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Abstract: A series indole-based ligand precursors, PzRIndH (R = H, PzHIndH; R = Me, PzMeIndH;
R = t-Bu, PztBuIndH; and R = Ph, PzPhIndH), have been synthesized via copper-catalyzed
N-arylation (for PzHIndH) or the Bartoli indole synthesis (for PzMeIndH, PztBuIndH and PzPhIndH)
reactions with moderate to high yield. Reactions of these ligand precursors with 0.7 equivalent
of MgnBu2 in THF (for 1) or hexane (for 2–4) afforded the bis-indolyl magnesium complexes 1–4,
respectively. All the ligand precursors and related magnesium complexes have been characterized
by NMR spectroscopy and elemental analyses. The molecular structure is reported for compound 1.
These novel magnesium complexes demonstrate efficient catalytic activities for the ring-opening
polymerization of L-lactide in the presence of alcohol.
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1. Introduction

Polyesters, such as poly(ε-caprolactone) (PCL) or polylactide (PLA), are known as synthetic
biodegradable polymers. These polymers have found applications in diverse fields, such as tissue
engineering or bio-medical fields because of their biocompatible properties [1–5]. Due to the
promising catalytic activities, metal-based initiators/catalysts have been attractive interest over the
past decades [6–14]. Among these studies, some metal complexes bearing anionic N-heterocyclic
ligands, such as pyrrole [15–26], indole [27,28] or carbazole [29], have displayed good catalytic
activities towards ROP (ring-opening polymerization) of cyclic esters. The indole ring system, one of
the most important heterocycles in nature, keeps continuous attraction due to the potential biological
activities demonstrated by various indole derivatives. Therefore, development of novel routes for
the preparation of indole derivatives has become an important theme in organic synthesis [30–34].
Recently, some magnesium complexes bearing pendant indolyl ligands have been reported by us [28].
They demonstrated efficient catalytic activities towards the ROP of cyclic esters. Considering the
catalytic activities demonstrated by some pyrazolyl-containing magnesium complexes [35–38], we
intended to introduce the pyrazolyl substituents as pendant functionalities into indole. We expected
the combination of pyrazole and indole groups could be the candidates for ligand precursors.
Therefore, we reported here the synthesis of magnesium complexes incorporating pyrazolyl-indolyl
ligands. Their catalytic activities towards the ROP of L-lactide were also investigated.
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2. Experimental Section

2.1. General Information

All manipulations were carried out under an atmosphere of dinitrogen using standard
Schlenk-line or drybox techniques. Solvents were refluxed over the appropriate drying agent and
distilled prior to use. Deuterated solvents were dried over molecular sieves.

1H and 13C{1H} NMR spectra were recorded either on Varian Mercury-400 (400 MHz) or Varian
Inova-600 (600 MHz) spectrometers (Agilent Technologies, Santa Clara, CA, USA) in chloroform-d or
benzene-d6 at room temperature unless stated otherwise and referenced internally to the residual
solvent peak and reported as parts per million relative to tetramethylsilane. Elemental analyses
were performed by an Elementar Vario ELIV instrument (Elementar, Hanau, Germany). The GPC
measurements were performed in THF at 35 ˝C with a Waters 1515 isocratic HPLC pump, a Waters
2414 refractive index detector, and Waters styragel column (HR4E) (Waters, Milford, MA, USA). The
number-average molecular weights (Mn) and molecular weight distributions (PDIs = Mw/Mn) were
calculated using polystyrene as standard.

N,N1-Dimethylethylenediamine (DMEDA, Acros, Geel, Belgium), pyrazole (Acros), K2CO3

(Union Chemical Works, Hsinchu, Taiwan), copper(I) iodide (Acros), 9-anthracenemethanol
(9-AnOH, Acros), vinyl magnesium bromide (1.0 M in THF, Sigma-Aldrich, St. Louis, MO,
USA) and di-n-butyl magnesium (1.0 M in heptane, Sigma-Aldrich) were used as supplied.
Benzyl alcohol (TEDIA) was dried over CaH2 and distilled before use. L-Lactide (Bio
Invigor, Taipei, Taiwan) was recrystallized from dry toluene prior to use. 7-Bromoindole [39],
3,5-dimethyl-1-(2-nitrophenyl)-1H-pyrazole [40], 3,5-di-tert-butyl-1-(2-nitrophenyl)-1H-pyrazole [40]
and 3,5-diphenyl-1-(2-nitrophenyl)-1H-pyrazole [40] were prepared by the modified
literature’s methods.

2.2. Preparations

PzHIndH: To a flask containing 7-bromoindole (0.52 g, 2.70 mmol), K2CO3 (0.37 g, 2.70 mmol),
CuI (0.05 g, 0.27 mmol) and 1H-pyrazole (0.20 g, 3 mmol), 3 mL toluene and DMEDA (0.07 mL,
0.68 mmol) were added at room temperature under nitrogen. The reaction mixture was heated
at 110 ˝C for 5 days. The reaction mixture was allowed to cool to room temperature. Then, the
mixture was extracted with a mixed solution of 20 mL ethyl acetate and 50 mL de-ionized water.
The organic layer was separated and dried over magnesium sulfate. The filtrate was pumped to
dryness to afford yellow oil. Crude product was purified using column chromatography (ethyl
acetate: n-hexane = 1:10) to afford yellow oil. Yield, 0.35 g, 70%. 1H NMR (CDCl3, 400 MHz): δ(ppm)
6.46 (t, J = 2.0 Hz, 1H, Ar–H), 6.57 (m, 1H, Ar–H), 7.09 (m, 1H, Ar–H), 7.24 (d, J = 7.6 Hz, 1H, Ar–H),
7.28 (t, J = 3.2 Hz, 1H, Ar–H), 7.55 (d, J = 8.0 Hz, 1H, Ar–H), 7.76 (d, J = 1.2 Hz, 1H, Ar–H), 8.06
(d, J = 2.4 Hz, 1H, Ar–H), 10.37 (br, 1H, NH). 13C{1H} NMR (CDCl3, 100 MHz): δ(ppm) 102.5, 106.8,
109.3, 118.9, 119.4, 125.3, 126.8, 140.4 (Ar–CH), 125.1, 127.4, 130.7 (tert-C). Anal. Calc. for C11H9N3

(Mw. 183.21): C, 72.11%; H, 4.95%; N, 22.94%. Found: C, 71.85%; H, 4.95%; N, 23.07%.
PzMeIndH: To a flask containing 3,5-dimethyl-1-(2-nitrophenyl)-1H-pyrazole (0.65 g, 3.0 mmol)

and 15 mL THF, 9 mL vinyl magnesium bromide (1.0 M in THF, 9 mmol) was added at ´45 ˝C. After
1 h of stirring, the reaction mixture was added 10 mL saturated NH4Cl (aq). The reaction mixture
was allowed to warm to room temperature. Then, the mixture was extracted with a mixed solution
of 20 mL ethyl alcohol and 50 mL de-ionized water. The organic layer was separated and dried over
magnesium sulfate. The filtrate was pumped to dryness to afford brown oil. Crude product was
purified using column chromatography (ethyl acetate:n-hexane = 1:5) to afford pale-yellow powder.
Yield, 0.22 g, 35%. 1H NMR (CDCl3, 400 MHz): δ(ppm) 2.27 (s, 3H, CH3), 2.34 (s, 3H, CH3), 6.01 (s,
1H, Pz–H), 6.50 (t, J = 2.0 Hz, 1H, Ar–H), 7.04–7.12 (overlap, 3H, Ar–H), 7.57 (d, J = 7.2 Hz, 1H, Ar–H),
9.70 (br, 1H, NH). 13C{1H} NMR (CDCl3, 100 MHz): δ(ppm) 12.6, 13.5 (CH3), 102.4, 106.8, 115.5, 118.8,
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119.6, 125.0 (Ar–CH), 124.3, 130.1, 130.3, 140.2, 149.1 (tert-C). Anal. Calc. for C13H13N3 (Mw. 211.26):
C, 73.91%; H, 6.20%; N, 19.89%. Found: C, 73.54%; H, 5.92%; N, 19.88%.

PztBuIndH: This was prepared in a similar method to that for PzMeIndH by using
3,5-di-tert-butyl-1-(2-nitrophenyl)-1H-pyrazole (0.90 g, 3.0 mmol). The brown oil was purified by
column chromatography (ethyl acetate:n-hexane = 1:5) to afford pale-yellow solid. Yield, 0.33 g, 37%.
1H NMR (CDCl3, 400 MHz): δ(ppm) 1.10 (s, 9H, C(CH3)3), 1.33 (s, 9H, C(CH3)3), 6.08 (s, 1H, Pz–H),
6.41 (t, J = 2.0 Hz, 1H, Ar–H), 6.94 (t, J = 2.4 Hz, 1H, Ar–H), 7.07 (t, J = 7.2 Hz, 1H, Ar–H), 7.19
(d, J = 7.2 Hz, 1H, Ar–H), 7.60 (d, J = 8.0 Hz, 1H, Ar–H), 8.45 (br, 1H, NH). 13C{1H} NMR (CDCl3,
100 MHz): δ(ppm) 30.3, 30.6 (C(CH3)3), 31.9, 32.0 (C(CH3)3), 100.5, 102.6, 118.8, 121.3, 121.7, 124.9
(Ar-CH), 126.4, 129.7, 133.5, 154.0, 161.3 (tert-C). Anal. Calc. for C19H25N3 (Mw. 295.42): C, 77.25%;
H, 8.53%; N, 14.22%. Found: C, 77.65%; H, 8.11%; N, 14.44%.

PzPhIndH: This was prepared in a similar method to that for PzMeIndH by using
3,5-diphenyl-1-(2-nitrophenyl)-1H-pyrazole (1.02 g, 3.0 mmol). The pale-yellow powder was washed
with 10 mL ethanol to afford white solid. Yield, 0.47 g, 47%. 1H NMR (CDCl3, 400 MHz): δ(ppm)
6.59 (t, J = 2.4 Hz, 1H, Ar–H), 6.69 (d, J = 7.2 Hz, 1H, Ar–H), 6.83(s, 1H, Ar–H), 6.86 (t, J = 8.0 Hz,
1H, Ar–H), 7.23 (t, J = 2.8 Hz, 1H, Ar–H), 7.25–7.35 (overlap, 5H, Ar–H), 7.41–7.44 (overlap, 2H,
Ar–H), 7.54 (d, J = 8.0 Hz, 1H, Ar–H), 7.91–7.93 (overlap, 2H, Ar–H), 9.44 (br, 1H, NH). 13C{1H} NMR
(CDCl3, 100 MHz): δ(ppm) 102.9, 105.2, 117.3, 119.0, 119.8, 125.2, 125.7, 128.2, 128.4, 128.6, 128.7, 130.5
(Ar–CH), 124.3, 130.1, 130.3, 132.8, 145.0, 152.0 (tert-C). Anal. Calc. for C23H17N3 (Mw. 335.40): C,
82.36%; H, 5.11%; N, 12.13%. Found: C, 82.65%; H, 5.19%; N, 12.13%.

[PzHInd]2Mg¨ 2THF (1): To a flask containing PzHIndH (0.183 g, 1.0 mmol) in 15 mL THF, 0.7 mL
di-n-butyl magnesium (1.0 M, 0.7 mmol) was added at 0 ˝C. The reaction mixture was allowed to
warm up to room temperature. After 16 h of stirring, the reaction mixture was filtered and off-white
solid was washed with 5 mL hexane. The residue was pumped to dryness to afford white solid. Yield,
0.27 g, 54%. 1H NMR (CDCl3, 600 MHz): δ(ppm) 1.67 (br, 8H, CH2), 3.48 (br, 8H, OCH2), 6.41 (s, 2H,
Ar–H), 6.67 (d, J = 2.4 Hz, 2H, Ar–H), 7.01 (t, J = 7.8 Hz, 2H, Ar–H), 7.19 (d, J = 7.2 Hz, 2H, Ar–H),
7.53 (s, 2H, Ar–H), 7.60 (s, 2H, Ar–H), 7.68 (d, J = 7.8 Hz, 2H, Ar–H), 8.27 (d, J = 1.8 Hz, 2H, Ar–H).
13C{1H} NMR (CDCl3, 150 MHz): δ(ppm) 25.2 (CH2), 68.4 (OCH2), 101.4, 106.8, 107.3, 116.2, 119.0,
125.3, 128.8, 141.8 (Ar–CH), 134.1, 134.6, 136.7 (tert-C). Anal. Calc. for C30H32MgN6O2 (Mw. 532.92):
C, 67.61%; H, 6.05%; N, 15.77%. Found: C, 66.70%; H, 5.49%; N, 15.60%.

[PzMeInd]2Mg (2): To a flask containing PzMeIndH (0.21 g, 1.0 mmol) in 15 mL hexane, 0.7 mL
di-n-butyl magnesium (1.0 M, 0.7 mmol) was added at 0 ˝C. The reaction mixture was allowed to
warm up to room temperature. After 16 h of stirring, the reaction mixture was filtered to afford white
solid. Yield, 0.27 g, 61%. 1H NMR (C6D6, 600 MHz): δ(ppm) 1.26 (s, 6H, CH3), 1.88 (s, 6H, CH3), 5.33
(s, 2H, Ar–H), 6.79 (d, J = 7.2 Hz, 2H, Ar–H), 7.03 (d, J = 2.4 Hz, 2H, Ar–H), 7.10 (t, J = 7.8 Hz, 2H,
Ar–H), 7.58 (d, J = 2.4 Hz, 2H, Ar–H), 7.96 (d, J = 7.8 Hz, 2H, Ar–H). 13C{1H} NMR (C6D6, 150 MHz):
δ(ppm) 11.2, 13.8 (CH3), 103.9, 108.8, 112.9, 116.2, 120.6, 137.0 (Ar–CH), 124.4, 135.3, 138.4, 144.2, 151.7
(tert-C). Anal. Calc. for C26H24N6Mg (Mw. 444.81): C, 70.20%; H, 5.44%; N, 18.89%. Found: C,
70.94%; H, 6.01%; N, 18.65%.

[PztBuInd]2Mg (3): This was prepared in a similar method to that for 2 by using PztBuIndH (0.29 g,
1.0 mmol) to afford white solid. Yield, 0.45 g, 73%. 1H NMR (C6D6, 600 MHz): δ(ppm) 0.92 (br, 18H,
C(CH3)3), 1.10 (s, 18H, C(CH3)3), 6.23 (br, 2H, Ar–H), 6.91 (br, 2H, Ar–H), 6.96–7.02 (overlap, 4H,
Ar–H), 7.18 (br, 2H, Ar–H), 7.93 (d, J = 7.2 Hz, 2H, Ar–H). 13C{1H} NMR (C6D6, 150 MHz): δ (ppm)
29.7, 31.2 (C(CH3)3), 32.6, 33.4 (C(CH3)3), 103.8, 105.5, 115.6, 117.2, 121.7, 137.2 (Ar–CH), 125.8, 134.5,
140.2, 160.7, 167.9 (tert-C). Anal. Calc. for C38H48N6Mg (Mw. 613.13): C, 74.44%; H, 7.89%; N, 13.71%.
Found: C, 74.51%; H, 8.14%; N, 13.72%.

[PzPhInd]2Mg (4): This was prepared in a similar method to that for 2 by using PzPhIndH (0.33 g,
1.0 mmol) to afford white solid. Yield, 0.45 g, 65%. 1H NMR (CDCl3, 400 MHz): δ(ppm) 6.34 (d,
J = 7.6 Hz, 2H, Ar–H), 6.55 (d, J = 2.4 Hz, 2H, Ar–H), 6.60–6.64 (m, 4H, Ar–H), 6.85–6.92 (overlap,
6H, Ar–H), 7.16 (d, J = 2.4 Hz, 2H, Ar–H), 7.28 (d, J = 8.0 Hz, 4H, Ar–H), 7.34–7.43 (overlap, 10H,
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Ar–H), 7.57 (d, J = 8.0 Hz, 2H, Ar–H). 13C{1H} NMR (CDCl3, 150 MHz): δ(ppm) 102.4, 106.8, 115.28,
115.35, 119.8, 128.5, 128.7, 129.1, 129.2, 129.3, 137.0 (Ar–CH), 123.4, 129.4, 130.0, 134.1, 137.3, 148.2,
155.0 (tert-C). Anal. Calc. for C46H32N6Mg (Mw. 693.09): C, 79.71%; H, 4.65%; N, 12.13%. Found: C,
79.05%; H, 5.01%; N, 11.82%.

Procedure for Polymerization of L-Lactide: Typically, to a flask containing prescribed amount of
L-lactide, 0.025 mmol alcohol and 0.025 mmol catalyst precursor was added 5.0 mL solvent. The
reaction mixture was stirred at prescribed temperature for the prescribed time. After the reaction was
quenched by the addition of 2.5 mL acetic acid solution (0.35 N), the resulting mixture was poured
into 20 mL n-hexane to precipitate polymers. Crude products were recrystallized from THF/hexane
and dried in vacuo up to a constant weight.

2.3. Crystal Structure Data

Crystals were grown from concentrated THF solution for 1, and isolated by filtration. Suitable
crystals were mounted onto Mounted CryoLoop (HAMPTON RESEARCH, Aliso Viejo, CA, USA;
size: 0.5–0.7 mm) using perfluoropolyether oil (Sigma-Aldrich, FOMBLINrY) and cooled rapidly
in a stream of cold nitrogen gas using an Oxford Cryosystems Cryostream unit. Diffraction
data were collected at 100 K using an OxfordGemini S diffractometer (Oxford Diffraction Ltd.,
Abingdon, UK). Empirical absorption correction was based on spherical harmonics, implemented
in the SCALE3 ABSPACK scaling algorithm from CrysAlis RED (Oxford Diffraction Ltd.). The space
group determination was based on a check of the Laue symmetry and systematic absences and was
confirmed using the structure solution. The structure was solved by direct methods using a SHELXTL
package [41]. All non-H atoms were located from successive Fourier maps, and hydrogen atoms were
refined using a riding model. Anisotropic thermal parameters were used for all non-H atoms, and
fixed isotropic parameters were used for H atoms. Some details of the data collection and refinement
are given in Table 1.

CCDC reference number 1410371 for 1 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Summary of crystal data for compound 1.

Parameters 1

Formula C30H32MgN6O2
Fw 532.93
T, K 100 (2)

Crystal system Trigonal
Space group R-3c

a, Å 23.6115 (3)
b, Å 23.6115 (3)
c, Å 26.0131 (5)
γ, ˝ 120

V, Å3 12,559.4 (3)
Z 18

ρcalc, Mg/m3 1.268
µ (Mo Kα), mm´1 0.102

F(000) 5076
Crystal size 0.60 ˆ 0.45 ˆ 0.30 mm3

Theta range for data collection 2.91˝ to 29.24˝

Reflections collected 25,170
Independent reflections 3490 [R(int) = 0.0269]

No. of parameters 177
R1 a 0.0337

wR2 a 0.0893
GoF b 1.002

a R1 = [ Σ|F0| ´ |Fc|]/Σ |F0|]; wR2 = [Σ w(F0
2 ´ Fc

2)2/Σ w(F0
2)2]1/2, w = 0.10;

b GoF = [Σw(F0
2 ´ Fc

2)2/(Nrflns ´ Nparams)]1/2.
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3. Results and Discussion

3.1. Preparations of Ligand Precursors and Magnesium Complexes

There are various synthetic routes for the preparation of indole derivatives, such as Fischer
indole synthesis [32], Bartoli indole synthesis [31] or Pd/Cu-catalyzed cyclization [42,43]. Previously,
we reported the preparation of indole bearing pendant functionalities using the Sonogashira reaction
followed by Zn-mediated cyclization [28]. In order to introduce pyrazolyl functionalities into indole
molecules, copper-catalyzed N-arylation or the Bartoli indole synthesis are used to achieve this issue.
The synthetic routes were shown in Scheme 1.
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The ligand precursor PzHIndH was prepared via copper-catalyzed N-arylation reaction from
7-bromoindole with pyrazole [44]. Related ligand precursors composed of pyrazolyl rings bound to
carbazole at the 1- and 8-positions have recently been reported [45]. The signal of –NH on 1H NMR
spectrum for indole PzHIndH was observed at δ 10.37 ppm. The ligand precursors PzMeIndH,
PztBuIndH and PzPhIndH were prepared via the Bartoli indole synthesis from o-substituted
nitrobenzenes with vinylmagnesium bromide [31]. The signals of –NH on 1H NMR spectra for
indoles PzMeIndH, PztBuIndH and PzPhIndH were observed at δ 9.70, 8.45, and 9.44 ppm, respectively.
All the ligand precursors were characterized by elemental analyses as well.

Treatment of ligand precursors PzRIndH with nBu2Mg on the ratio of 1:0.7 by alkane elimination
reaction in THF or hexane at room temperature affords the desired bis-indolyl magnesium
complexes 1–4 in moderate yields, as shown in Scheme 1. For compound 1, the disappearance of the
N–H signal of indole and the appearance of the coordinated THF are consistent with the proposed
structure. Preparations of compounds 2–4 bearing the coordinated THF have been done in THF.
However, the signals corresponding to coordinated THF disappeared after rinsing the crude products
with hexane. For the convenience of separation, THF was used to prepare compound 1, whereas
hexane was used to prepare compounds 2–4. The compounds 1–4 were all characterized by NMR
spectroscopy as well as elemental analyses.

Suitable crystals for structure determination of 1 were obtained from concentrated THF solution.
The molecular structure is depicted in Figure 1. Selected bond lengths and bond angles are
summarized in Table 2.

The solid state structure of 1 reveals that the Mg center adopts a distorted octahedral geometry
(Npyrazole–Mg–OTHF 175.46(3)˝; Nindolyl–Mg–Nindolyl 169.40(5)˝) with the metal center chelated by
two nitrogen atoms of indole rings, two nitrogen atoms of pyrazole rings and two oxygen atoms of
coordinated THF. According to the coordinated THF positions of related magnesium complexes in the
literature [46–48], the cis-configuration for 1 is observed (OTHF–Mg–OTHF, 87.62(4)˝). The Mg–OTHF

bond length of 1 (2.1516(8) Å) is longer than those found in cis-form (2.0661(10)–2.136(5) Å) [46–48].
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The Mg–Nindolyl bond lengths (2.1067(9) Å) are close to those found in magnesium bis-indolyl
complexes (2.0907(16) Å for trans-form; 2.126(2) and 2.138(2) Å for cis-form) [28]. The Mg-Npyrazole
bond lengths (2.2156(9) Å) are within those found in magnesium complexes bearing pyrazole
functionality (2.100(3)–2.21(1) Å) [35–38].Polymers 2015, 7, page–page 

6 

 
Figure 1. Molecular structure of 1. Hydrogen atoms are omitted for clarity. 
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Table 2. Selected bond lengths (Å) and bond angles (˝) for 1.

Selected Bonds (Å) Selected Bond Angles (˝)

Mg–N(1) 2.1067 (9) N(1)–Mg–N(1A) 169.40 (5)
Mg–N(3) 2.2156 (9) N(1)–Mg–N(3A) 85.05 (3)

Mg–O 2.1516 (8) O–Mg–O(0A) 87.62 (4)
N(3)–Mg–O(0A) 175.46 (3)
N(1)–Mg–O(0A) 91.36 (3)
N(3)–Mg–N(3A) 96.38 (5)

3.2. Polymerization Studies

Since several magnesium complexes containing bis-indolyl ligands have demonstrated their
catalytic activities towards the ROP of cyclic esters in the presence of alcohols [28], the homoleptic
indolyl magnesium complexes reported here are expected to work as the catalysts for the ring opening
polymerization. Representative results are collected in Table 3 for ROP of L-LA, respectively.

The polymerization of L-lactide using complexes 1–4 as catalyst precursors in the presence of
alcohols is tested under a dry nitrogen atmosphere. Prescribed equivalent ratios on the catalyst
precursor (0.025 mmol), L-LA and alcohol were introduced in 5.0 mL solvent at 0 ˝C for 1 min. After
several trials on running polymerization with various solvents (dichloromethane, tetrahydrofuran
or toluene) and alcohols (benzyl alcohol (BnOH), 2-propanol (iPrOH) and 9-anthracenemethanol
(9-AnOH)), the conditions were optimized to be toluene at 0 ˝C in the presence of 9-AnOH for the
polymerization of L-LA (Table 1, Entries 1–5). However, only trace polymers were obtained from the
blank tests in the absence of benzyl alcohol or 4 under the optimized conditions (Table 1, Entries 6–7).
The same optimized conditions were applied to examine the catalytic activities of these catalysts
with the reaction time extended to 5 min (Table 1, Entries 8–11). Only trace polymers obtained
by using 1 as catalyst, this is consistent with the result demonstrated by magnesium bis-indolyl
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complex with pendant amine functionality and coordinated THF molecules [28]. The bulkiness
around the metal center caused by ligands and coordinated THF molecules might prevent the
metal center from the coordination of monomers and alcohol. The catalytic activities exhibited by
the other complexes without coordinated THF molecule seem to depend on the steric hindrance
resulting from the substituents on the pyrazolyl groups. The decreasing tendency of catalytic
activity was found in the order 3 > 4 > 2. The catalytic activities were re-examined on the ratio of
[L-LA]0/[Mg]0/[9-AnOH]0 = 200/1/1 within 15 min. (Table 1, Entries 12–13). Complex 4 showed
better activities than 3 with better controlled character. Therefore, complex 4 was subjected to exhibit
the living character at 30 ˝C. The linear relationship between the number-average molecular weight
(Mn) and the monomer-to-initiator ratio (range from 150 to 400) was demonstrated in Figure 2
(Table 1, Entries 14–19, PDIs = 1.22–1.39) with poor controlled character.

Table 3. Polymerization of L-LA using compounds 1–4 as catalysts in toluene if not otherwise stated. a

Entry Catalyst [LA]0:[Mg]0:[ROH] T
(˝C)

t
(min)

Mn
(obsd) b

Mn
(calcd) c

Conversion
(%) d Mw/Mn b

1 4 100:1:1 0 1 14,000 10,300 70 1.20
2 e 4 100:1:1 0 1 – – 61 –
3 f 4 100:1:1 0 1 – – 6 –
4 g 4 100:1:1 0 1 – – 20 –
5 h 4 100:1:1 0 1 – – 15 –
6 4 100:1:0 0 1 – – trace –
7 4 100:0:1 0 1 – – trace –
8 1 100:1:1 0 5 – – trace –
9 2 100:1:1 0 5 18,800 11,700 80 1.05
10 3 100:1:1 0 5 24,200 14,300 98 1.38
11 4 100:1:1 0 5 17,400 13,600 93 1.25
12 3 200:1:1 0 15 33,400 25,800 89 1.42
13 4 200:1:1 0 15 27,800 27,600 95 1.24
14 4 150:1:1 30 3 27,000 21,000 96 1.29
15 4 200:1:1 30 5 33,000 28,700 99 1.39
16 4 250:1:1 30 7 41,900 35,500 98 1.38
17 4 300:1:1 30 10 46,200 42,600 98 1.36
18 4 350:1:1 30 15 48,500 50,100 99 1.22
19 4 400:1:1 30 20 55,800 57,200 99 1.32
20 4 600:1:2 30 12 43,600 42,800 99 1.20
21 4 600:1:3 30 7 31,100 28,200 98 1.20
22 4 600:1:4 30 5 23,200 21,200 98 1.19

a, [Mg]0= [9-AnOH] = 0.025 mmol in 5.0 mL toluene; b
, Obtained from GPC analysis times 0.58; c

, Calculated
from the molecular weight of lactide times [LA]0/[ROH]0 times conversion yield plus the molecular weight
of ROH; d, Obtained from 1H NMR analysis; e, In 5.0 mL CH2Cl2; f, In 5.0 mL THF; g, ROH = BnOH;
h, ROH = iPrOH.
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The “immortal” character was examined using 2–4 equivalents 9-AnOH as chain transfer agent
to produce polymers with reasonable Mn values (Table 1, Entries 20–22, compared to entries 17,
15, and 14, respectively). The end group analysis is demonstrated by the 1H NMR spectrum of
polylactide (PLA-100) catalyzed by 4 in the presence of 9-AnOH, which is shown in Figure 3.

Peaks are assignable to the corresponding protons in the proposed structure. The mechanism might
be similar to that reported on magnesium complexes bearing pendant indolyl ligand, indicating
the active magnesium alkoxide species might form first, followed by the coordination-insertion
mechanism [28].
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Figure 3. 1H NMR spectrum of PLA-100 initiated by 4 in the presence of 9-AnOH in toluene at 0 °C. 

4. Conclusions 

Four indole ligand precursors containing pendant pyrazolyl functionalities have been prepared. 
The novel magnesium bis-indolyl complexes 1–4 have been synthesized and fully characterized by 
NMR spectroscopic studies and elemental analyses. Due to the steric hindrance of ligands, only 
complex 1 bearing two coordinated THF molecules in cis-configuration has been synthesized and 
confirmed by single-crystal X-ray crystallography. However, the crowded environment around  
the metal center of 1 might prevent the coordination of monomers or alcohols and result in poor 
catalytic activities. Under optimized condition, complex 4 demonstrated both living and immortal 
characters but with poor PDIs values (1.20–1.42). Preliminary studies on fine-tuning modification of 
indole ligands with different substituents and their application in the synthesis of metal complexes 
are currently underway. 
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4. Conclusions

Four indole ligand precursors containing pendant pyrazolyl functionalities have been prepared.
The novel magnesium bis-indolyl complexes 1–4 have been synthesized and fully characterized by
NMR spectroscopic studies and elemental analyses. Due to the steric hindrance of ligands, only
complex 1 bearing two coordinated THF molecules in cis-configuration has been synthesized and
confirmed by single-crystal X-ray crystallography. However, the crowded environment around the
metal center of 1 might prevent the coordination of monomers or alcohols and result in poor catalytic
activities. Under optimized condition, complex 4 demonstrated both living and immortal characters
but with poor PDIs values (1.20–1.42). Preliminary studies on fine-tuning modification of indole
ligands with different substituents and their application in the synthesis of metal complexes are
currently underway.
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