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Abstract: Cellulose woven (CW) was surface treated by means of 

hexadecyltrimethylammonium bromide surfactant (HTAB) in aqueous solution medium at 

elevated temperature. The parameters of the surface treatment that have been studied are 

HTAB concentration (0.2, 0.4, 0.6, 0.8 and 1.0 wt%) and treatment time (1, 2, 3, 4 and 5 h). 

The untreated and treated CW filled low-density polyethylene (LDPE) biocomposites were 

prepared via compression molding technique. The tensile testing results of LDPE/CW 

biocomposites demonstrated that the optimum HTAB concentration for treatment of CW in 

1 h was 0.4 wt%, while the optimum treatment time at 0.4 wt% HTAB was 2 h. The SEM 

(scanning electron microscope) images indicated that there is no significant difference in 

the morphology of the untreated and treated CW; however the morphology of the 

LDPE/treated CW biocomposite showed better interfacial adhesion as compared with the 

untreated ones. The FTIR (Fourier transform infrared spectroscopy) spectra revealed that 

the presence of HTAB on the surface of treated CW and also revealed the existence of 

intermolecular interactions between LDPE and treated CW. In summary, HTAB could 

potentially be used as a treatment agent for modifying the surface of CW and consequently 

improved the tensile properties of LDPE/CW biocomposites. 
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1. Introduction 

The use of polysaccharide-like cellulose as natural filler in various polymer composite systems has 

been widely investigated by many researchers [1–4]. This is due to the fact that the cellulose is one of 

the most abundant polymers on the earth, which is also low-cost, non-toxic, renewable, 

environmentally friendly and biodegradable [5,6]. Cellulose from cotton linters in the form of woven 

was used in this preliminary study. The utilization of cellulose woven as filler in polymer 

biocomposites is very promising due to its strength, stiffness and the structural stability of the products. 

Besides that, the preparation of polyethylene (PE)/cellulose woven biocomposites may also possibly be 

used in the production of diverse products with biocompatible and biodegradable properties. 

Nevertheless, the compatibility and adhesion between the natural fillers and the PE in the biocomposite 

systems is very low [7,8], thus resulting in reductions in their performance, particularly tensile properties 

and other correlated characteristics of the final natural filler-reinforced composite products. 

This is because the polar hydrophilic nature of cellulose caused compatibility problems with the 

non-polar hydrophobic character of PE, which led to poor physicochemical properties of the 

biocomposites [9,10]. Therefore, surface treatment was usually applied to resolve this problem.  

The treatment by using chemicals could modify the natural filler and improve the interfacial adhesion 

between filler and matrix. Chemical treatments by using alkali and silane were carried out in the 

previous study to roughen the surface of natural filler and contributed to the improvement of the 

surface interaction with polymer matrix [11]. On the other hand, another way to improve the 

compatibility between two polymers that have different polarity and hydrophobicity is by using surface 

active agent (surfactant) in the surface treatment of natural fillers. The surfactants do not leave any 

undesired by-product or residue that might be harmful to the human and environment after treatment as 

compared to acid and alkali. 

Surfactants are organic salts that have amphiphilic character, which contain both non-polar 

hydrophobic and polar hydrophilic groups [12]. Moreover, they can act as interaction links between 

non-polar hydrophobic and polar hydrophilic polymers [13]. Previous studies have indicated that the 

anionic and cationic surfactants could successfully be utilized as compatibilizing agents in polymer 

blend systems especially for polar and non-polar polymers [14,15]. In addition, natural fillers such as 

starch, sawdust and cellulose powders could also be treated with ionic and non-ionic surfactants for 

improving the properties of polymer composites [16–18]. Therefore, the surfactants could definitely 

increase compatibility between the components phases of the biocomposites. In this preliminary study, 

the cationic surfactant was used as a treatment agent for natural filler to enhance the physicochemical 

properties of PE/cellulose woven biocomposites system. The tensile, morphological and chemical 

properties of prepared biocomposites have been characterized and studied to determine the optimum 

surfactant concentration for treatment of cellulose woven and also the optimum treatment time. 
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2. Experimental Section 

2.1. Materials 

The polymer matrix used is a low-density polyethylene, LDPE (coating grade), acquired from Lotte 

Chemical Titan (M) Sdn. Bhd (Kuala Lumpur, Malaysia). The cationic surfactant used is a 

hexadecyltrimethylammonium bromide, abbreviated as HTAB (purity 99%) and procured from  

Sigma Aldrich (St. Louis, MO, USA). The filler of biocomposites is cellulose woven (CW) which was 

weaved plain, obtained from flat cloth diapers that consists of 100% cotton. The chemicals were used 

as received without further purification. 

2.2. Surface Treatment of CW 

HTAB was mixed with 200 mL of distilled water in a beaker and stirred rigorously by using a 

magnetic stirrer hot-plate apparatus until a transparent solution was obtained. Then, the HTAB solution 

was heated at temperature of 80 °C. The CW was surface treated by immersing two layers of CW  

(150 × 150 mm2) into the HTAB solution for one hour with stirring at 350 rpm. The treated CW was 

dried in an oven at 70 °C for overnight. The HTAB concentration in aqueous solution was varied from 

0.2 to 1.0 wt%. The optimum HTAB concentration was determined through tensile testing of the 

LDPE/CW biocomposites. The immersion time was also varied from 1 to 5 h to identify the optimum 

treatment time. 

2.3. Preparation of LDPE/CW Biocomposites 

The biocomposites were prepared through compression molding technique by using a hydraulic hot 

press machine. The LDPE was sandwiched between two layers of treated CW in the mold with 

dimension of 150 × 150 × 1 mm3. The molding procedures involved preheating at 150 °C for 7 min, 

compression at 150 °C for 2 min and subsequent cooling at 20 °C for 5 min [13]. The resultant 

biocomposites were conditioned in an oven at 70 °C for at least up to 24 h prior to characterizations. 

The biocomposite containing only LDPE and untreated CW has also been prepared for comparison. 

2.4. Characterization of LDPE/CW Biocomposites 

The tensile extension, tensile strain, tensile stress and modulus properties were measured according 

to the ASTM D638 [19] at room temperature by using an Instron universal testing machine  

(model 5567, Norwood, MA, USA) equipped with a 30 kN load cell. The initial gauge length and the 

crosshead speed were fixed to 40 mm and 5 mm·min−1, respectively. The biocomposite samples of  

1 mm thickness were cut into a dumbbell shape (Type V) by using a die cutter. Ten samples were used 

for each HTAB concentration and treatment time and the average data along with corresponding 

standard deviation were calculated. 

The morphology of untreated and treated CW and also their biocomposites was visualized by using 

Hitachi (model S-3400N, Tokyo, Japan) scanning electron microscope (SEM). The samples for 

examination were obtained from tensile test samples that have been cross-sectioned at room 

temperature. The fractured surfaces of the samples were sputter-coated with a thin layer of gold to 
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avoid electrostatic charge during examination. The morphologies were observed at magnification of 

50× and 3000× with accelerating voltages of 5.0 kV. 

The functional groups of the untreated and treated CW as well as the biocomposites were 

determined by using Perkin Elmer Spectrum 100 Series FTIR (Fourier transform infrared 

spectroscopy) (Waltham, MA, USA). The spectra were obtained by employing a universal attenuated 

total reflectance (UATR) equipped with a ZnSe-diamond composite crystal accessory. Each sample 

was scanned 16 times, in the wavenumber ranged from 4000 to 500 cm−1 and resolution of 4 cm−1 at 

room temperature [20]. 

3. Results and Discussion 

3.1. Tensile Testing 

Figure 1a,b shows the tensile extension and tensile strain at break of LDPE/CW biocomposites with 

different HTAB concentrations in aqueous solution. From the results, it was discovered that the 

extension and strain properties of LDPE/untreated CW biocomposite (0 wt% HTAB) are lower than 

LDPE/treated CW biocomposites (0.2 to 0.6 wt% HTAB). This is due to the poor interfacial adhesion 

between polar hydrophilic untreated natural fiber woven and non-polar hydrophobic synthetic  

polymer [21]. On the other hand, an increase of the extension and strain properties of LDPE/treated 

CW biocomposites are attributed to the ability of HTAB which can interact with both polar hydrophilic 

CW and non-polar hydrophobic LDPE since it possesses amphiphilic character [15]. Additionally,  

the extension and strain properties of LDPE/treated CW biocomposites are drastically increased as the 

HTAB concentration slightly increased. However, the highest extension and strain properties of 

biocomposites were found at concentration of 0.4 wt% HTAB in one hour of treatment. Unfortunately, 

CW treated with 0.6 wt% HTAB has not significantly increased the extension and strain properties of 

the biocomposite compared to the previous ones. It can be seen that a decreasing trend was also 

showed in LDPE/treated CW biocomposites (0.8 and 1.0 wt% HTAB). 

Figure 1c,d demonstrates the tensile stress and modulus at break of LDPE/CW biocomposites with 

different HTAB concentrations in aqueous solution. It was discovered that the tensile stress of 

LDPE/untreated CW biocomposite (0 wt%) is also lower than LDPE/treated CW biocomposites  

(0.2 to 0.6 wt% HTAB). However, the tensile stress decreased as the HTAB concentration increased 

from 0.8 to 1.0 wt%. This is due to high concentration of the surfactant which has caused the softening 

effect on strength of LDPE/CW biocomposites [22]. Therefore, based on this result 0.4 wt% HTAB 

was considered as the optimum concentration for treatment of CW in one hour. In addition,  

it can be seen that the tensile stress of the biocomposites displayed a similar behavior as the tensile 

extension and tensile strain. In most cases, when the extension and strain properties increased, the 

tensile stress would radically decrease [23], this is because decrease of stiffness of the samples which 

caused by increase of pliability. Nevertheless, the obtained result showed an opposite trend, this is 

probably due to the treated cellulose filler was in the form of woven which could provide the tautness 

to the biocomposites. On the other hand, the modulus of LDPE/treated CW biocomposites is lower 

than LDPE/untreated CW biocomposite. This is because of the improvement of extension and strain 

properties of the biocomposites which could dramatically deteriorate their rigidity character. 
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Figure 1. Influences of hexadecyltrimethylammonium bromide surfactant (HTAB) 

concentration on (a) tensile extension; (b) tensile strain; (c) tensile stress; and (d) modulus 

at break of low-density polyethylene (LDPE)/cellulose woven (CW) biocomposites. 
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Figure 2a,b indicates the tensile extension and tensile strain at break of LDPE/CW biocomposites 

with different treatment times. From these results, it is clearly seen that the prolonged treatment time 

for another hour significantly improved the extension and strain properties of LDPE/treated CW 

biocomposites. This is possibly because more time has been given for the HTAB to interact with polar 

hydrophilic CW. This has increased the interfacial adhesion between CW and LDPE. Nevertheless,  

3 to 5 h of treatment CW exhibited the decrease in extension and strain properties. Therefore, it was 

found that after the CW was treated with 0.4 wt% HTAB for more than 2 h, their extension and strain 

properties are inversely proportional with an increase in the treatment time. This is because of longer 

duration of treatment which has weakened the physicochemical properties of CW especially at 

elevated temperature. On top of that, Figure 2c,d exhibits the tensile stress and modulus at break of the 

LDPE/CW biocomposites with different treatment times. Based on these results, it can be seen that the 

optimum treatment time at 0.4 wt% HTAB was 2 h, since it gives the highest tensile stress in 

comparison with other treatment times. Moreover, it was discovered that the modulus of LDPE/treated 

CW biocomposites has an identical pattern as the modulus result shown in Figure 1d; therefore the 

reason for this phenomenon was also same as above. Furthermore, the SEM examination has been 

performed to confirm the difference in the morphology between LDPE/untreated CW and 

LDPE/treated CW biocomposites. 
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Figure 2. Influences of treatment time on (a) tensile extension; (b) tensile strain; (c) tensile 

stress; and (d) modulus at break of LDPE/CW biocomposites. 
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3.2. Morphology Examination 

Figure 3 demonstrates SEM micrographs of the surfaces of untreated and treated (0.4 wt% HTAB,  

2 h) CW samples. The SEM images at magnification of 50× for the untreated and treated CW samples 

(Figure 3a,b) indicated that there are no significant differences between both samples. This observation 

also suggested that the treated CW remains intact after treatment in hot aqueous solution of 0.4 wt% 

HTAB for a couple of hours. Moreover, the changes of phase morphology between the untreated and 

treated CW samples also cannot clearly be seen even at a magnification of 3000× (Figure 3c,d). 

Additionally, there are no erosions perceived on the surface of treated CW. This is most likely caused 

by the nature of HTAB solution which was not able to erode the surface of CW as acid or alkaline 

solution [24]. From these results, it was found that the physical properties of treated CW were not 

affected by surface treatment of HTAB. 

Figure 4 displays SEM micrographs of the fracture surfaces (cross-section) of LDPE/untreated CW 

and LDPE/treated CW (0.4 wt% HTAB, 2 h) biocomposite samples. The SEM images indicated that 

the LDPE/untreated CW biocomposite sample (Figure 4a) at magnification of 50× has many fibers 

pulled-out compared to LDPE/treated CW biocomposite sample (Figure 4b). This kind of pulled-out is 

obtained due to the poor interfacial adhesion between the CW filler and LDPE matrix. Furthermore, 

the more obvious morphological difference was observed at a magnification of 3000× for the 

LDPE/untreated CW biocomposite sample (Figure 4c), which indicates some voids. The formation of 

such voids towards the fracture force indicated that the weak interactions between the LDPE and CW. 

In addition, numerous voids are located in the fractured surface also caused by slips of fibers [25].  
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On the contrary, the LDPE/treated CW biocomposite sample (Figure 4d) exhibited opposite phase 

morphology, which implies that the sample has better interfacial adhesion. Generally, the tensile and 

morphological properties of the biocomposites depend strongly on the intermolecular interactions 

between two components (natural filler and polymer matrix). Thus, FTIR analysis was conducted to 

determine the types of interactions between them. 

Figure 3. SEM (scanning electron microscope) micrographs of the surfaces of the  

(a) untreated CW; (b) treated CW (at magnification of 50×); (c) untreated CW and  

(d) treated CW (at magnification of 3000×). 

(a)

(c) (d)

(b)

 

Figure 4. SEM micrographs of the fractured surfaces of the (a) LDPE/untreated CW 

biocomposite; (b) LDPE/treated CW biocomposite (at magnification of 50×);  

(c) LDPE/untreated CW biocomposite; and (d) LDPE/treated CW biocomposite  

(at magnification of 3000×). 

(a) (b)

(c) (d)
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3.3. FTIR Study 

Figure 5 displays the FTIR spectra of the untreated CW, treated CW, LDPE, LDPE/untreated CW 

and LDPE/treated CW biocomposites. The treated CW and its biocomposite samples that were used in 

FTIR characterization are acquired from the optimum parameter of treatment specifically 0.4 wt% 

HTAB for 2 h as SEM samples. The FTIR spectra of all samples except for LDPE revealed strong 

intensity broad bands in the range of 3336 to 3330 cm−1 that could be attributed to the O–H stretching 

of the alcohol group. On top of that, the obvious bands with strong intensity that is responsible for the 

CH2 asymmetric stretching and CH2 symmetric stretching of the methylene group discovered at the 

bands of 2913 and 2849 cm−1, respectively [13]. The apparent bands with medium intensity in the 

region of 2902 to 2897 cm−1 that present in untreated CW and treated CW are associated with the C–H 

stretching of the alkane group [26]. The noticeable bands with strong intensity ranged from 1464 to 

1461 cm−1 are due to the C–H bending deformation. The bands with weak intensity at around 1430 to 

1428 cm−1 are caused by the O–H bending of the alcohol group. Besides that, the bands with strong 

intensity at around 1029 to 1025 cm−1 are could be ascribed to the C–O stretching of the alcohol group 

while the observable bands with medium intensity at nearly 720 to 715 cm−1 are correspond to the CH2 

rocking deformation [13,27]. On the other hand, the bands with weak intensity at around 438 to  

431 cm−1 are assigned to the CH3 wagging mode [28]. The appreciable bands with medium intensity in 

the range of 343 to 333 cm−1 that revealed the C–C out of plane bending are present in all samples 

except for LDPE. It can be seen that the FTIR spectrum of untreated CW is same as cellulose powder 

spectrum as indicated in the previous study [5]. This result has confirmed that the woven fibers were 

made from pure cellulose. 

Figure 5. FTIR spectra of the untreated CW, treated CW, LDPE, LDPE/untreated CW and 

LDPE/treated CW biocomposites. 
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Table 1 presents the FTIR bands of the untreated CW, treated CW, LDPE, LDPE/untreated CW and 

LDPE/treated CW biocomposites. It was found that the untreated CW and treated CW have slightly 

different wavenumber in their spectra. This is due to the fact that when CW was treated with HTAB, 

changes in characteristic bands occurred as result of intermolecular interactions. The bands of the O–H 

stretching, O–H bending and the C–O stretching of the alcohol group of treated CW significantly 

shifted to the lower wavenumber. Moreover, an identical property has been observed for the bands of 

the CH3 wagging and the C–C bending when CW treated with HTAB. This is because the increase in 

the formation of the ion-dipole force between the polar hydroxyl groups that weakly negatively 

charged (δ−) on the surfaces of CW [29,30] and the polar quaternary ammonium cation groups (+) of 

the HTAB molecules [15]. In contrast, it can be seen that in Table 1, the bands of the C–H stretching 

of the alkane group of treated CW considerably shifted to higher wavenumber. This is also due to the 

presence of the non-polar alkyl group of the HTAB on the surface of treated CW. 

On top of that, the LDPE/untreated CW and LDPE/treated CW biocomposites also indicated a 

different wavenumber in their FTIR spectra. The bands of the O–H stretching and C–O stretching of 

the alcohol group as well as the C–H bending and CH2 rocking of the biocomposite that filled with 

treated CW significantly shifted toward higher wavenumber as compared with the untreated ones. 

These changes were caused by the decrease in the intermolecular hydrogen bonding of the treated CW 

and also decrease in the intermolecular bonding of the LDPE. Meanwhile, the bands of the CH3 

wagging and C–C bending of LDPE/treated CW biocomposite shifted toward lower wavenumber 

compared to the LDPE/untreated CW biocomposite. This is due to the non-polar alkyl groups of HTAB 

have more affinity to form hydrophobic-hydrophobic interaction with the non-polar groups of LDPE. 

Hence, HTAB has acted as an intermediary for providing intermolecular interactions (ion-dipole force 

and hydrophobic-hydrophobic interaction) between LDPE matrix and CW filler. All these interactions 

have eventually led to good interfacial adhesion and good stress transfer from polymer matrix to the 

natural filler as previously demonstrated in the tensile testing results. Therefore, an interactional 

structure for the LDPE/treated CW biocomposites was suggested as displayed in Figure 6. 

Table 1. FTIR bands of the untreated CW, treated CW, LDPE, LDPE/untreated CW and 

LDPE/treated CW biocomposites. 
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Figure 6. Suggested interactional structure for the LDPE/treated CW biocomposites. 
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4. Conclusions 

The optimum HTAB concentration for treatment of CW in one hour was 0.4 wt%, while the 

optimum treatment time at 0.4 wt% HTAB was 2 h, based on the tensile testing results of LDPE/CW 

biocomposites. There is no significant difference in the morphology of the untreated and treated CW as 

indicated in the SEM images, nevertheless the morphology of the LDPE/treated CW biocomposite 

showed better interfacial adhesion when compared with the one without treatment. The presence of 

HTAB on the surface of treated CW and the existence of intermolecular interactions between LDPE 

and treated CW were confirmed by the FTIR spectra. It can be summarized that the surface of CW and 

tensile properties of LDPE/CW biocomposites could be modified and improved, respectively, by using 

HTAB as a treatment agent. 
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