
Polymers 2014, 6, 1602-1617; doi:10.3390/polym6051602
OPEN ACCESS

polymers
ISSN 2073-4360

www.mdpi.com/journal/polymers

Article

Structure of Microgels with Debye–Hückel Interactions
Hideki Kobayashi and Roland G. Winkler *

Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich,
52425 Jülich, Germany; E-Mail: h.kobayashi@fz-juelich.de

* Author to whom correspondence should be addressed; E-Mail: r.winkler@fz-juelich.de;
Tel.: +49-2461-61-4220; Fax: +49-2461-61-3180.

Received: 31 March 2014; in revised form: 13 May 2014 / Accepted: 19 May 2014 /
Published: 23 May 2014

Abstract: The structural properties of model microgel particles are investigated by
molecular dynamics simulations applying a coarse-grained model. A microgel is comprised
of a regular network of polymers internally connected by tetra-functional cross-links and
with dangling ends at its surface. The self-avoiding polymers are modeled as bead-spring
linear chains. Electrostatic interactions are taken into account by the Debye–Hückel
potential. The microgels exhibit a quite uniform density under bad solvent conditions with a
rather sharp surface. With increasing Debye length, structural inhomogeneities appear, their
surface becomes fuzzy and, at very large Debye lengths, well defined again. Similarly, the
polymer conformations change from a self-avoiding walk to a rod-like behavior. Thereby,
the average polymer radius of gyration follows a scaling curve in terms of polymer length
and persistence length, with an asymptotic rod-like behavior for swollen microgels and
self-avoiding walk behavior for weakly swollen gel particles.
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1. Introduction

Microgels are cross-linked polymers, typically polyelectrolytes, with a network structure. They are
able to undergo reversible volume phase-transitions in response to environmental stimuli, such as pH,
temperature, the ionic strength of the surrounding medium, the quality of solvent and the action of
the external electromagnetic field [1–4]. This renders them potential candidates for a broad-range of
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applications in drug delivery, sensing, the fabrication of photonic crystals, template-based synthesis of
inorganic nanoparticles and separation and purification technologies [5–13].

Theoretical studies of the macroscopic properties of polyelectrolyte gels have a long history;
a summary can be found in the review article by Khokhlov et al. [14]. Computer simulations have
mainly been performed during the last decade. Such simulations typically consider defect-free microgels
applying periodic boundary conditions, i.e., only the bulk properties of the gel are considered [15–27].
Monte Carlo [15,16,18,20,22,25–27] or molecular dynamics [17,19,21,23,24] simulations have been
performed using coarse-grained polymer models with an implicit solvent, but explicit counterions.
A major aspect of these studies is the swelling behavior of the polyelectrolyte networks. These
simulations provide valuable insight into the origin of the driving force responsible for gel swelling. It is
generally accepted that the entropy of the free counterions is responsible for swelling, whereas Coulomb
repulsion between the charged polymer chains shows no explicit effect [16,21]. A detailed study of the
latter aspect shows that this is due to the cancellation of various pressure contributions [21,23].

Comparably little attention has been paid to finite-size cross-linked polyelectrolytes [28–30].
A markedly different behavior of the counterion distribution has been observed. Now, no longer are
all counterions confined inside the microgel, but rather, a large fraction is distributed outside, around the
colloidal gel particle [28,31]. This is caused by the permeability of microgels. Another important aspect
is the presence of the surface. We expect that, when the surface effect is non-negligible compared to the
bulk effect, this effect will cause inhomogeneities in the structure of microgels.

To characterize the structural properties of microgels, we perform large-scale computer simulations,
combining molecular dynamics simulations for the polymers with the Brownian multiparticle collision
dynamics (B-MPC) approach [32]. Electrostatic interactions are taken into account by the Debye–Hückel
potential. Hence, we consider counterions only implicitly. The study is intended as a reference
to discriminate between effects caused by explicit charges and counterions—such as counterion
condensation [33,34]—and effects due to repulsive interactions in finite-sized microgel particles. The
simulations reveal a significant dependence of the microgel structure on the monomer interactions.
Under bad solvent conditions, we find highly compact particles with a rather constant radial monomer
distribution. Switching to good solvent conditions implies a swelling of a microgel particle. An
additional increase of the Debye length, i.e., an increasing electrostatic repulsion, leads to further
swelling, and the monomer distribution becomes inhomogeneous. Thereby, the polymer conformational
properties change from self-avoiding walk to rod-like behavior. At the same time, the surface properties
of the microgels change from a rather sharp interface to a more fuzzy one for neutral, non-compact gels,
back to a rather well-defined one at large Debye lengths.

The rest of the paper is organized as follows. In Section 2, the microgel model and the simulation
approach are outlined. The results are presented in Section 3, and Section 4 summarizes our findings.

2. Models

2.1. Microgel

A microgel particle is comprised of a regular network of polymers, which are internally connected
by Nc tetra-functional cross-links and with Nd dangling ends at the surface, due to its finite size, as
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illustrated in Figure 1. The ratio Nd/(Nc −Nd) indicates the relative importance of surface effects [29].
The limitNd/(Nc−Nd)→ 0 corresponds to the case of a macrogel, where surface effects are negligible.

Figure 1. Topological structure of a microgel particle with Nc = 729 cross-links and
Nm = 40 monomers per polymer. (Top) Initial state with fully stretched polymers; (bottom)
equilibrated structure for lD = 0 under good solvent conditions. Cross-link monomers are
indicated in orange.

An individual polymer is modeled as a linear chain of Nm monomers. A nearly constant bond length,
l, is maintained by the harmonic potential:

UB
i,i+1 =

ks
2

(|ri+1 − ri| − l)2 (1)
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between successive monomers, i and i+ 1. Here, ri denotes the position of monomer i and ks the spring
constant. Excluded-volume interactions between non-bonded monomers are taken into account by the
truncated Lennard–Jones (LJ) potential:

ULJ =

 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
− C, rij < rc

0, rij > rc

(2)

where rij = |ri − rj|, C = 4ε((σ/rc)
12 − (σ/rc)

6) and rc is the cut-off radius. The parameter ε
characterizes the strength of the interaction, and σ represents the diameter of the monomers. A good
solvent is modeled by rc = 21/6σ, using only the repulsive part of the LJ potential. For a poor solvent,
the cut-off radius is set to rc = 2.5σ.

Charge-charge interactions between monomers are captured in an effective manner by the
Debye–Hückel potential:

UDH =


kBT lB
rij

exp

(
−rij
lD

)
, rij < rDH

0, rij > rDH

(3)

where lB is the Bjerrum length, lD = (4πlBn)−1/2 is the Debye length with the ion concentration n,
rDH = 5.3lD is the cut-off radius, T is the temperature and kB is the Boltzmann constant. The dynamics
of the monomers is governed by Newton’s equations of motion, which are solved by the velocity-Verlet
algorithm [35].

2.2. Brownian Multiparticle Collision Dynamics

In order to perform isothermal simulations, we couple the microgel monomers with the Brownian
multiparticle collision dynamics method (B-MPC) [32,36,37]. This is a non-hydrodynamic version of
the multiparticle collision dynamics approach for fluid systems [36,38]. In B-MPC, a monomer performs
a random collision with the fluid after a time increment, ∆t, which is denoted as collision time. Thereby,
we assign an effective fluid particle to every monomer. The velocity of the fluid particle of mass M
(equal to the mass of a monomer) is taken from a Maxwell–Boltzmann distribution of variance MkBT .
In the collision, the relative velocity of every monomer, with respect to the center-of-mass velocity:

vcm,i =
Mvi + P

2M
(4)

where P is the fluid particle momentum and vi the monomer velocity, is rotated around a randomly
oriented axis by a fixed angle, α. Thus, after a collision step, the velocity of the i-th monomer is:

vi(t+ ∆t) = vi(t) + (R(α)− I) (vi − vcm,i) (5)

with the rotation matrix R(α) and the unit matrix I [36].
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2.3. Parameters

We consider microgels comprised of polymers with Nm = 20 and 40 monomers of Nc = 147 and 729
cross-links, respectively. With the number of dangling ends Nd = 64 and 204, the ratios Nd/(Nc − Nd)

are 0.39 and 0.77. In the largest system, the total number of monomers is N = 50, 169. The topological
structure of a microgel for Nc = 729 cross-links is illustrated in Figure 1.

We employ l as the unit of length, kBT as the unit of energy and M as the unit of mass. Thus, the unit
of time is τ =

√
Ml2/kBT . The Lennard–Jones parameters are σ = 0.8l, ε/kBT = 0.5, 1.0 and 1.5

for a poor solvent and 1.0 for a good solvent. For the bonds, we set ks = 103kBT/l
2. The collision time

is ∆t = 0.1τ , and we perform 20 molecular dynamics simulation steps between collisions. To achieve
a reasonable statistical accuracy, we performed, at least, 5.0× 104 collision steps, which corresponds to
106 molecular dynamics simulation steps, after reaching a stationary state in every simulation.

3. Results

3.1. Microgel in Good Solvent (lD = 0)

As a reference, we consider the polymer conformational properties of a microgel under good solvent
conditions and lD = 0. Figure 2 displays the chain-length dependence of the polymer radius of gyration
R̄p
g for Nc = 0, 147 and 729. Here, R̄p

g is the square root of the average over all polymers of the mean
square radius of gyration, where the radius of gyration of a polymer (Rp

g) itself is defined by:

(Rp
g)

2 =
1

Nm

Nm∑
i=1

〈
(ri − rcm)2

〉
(6)

with the polymer center of mass:

rcm =
1

Nm

Nm∑
i=1

ri (7)

The system with Nc = 0 corresponds to a non-cross-linked network. As expected, the radius of
gyration exhibits the power-law dependence R̄p

g ∼ (Nm − 1)ν with the number of bonds. Thereby,
the critical exponent, ν, for the non-cross-linked polymers closely follows the theoretical prediction
ν ≈ 0.59 [39]. Similarly, the R̄p

g values for the systems with Nc = 147 and 729 follow a power law;
however, with the somewhat larger exponent ν ≈ 0.62. Hence, cross-linking leads to swelling of the
polymer chains.

Further insight into the microgel structure is gained by the spherically averaged static structure
factor [39]:

S(q) =
1

N

∑
i,j

sin(qrij)

qrij
(8)

where q is the wave number with the magnitude q = |q|. As shown in Figure 3, in the vicinity of
ql ≈ 0.05, we find a steep drop of the structure factor due to the spherical shape of a gel
particle. For 0.6 < ql < 3, S(q) decays according to the power-law q−1/0.62 with increasing q,
indicating the self-similarity of the polymer conformations. This is consistent with the scaling
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R̄p
g ∼ (Nm − 1)0.62. Hence, the polymer conformations are determined by thermal fluctuations,

intramolecular and intermolecular interactions and the cross-links.

Figure 2. Dependence of the average root mean square radius of gyration R̄p
g of polymers on

the bond number Nm − 1 for Nc = 0 (squares), 147 (open squares) and 729 (bullets) under
good solvent conditions (lD = 0). The solid line is proportional to N0.59 and the dashed line
to N0.62.
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Figure 3. Spherically averaged static structure factor S(q) of a microgel with Nc = 729

cross-links and a polymer length Nm = 40. The dashed line is proportional to q−1/0.62.
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3.2. Microgel in Poor Solvent (lD = 0)

Figure 4 shows radial monomer distribution functions P (r) with respect to the microgel
center-of-mass for Nm = 40, Nc = 729 and various attraction strengths ε under poor solvent conditions.
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In addition, P (r) with lD = 0 under good solvent conditions is shown. The distribution function is
normalized, such that: ∫ ∞

0

4πP (r)r2dr = 1 (9)

With increasing ε, the size of a microgel particle shrinks and its density increases. As expected,
microgels in a good solvent with lD = 0 are more swollen. This behavior is in qualitative agreement
with experimental results [40–42]. The inset of Figure 4 indicates that P (r) decreases fast for r > Rg

and vanishes at r & 1.5Rg, where Rg is the average microgel radius of gyration. Thereby, the fuzziness
of the surface decreases with increasing ε and the interface becomes rather sharper for large ε. The
fuzziness for ε/kBT = 0.5 is comparable to that of a microgel in a good solvent with lD = 0.

Figure 4. Radial monomer distribution functions P (r) for a microgel with Nm = 40 and
Nc = 729 under poor solvent conditions with ε/(kBT ) = 1.5 (red), 1.0 (green) and 0.5

(blue). In addition, P (r) for lD = 0 under good solvent conditions is shown (black).
Inset: the same distribution functions normalized by the respective radii of gyration, Rg, of
the microgels.
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The gel compaction is also reflected in the static structure factor displayed in Figure 5. The shift of
the strongly dipping part of S(q) at ql ≈ 0.1 with increasing ε is reminiscent of the shrinkage of the
microgel. In the range of 0.3 < ql < 2.0, S(q) is proportional to q−4.1 for ε/kBT = 1.0 and 1.5. This
behavior is in close agreement with Porod’s law S(q) ∝ q−4 for a system with a sharp interface. In
contrast, for ε/kBT = 0.5, S(q) is proportional to q−1/0.6 in the range of 0.6 < ql < 2.0. Thus, R̄p

g

scales as R̄p
g ∝ (Nm − 1)0.6 with polymer length, and the interface is less sharp. The scaling exponent,

0.6, is smaller than 0.62 obtained for microgels in a good solvent. Hence, the polymers are somewhat
more compact for ε/kBT = 0.5 as compared to the bare good solvent system. The attractive interaction
brings the polymers closer to the scaling behavior of free polymers.



Polymers 2014, 6 1609

Figure 5. Spherically averaged static structure factors S(q) for Np = 40, Nc = 729 and
ε/(kBT ) = 1.5 (red), 1.0 (green) and 0.5 (blue). The straight solid line is proportional to
q−4.1 and the straight dashed line to q−1/0.6.
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3.3. Microgel with Debye–Hückel Interaction

We now elucidate the conformational properties of microgels, where the monomers interact via the
Debye–Hückel potential Equation (3). We focus on good solvent conditions, i.e., only the repulsive part
of the Lennard–Jones potential is taken into account.

3.3.1. Microgel Radius of Gyration

The Debye–Hückel potential Equation (3) is a short-range potential, since it decays very fast with the
distance between two particles. The actual range depends on the Debye length, lD. For lD � σ < l,
UDH decays so fast that it is essentially negligible. This corresponds to the limit where the charge-charge
interactions in a system are screened and only excluded volume interactions remain. In the opposite limit,
when the Debye length is larger than the microgel particle, there is a strong repulsion between monomers,
and we expect the microgel to be swollen. This corresponds to unscreened charge-charge interactions
within the microgel. Hence, by increasing lD, we expect a conformational change of the gel particle
from a good solvent state to a fully swollen state and essentially stretched polymers. This expectation
is reflected in Figure 6, where the microgel radius of gyration is shown for various Bjerrum and Debye
lengths. The onset of the increase in particle size depends on the Bjerrum length; the larger the Bjerrum
length, the earlier the increase. Moreover, the slope of the increasing curve increases somewhat with
increasing lB. Interestingly, the swelling behavior only weakly depends on the number of cross-links.
Here, we conclude that the microgel behavior should be very similar to the behavior of a macroscopic
gel, i.e., there is little effect due to the finite size of the microgel. However, we observe a polymer-length
dependence of the swelling behavior. The microgels with Nm = 40 swell significantly faster with
increasing Debye length compared to the shorter polymers. Hence, we speculate that very long polymers
will show a very steep increase in the form of a first order phase transition.
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Figure 6. The dependence of the radius of gyration, Rg, of a microgel on the Debye length,
lD, for various Bjerrum lengths, lB, Nm = 20 and 40, and Nc = 147 and 729. Rn

g denotes
the radius of gyration of a microgel under good solvent conditions.
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3.3.2. Microgel Structure Factor

Figure 7 displays structure factors of microgels for various Debye lengths. The shift of the initial
decay (small q values) with increasing lD toward smaller q values reflects the swelling of the microgel.
The surface is rather sharp for all lD, as indicated by the steep decay and the appearing successive
oscillations. More importantly, on the length scale of the polymers, we see a crossover in the chain
conformations from a self-avoiding to a rod-like polymer. For lD/l = 0.4 and lD/l = 6.3, S(q) is
proportional to q−1/0.67 and q−1.05, respectively, in the range of 0.05 . ql . 0.3. We obtain a somewhat
larger scaling exponent ν = 0.67 compared to the good solvent value due to monomer repulsion.

Figure 7. Spherically averaged static structure factors S(q) for Nc = 729, Nm = 40,
lB/l = 5 and lD/l = 0.4 − 6.3. The solid line is proportional to q−1.05 and the dashed
line to q−1/0.67.
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3.3.3. Polymer Size Scaling

From simulations, we can extract the average polymer radii of gyration for the various Debye lengths.
Since the Debye–Hückel potential is of short-range order, we assume that the polymer radius of gyration
obeys the scaling relation:

R̄p
g ∼ Lp ×

(
L

Lp

)ν
(10)

where L = (Nm − 1)l is the contour length and Lp is the persistence length. L/Lp is the number of
persistence lengths per polymer length. This approach is similar to the blob picture with the characteristic
length scale Lp [43]. Here, we defined Lp as Lp = l + le, with the persistence length:

le =
lB
4

(
lD
l

)2

(11)

due to electrostatic interactions. Equation (11) is the well-known OSF relation, derived by Odijk [44]
and Skolnick and Fixman [45] in the limit of a weakly bending charged rod. The relation between le
and lD strongly depends on the underlying polymer model [46]. Previous works reported that le ∝ l2D
for freely jointed chains with fixed bond lengths [47–49]. Figure 8 shows the radii of gyration for the
various considered systems. We obtain a rather good scaling behavior for all obtained values. For small
L/Lp (≤ 2), R̄p

g/Lp increases linearly with L/Lp, i.e., the polymers exhibit rod-like behavior, whereas
for L/Lp & 4, R̄g/Lp ∼ L0.6, i.e., it crosses over to self-avoiding walk behavior. Similar results have
been reported in previous studies on a single polyelectrolyte chain [47,50]. The scaling results are in
agreement with the observed dependencies of the structure factors of Figure 7.

Figure 8. Dependence of the ratio R̄p
g/Lp on the ratio L/Lp for Nc = 0, 147 and 729,

Np = 20 and 40 and lB/l = 1, 2, 5 and 9. The black line is proportional to (L/Lp)
0.6 and the

red line to L/Lp.
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3.3.4. Radial Monomer Distribution

Figure 9 shows radial monomer distribution functions for various Debye lengths and a microgel in
a poor solvent. Already for small Debye lengths, characteristic peaks appear due to the underlying
diamond lattice structure of the cross-linked microgel. The undulations are weak for lD/l . 1, but they
become rather sharp for large lD. Note that the density distribution for a microgel under good solvent
conditions with lD = 0 is close to the distribution for lD/l = 0.4. We do not necessarily expect such a
detailed structure for a real microgel, since the polymer lengths are rather polydisperse and the cross-link
density is inhomogeneous. In the range of r/Rg > 1, the density profiles decrease for lD/l > 3 as fast
as P (r) of a microgel in a poor solvent with ε/kBT = 1.5. This indicates that the microgel has a sharp
boundary, and peripheral polymers are smaller than internal polymers. For small lD, P (r) gradually
decreases in the vicinity of the surface. The fuzzy boundary implies that the radius of gyration of a
polymer at the surface is larger than that in the interior.

Figure 9. Radial monomer distribution functions for various Debye lengths, lD/l,Nc = 729,
Nm = 40 and lB/l = 5. In addition, P (r) for ε/kBT = 1.5 under poor solvent conditions
is shown.
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We find a rather high monomer concentration in the vicinity of the center-of-mass of the microgel at
larger lD. This is a consequence of the on average isotropic distribution of monomers and a cross-link at
the location of the center of mass.

3.3.5. Radial Polymer Conformation

To gain insight into possible inhomogeneous polymer conformations, we consider the radial
dependence of the polymer radius of gyration, Rp

g(rcm), in a microgel. As shown in Figure 10, we
find a qualitative difference for R̄p

g/Lp > 2.5 and R̄p
g/Lp < 1. For R̄p

g/Lp > 2.5, i.e., lD/l . 0.45,
Rp
g exceeds the mean value at large rcm/Rg. Hence, polymers near the surface are swollen as compared

to internal polymers. We attribute the inhomogeneities to anisotropic intramolecular interactions by
short-range repulsion. Internal polymers experience an almost isotropic interaction, whereas at the



Polymers 2014, 6 1613

surface, the symmetry is broken and repulsion is stronger from inside to outside, which leads to a
swelling. For R̄p

g/Lp < 1, i.e., lD/l & 2, Rp
g is smaller than the average value at large rcm/Rg. Thus,

the outside polymers are somewhat more compact than the internal polymers. This is attributed to the
inhomogeneous radial monomer distribution, as displayed in Figure 9. The larger interaction range of
the Debye–Hückel potential for these parameters combined with a larger number of neighbors leads to
the stronger swelling of internal polymers than those at the surface. Overall, the effect is small, but is a
consequence of the finite size of a microgel and is thus not present in bulk systems.

Figure 10. Dependence of the polymer radius of gyration on its radial center-of-mass
position, rcm, for R̄p

g/Lp > 2.5 (top) and R̄p
g/Lp < 1 (bottom), Nc = 147 and 729 and

Nm = 20 and 40. The upper bounds of rcm are defined by the condition P (r)R3
g < 10−3.
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4. Summary and Conclusions

We have performed large-scale molecular dynamics simulations to unravel the structural properties of
finite-size polyelectrolyte microgel particles and the conformations of their comprising linear polymers.
Counterions are treated implicitly via the Debye–Hückel potential. We find radially inhomogeneous
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polymer conformations due to the finite size of the microgel. Thereby, polymers at the surface are
swollen compared to internal polymers for microgels where polymers exhibit self-avoiding walk scaling
behavior. Oppositely, peripheral polymers are more compact for microgels where polymers behave
rod-like. The difference in polymer conformations is also reflected in the radial monomer distribution
function. Due to the swelling of surface polymers, the surface of a microgel becomes fuzzy, and
the density decays gradually to zero. Oppositely, microgels display a rather sharp surface with a fast
decaying monomer density in the case of more compact polymers. Although differences in the radial
dependence of the polymer radii of gyration shown in Figure 10 are small, it is a consequence of the
finite size of a microgel.

In general, the radial variations of the polymer properties are surprisingly small. We expected more
severe inhomogeneities. The smooth variations suggest that the microgel properties are rather similar to
those of the bulk properties of macrogels, at least as along as the Debye–Hückel description applies.

We considered a model microgel with an underlying diamond-lattice structure of the cross-links. This
certainly is not the case of typical synthetic microgels. Although we do not expect severe differences
between microgels with a more random distribution of polymer lengths and cross-link density for
the adopted Debye–Hückle description, a more generalized description is desirable for a quantitative
comparison with experimental results. The structure will definitely matter for the transport of particles
in the microgel.

The presented results are intended as a reference for simulation studies of microgels where monomers
interact by the bare Coulomb potential and where counterions are taken into account explicitly. The
comparison will shed light on the influence of explicit ions on the structure of a microgel. Specifically,
the inhomogeneous charge distribution of the spherical particle implies an inhomogeneous distribution
of counterions (in the simplest case, it can be considered as a radially dependent Debye length), and
correspondingly, interesting effects appear, which reach beyond those presented in the current article.
Such studies are currently under way.
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