ˝C, whereby copolymers with more (C3)MestOx were found to
be less stable. Nonetheless, the stabilities will allow thermal processing, e.g. hot-melt extrusion, at
temperatures well above room temperature.
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