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Abstract: Potato phosphorylase is able to synthesize linear polyglucans from maltoheptaose 

primers. By coupling maltoheptaose to butane diamine, tris(2-aminoethyl)amine and amine 

functionalized amine functionalized poly ethyleneglycol (PEG), new primer molecules 

became available. The resulting di-, tri- and macro-primers were incubated with potato 

phosphorylase and glycogen branching enzyme from Deinococcus geothermalis. Due to 

the action of both enzymes, hyperbranched polyglucan arms were grown from the 

maltoheptaose derivatives with a maximum degree of branching of 11%. The size of the 

synthesized hyperbranched polyglucans could be controlled by the ratio monomer over 

primer. About 60%–80% of the monomers were incorporated in the glycoconjugates. The 

resulting hyperbranched glycoconjugates were subjected to Dynamic Light Scattering 

(DLS) measurements in order to determine the hydrodynamic radius and it became obvious 

that the structures formed agglomerates in the range of 14–32 nm. 

Keywords: glycoconjugates; biohybrids; glycosyltransferases; branching enzyme; potato 

phosphorylase; hyperbranched; enzymatic polymerization 
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1. Introduction 

Polysaccharides and polysaccharide conjugates are of potential interest for use in different fields of 

industry. The biocompatible and/or biodegradable character of polysaccharides makes them, for 

example, excellent candidates for use in biomedical applications [1–5]. Moreover, the renewable 

character of polysaccharide based polymers makes them suitable to replace olefin based polymers, for 

instance in the coating technology. Polysaccharides exist in nature in a variety of forms and fulfill 

different functions. By combining these versatile biopolymers with synthetic substrates, new functional 

materials may be developed. 

Polysaccharides are constructed in vivo via enzyme catalyzed reaction paths. Conventional chemical 

synthetic approaches are, in many cases, inadequate to provide substantial quantities of saccharides. 

The difficulties arise from realizing complete regio and stereo-control of the glycosylating process. At 

present, no such methods are available because, in chemical synthesis, most of the difficulties arise 

from the laborious regio- and stereochemical control. Most synthetic approaches are therefore based on 

the modification or degradation of naturally occurring polysaccharides resulting in less than  

perfect products. 

In vitro enzymatic polymerizations [6–11] are superior alternatives for glycoside and saccharide 

synthesis as no selective protection/deprotection steps are necessary and control of configuration at 

newly formed anomeric centers is absolute [12,13]. 

Here, members from the glycosyltransferase family were used to construct biohybrid materials 

based on hyperbranched polysaccharides and different synthetic substrates. Potato phosphorylase (PP) 

and the microbial Deinococcus geothermalis branching enzyme (GBEDg) were used to construct a 

hyperbranched polyglucan consisting of α(1→4) linked glucose residues with defined α(1→6) linkage 

branches. The combined catalysis of hyperbranched polysaccharides was performed previously in 

solution and yielded polysaccharides with a predefined molecular weight and a degree of branching of 

11% [14–17]. 

Potato phosphorylase (PP) catalyzed the formation of linear amylose chains (see Figure 1). 

Glucose-1-phosphate (G1P) acted in this reaction as donor substrate [18,19] while the acceptor 

substrate function was fulfilled by (multi functional) maltoheptaose adducts. 

Figure 1. Action of potato phosphorylase. 

 

The presence of an acceptor substrate (or primer) is essential for PP and makes this enzyme ideal 

for the preparation of bioconjugates as the primer can be chemically bound to the synthetic polymer  

or substrate of choice. Via this concept, amylose-like polymer chains were already grown from:  

Si surface [20], polystyrene [21,22], PEG [2] and Si particles [23]. The inspiring work of Pfannemüller 

resulted in a series of (multi)functional primers and diblock copolymers that were subsequently used as 
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acceptor substrate for PP [24–27]. Next to amylose, block copolymers consisting of a dextran [28–31] 

and hyaluronan [32,33] moiety are reported as well.  

The use of a glyco moiety as a part of a diblock copolymer can result in an amphiphilic system with 

interesting aggregation behavior. For example, polystyrene-block-amylose (or dextran) amphiphiles 

can aggregate in micelles, polymersomes or vesicles [30,34–37]. 

However, hyperbranched polysaccharides can be realized as well with the introduction of a 

branching enzyme [38]. Here we use the glycogen branching enzyme of the micro-organism 

Deinococcus geothermalis (GBEDg) together with PP to prepare hyperbranched glycoconjugates. The 

branching enzyme catalyses the hydrolytic cleavage of an α(1→4) glycosidic linkage and subsequent 

inter- or intra-chain transfer of the non-reducing terminal fragment to the C6 hydroxyl position of an  

α-glucan (see Figure 2). In this process an additional non-reducing end is created which can act as 

primer site for PP. 

Figure 2. Action of the glycogen branching enzyme. 

 

PP as well as GBEDg are active in the same temperature and pH range which make it possible to 

grow hyperbranched polyglucans from (modified) primers.  

Here, primer derivatives were prepared by coupling maltoheptaose to different amine carrying 

molecules. Coupling took place via a reductive amination and resulted in di-functional and tri-functional 

primers as well as PEG macroprimers. With this it become possible to synthesize well defined 

synthetic hyperbranched glycoconjugates as schematically depicted in Figure 3. 

Figure 3. Schematic representation of the products after the enzyme catalyzed tandem 

polymerization in which a hyperbranched polyglucan is grown from (left) amine 

functionalized poly ethyleneglycol (PEG) macro primer. (right) tri-functional primer 

derivative, tris(2-aminoethyl)amine (TREN)-(G7)3. 
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The advantages of such hyperbranched polyglucan biohybrids are multiple and cover a range of 

potential applications. For example, glycogen, the energy storage polymer of mammals, is a 

hyperbranched glycoconjugate itself as it is in vivo grown from a central core protein known as 

glycogenin [39–41]. The in vitro approach as described in this paper to design synthetic hyperbranched 

glycoconjugates, may be a valuable tool in order to completely understand the biosynthesis of 

glycogen and its aggregation behavior. Moreover, hyperbranched glycoconjugates can be used to 

understand biological processes such as the multivalent or cluster effect on carbohydrate-protein 

interactions [5,42]. Furthermore, the abundant amount of functional end-groups at the periphery of 

hyperbranched polyglucans can for example be used for post-polymerization reactions or to interact 

with their surroundings. This makes hyperbranched glyco-based structures candidates for drug carrier 

purposes, as drugs can be chemically linked to the hydroxy moiety of the glucose residues or 

physically trapped inside the hyperbranched structure. 

2. Experimental Section  

2.1. Materials 

Butanediamine (BDA, Aldrich) was purified by sublimation before use and tris(2-aminoethyl)amine 

(TREN, Aldrich) was purified via Kugelrohr distillation before use. The column material Amberlite 

IR-120 (H
+
) ion exchange resin was purchased from Aldrich. Dimethyl sulphoxide (DMSO, Labscan) 

was distilled from CaH2 prior to use. Products were dialyzed using dialysis tubing from Spectra/Por 

(MWCO 1000). Poly(ethylene glycol) methyl ether (PEG-OH; MW 2000 g∙mol
−1

, Aldrich) and  

PEG-NH2 (MW 20000, Iris Biotech) were dried over P2O5 in vacuo before use. Phthalimide, 

triphenylphosphine (Ph3P), diisopropylazodicarboxylate (DIAD), hydrazine monohydrate, 

sodiumcyanoborohydride and Amberlite IR-120 H
+
 ion exchange resin were used as received (Aldrich). 

2.2. Methods 

2.2.1. Dynamic Light Scattering (DLS) 

DLS measurements were performed on an ALV CGS-3 goniometer equipped with an ALV  

LSE-5005 multiple digital correlator at angles of between 30° and 150° with a 10° interval at room 

temperature. Measurements were performed in triplicate and averaged values are displayed. Fitting of 

the autocorrelation function was performed with the CONTIN algorithm. All samples were dissolved 

in water R.O. (1 mg∙mL
−1

) and filtered (0.45 μm teflon filter). 

2.2.2. Elemental Analysis 

Elemental analysis was performed on an EA3000 from EuroVector. 

2.2.3. 
1
H-NMR Spectroscopy 

1
H-NMR spectra were recorded in D2O on a Varian VXR spectrometer operating at 300 or  

400 MHz at ambient temperatures. 
1
H-NMR spectra used for the determination of the degree of 

branching were recorded on a Varian Inova 500 MHz spectrometer at 50 °C with pre-saturation of the 
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HOD resonance. 2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS) was used as an external reference. 

Complete relaxation of the protons was ensured by taking a 10 s pause between pulses. 

2.2.4. ATR Infra-Red Spectroscopy 

Attenuated total reflection fourier transform infra-red (ATR FT-IR) spectra were recorded on a 

Bruker IFS88 spectrometer equipped with a MCT-A detector at a resolution of 4 cm
−1

 using an average 

of 50 scans for sample and reference. 

2.3. Isolation and Purification of the Glycosyltransferases 

Phosphorylase was isolated from potatoes via an ammonium sulfate precipitation procedure in 

which the phosphorylase was selectively precipitated and resuspended in a citric acid buffer.  

α-Amylase was removed via a heat treatment of the suspension. The phosphorylase suspension was 

eventually dialyzed and concentrated and stored at 4 °C. A more elaborate procedure of the isolation 

and the purification of potato phosphorylase [14] is described elsewhere. The cloning, expression and 

purification of the GBEDg is reported elsewhere [43]. 

2.4. Synthesis of Maltoheptaose 

Maltoheptaose was obtained after the acid catalyzed hydrolysis of β-cyclodextrin in a yield of 10%. 

Residual β-cyclodextrin was removed as a p-xylene/β-cyclodextrin complex. A more elaborate 

procedure is described elsewhere [14]. 

2.5. Synthesis of Primer Adducts 

2.5.1. Di-Functional Primer Adduct, BDA-(G7)2 

BDA (100 mg, 1 mol eq.), maltoheptaose (1.31 g, 1 mol eq.) and NaCNBH3 (107 mg, 1.5 mol eq.) 

were dissolved in 6 mL DMSO containing 1 V/V% acetic acid and 3 Å molsieves. This mixture was 

placed in an incubator at 65 °C and was shaken for 6 days. After 3 days 1.5 mol eq. NaCNBH3 and 0.9 

mol eq. maltoheptaose were added. The reaction mixture was precipitated in ethanol, filtrated over a 

p4 glass filter, washed with acetone and ethanol and dried in vacuo, yielding a yellow powder (2.77 g). 

The product was dissolved in 50 mL water containing Amberlite IR-120 (H
+
) beads and was shaken 

overnight in an incubator at 40 °C. The solution was lyophilized yielding a yellow powder 

(1.69 g/61%).  
1
H-NMR (D2O, 300 MHz). 5.39 ppm: H1(m) and H1(n) of glucose residue, 5.11 ppm: CH2-NH, 

4.12–3.51 ppm: glucose residue, 3.41 ppm: H4(m).  

FT-IR. OH stretching glucose residues: 3683–2991 cm
−1

, CH and CH2 stretching: 2923 cm
−1

, water 

deformation band: 1640 cm
−1

, OH: 1358 cm
−1

 



Polymers 2012, 4              

 

 

679 

2.5.2. Synthesis of Tri-Functional Primer Adduct, TREN-(G7)3 

TREN (100 μL, 1 mol eq.), maltoheptaose (1.16 g, 1.5 mol eq.) and NaCNBH3 (126 mg,  

3 mol eq.) were dissolved in 6 mL DMSO containing 1 V/V% acetic acid and 3 Å molsieves. This 

mixture was placed in an incubator at 65 °C and was shaken for 6 days. 1.5 mol eq. NaCNBH3 and 1.4 

mol eq. maltoheptaose were added after 3 days. The reaction mixture was precipitated in ethanol, 

filtrated over a p4 glass filter, washed with acetone and ethanol and dried in vacuo, yielding a yellow 

powder (2.26 g). The product was dissolved in 50 mL water containing Amberlite IR-120 (H
+
) beads 

and was shaken over night in an incubator at 40 °C. The solution was lyophilized yielding a yellow 

powder (1.01 g/45%).  
1
H-NMR (D2O, 300 MHz). 5.39 ppm: H1(m) and H1(n) of glucose residue, 5.11 ppm: CH2-NH, 

4.12–3.51 ppm: glucose residue, 3.41 ppm: H4(m).  

ATR FT-IR. OH stretching glucose residues: 3683–2991 cm
−1

, CH and CH2 stretching: 2923 cm
−1

, 

water deformation band: 1640 cm
−1

, OH: 1358 cm
−1

 

2.5.3. Synthesis of PEG Phthalimide Intermediate (Mitsunobu) 

PEG-OH (5 g, 2.5 mmol, MW 2,000 g∙mol
−1

), triphenylphosphine (0.62 g, 10 mmol), phthalimide 

(1.47 g, 10 mmol) and THF (50 mL) were mixed in a round-bottomed flask equipped with a magnetic 

stirrer at 0 °C under a N2 atmosphere. To this mixture diisopropyl azodicarboxylate (1.9 mL, 10 mmol) 

was added drop wise. After the addition, the temperature was raised to 25 °C and the reaction mixture 

was allowed to stir for 24 h. Ethanol (200 mL) was added and the reaction mixture was stirred for 

another 30 minutes. The solvent was evaporated by means of rotation evaporation and the resulting 

PEG-phthalimide was dissolved in water. The excess starting material was extracted with 3 portions of 

diethyl ether and discarded. Finally, the product was lyophilized, yielding a white powder (4.7 g, 94%).  
1
H-NMR (d-DMSO, 300 MHz): 7.8 ppm: benzylic protons endgroup, 3.7 ppm: CH2-phtalimide, 3.5 

ppm: O-CH2 PEG backbone, 3.2 ppm: CH3 endgroup.  

ATR FT-IR: 2880 cm
−1

: C-H stretching, 1712 cm
−1

: C=O stretching, 1396 cm
−1

: C-N stretching, 

1100 cm
−1

: C-O stretching (PEG backbone). 

2.5.4. Synthesis of PEG-NH2 (Hydrazynolysis) 

4.7 g PEG-phthalimide and hydrazine monohydrate (5 mL) were added to ethanol (40 mL) in a 

round-bottomed flask equipped with a magnetic stirrer. The mixture was refluxed for 24 h and the 

solvent was removed via rotation evaporation. The remaining product was dissolved in CH2Cl2 

(100 mL) and the precipitated by-products were removed by filtration. The filtrate was precipitated in 

diethyl ether and dried in vacuo, yielding an off-white powder (3.7 g, 78%).  
1
H-NMR (d-DMSO, 300 MHz): 3.7 ppm: CH2-NH2, 3.5 ppm: O-CH2 PEG backbone, 3.2 ppm: CH3 

end-group, 2.6 CH2-NH2.  

ATR FTIR: 2880 cm
−1

: C-H stretching, 2327 cm
−1

: NH3
+
 salt, 1665 cm

−1
: phthalhydrazide impurity, 

1582 cm
−1

: N-H bending (primary amine), 1100 cm
−1

: C-O stretching (PEG backbone). 
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2.5.5. Synthesis of PEG Macro Primer Adduct, PEG-(G7)1 

PEG-NH2 (0.29 g, 0.145 mmol, 5.0 eq), Maltoheptaose (33 mg, 0.029 mmol, 1.0 eq), NaCNBH3  

(9 mg, 0.145 mmol, 5.0 eq) and acetic acid (8 μL, 0.145 mmol, 5.0 eq) were dissolved in 5 mL DMF 

containing 3 Å molsieves. This mixture was placed in an incubator at 65 °C and was shaken for 6 days. 

After 3 days NaCNBH3 (10 mg) and acetic acid (10 μL) were added. The reaction mixture was 

precipitated in Et2O, filtrated over a p4 glass filter, washed with Et2O and dried in vacuo, yielding a 

white powder (145 mg). The product was dissolved in 50 mL water containing Amberlite IR-120 (H
+
) 

beads and was shaken over night in an incubator at 40 °C. The solution was lyophilized yielding a 

white powder (108 mg). 

2.6. Typical Enzyme Catalyzed Polymerization 

Primer (0.5 mM), G1P (25–500 mM), phosphorylase (5 U∙mL
−1

) and GBEDg (250 U∙mL
−1

) were 

mixed and filled to 5 mL MOPS buffer (pH 7.0, 50 mM). When only phosphorylase was utilized a 

citrate buffer (pH 6.2, 50mM) was used. Different ratios G1P to primer were used by varying the G1P 

concentration. The solution was depending on the enzymes used incubated at 37 °C (tandem 

polymerization) or 38 °C (phosphorylase) in a shaking incubator. The released amount of phosphate 

was measured with a modified [44] method of Fiske and Subbarow [45]. Upon reaching equilibrium 

conditions the reaction was stopped by a heat treatment (5 min in boiling water). Denaturated enzymes 

were removed by means of centrifugation. Dialysis (MWCO 1000) and lyophilization of the remaining 

solution yields the hyperbranched bioconjugates. 

3. Results and Discussion 

3.1. Synthesis and Purification of Primer Adducts 

In order to prepare difunctional-, trifunctional- and macro- primers, maltoheptaose was respectively 

coupled to butane diamine (BDA), tris(2-aminoethyl)amine (TREN) and amine functionalized  

methyl-ether-polyethylene glycol (PEG) with a molecular weight of 2000 g∙mol
−1

 (PEG45) and  

20,000 g∙mol
−1

 (PEG454).  

Figure 4. General reaction mechanism of a reductive amination with the reducing group of 

a saccharide. 
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Coupling took place via a reductive amination with NaCNBH3 as reducing agent (see Figure 4). The 

reducing group of the maltoheptaose reacts herein with the primary amines of the amine functionalized 

core molecules and the formed imine intermediate was subsequently reduced to a secondary 

amine [46–48]. 

Hydroxyl-PEG454 methylether was first converted via a Mitsunobu hydrazinolysis to an  

amine functionalized PEG methylether [49,50], while PEG45 was directly bought as an amine 

functionalized PEG. 

Coupling of the maltoheptaose was done with a small excess of amine groups. This reaction pathway 

resulted in a mixture of complete primer functionalized core molecules [represented as BDA-(G7)2, 

TREN-(G7)3 and PEG-(G7)] and partly functionalized core molecules, having one or more unreacted 

amine groups [BDA-(G7)1, TREN-(G7)1, TREN-(G7)2 and PEG-NH2] and is presented in Figure 5. 

Figure 5. The different reaction products after reductive amination. 

 

Purification of the above described mixture was possible with Amberlite IR-120 (H
+
) resin. This 

strong cation-exchange resin was able to adsorb amine functionalized molecules [51,52]. The unreacted 

and partly reacted core molecules could therefore be separated from the product in a yield of 45% to 

61%. Eventually, the adsorbed side products could be isolated for evaluation purposes. This was done 

by exposing the Amberlite beads to a 10% ammonia solution. The amine containing side products 

were with this treatment released and isolated by means of lyophilization. 

The carbon, hydrogen and nitrogen content of the water eluted and ammonia eluted fractions were 

determined with elemental analysis and are listed in Table 1. Especially the nitrogen content is a good 

measure to distinct the fully substituted products from the partly substituted products. The nitrogen 

content of BDA-(G7)1 is 1.9 times higher than BDA-(G7)2. The nitrogen content of TREN-(G7)1 and 

TREN-(G7)2 is respectively 2.77 and 1.46 times higher when compared to the nitrogen content of 

TREN-(G7)3. This quantitative difference in nitrogen content is a clear indication of a successful 

purification. Unfortunately, this method could not be used for the PEG adducts since the elemental 



Polymers 2012, 4              

 

 

682 

composition of PEG-NH2 and PEG-(G7)1 do not differ enough to discriminate on the basis of the 

nitrogen content.  

Table 1. Elemental analysis results after purification with Amberlite IR-120 (H
+
). 

Compound Eluted with 
Theoretical (%) Observed (%) 

C H N C H N 

BDA-(G7)2 Water 44.74 6.66 1.19 39.67 5.98 1.23 

BDA-(G7) 10% ammonia 45.10 6.91 2.29 40.79 6.35 3.67 

TREN-(G7)3 Water 44.57 6.63 1.58 38.96 6.06 1.69 

TREN-(G7)2, 

TREN-(G7) 
} 10% ammonia 

44.66  

44.93 

6.75  

7.07 

2.31 

4.37 
38.82 6.36 3.05 

Furthermore, ATR-FTIR and 
1
H-NMR analyses confirmed the successful syntheses and purification 

of the different (multi)functional primers, see Figure 6. The N-H bending vibration of (unreacted) 

primary amines at a wave number of 1593 cm
−1

 were no longer detectable via ATR-FTIR while the 

isolated side products do still show a clear signal at 1593 cm
−1

. Moreover, the H2β signal of 

maltoheptaose, which is normally present at 3.26 ppm, could not be detected by 
1
H-NMR which is an 

indication of a successful coupling as well. It has to be noted that the aliphatic protons of the core 

molecules were not visible in the NMR spectrum. It is assumed that aggregate formation shielded the 

protons in the core molecule. 

Figure 6. (Left) ATR-FTIR spectra of (A) butane diamine (BDA)-(G7)2 and  

(B) BDA-(G7)1. (Right) 
1
H-NMR spectra of (C) BDA-(G7)2 and (D) BDA-(G7)1. 

  

3.2. Enzyme Catalyzed Synthesis of Hyperbranched Glycoconjugates 

The synthesized primer adducts were used to start an enzyme catalyzed tandem polymerization. 

Due to the acceptor donor specificity of PP, glucose residues were only coupled to the synthesized 

maltoheptaose adducts carrying 1 or more maltoheptaose residues. Phosphorylase catalyzed herein the 

linear growth of the polyglucan while BGEDg catalyzed the branch formation. By taking different 

ratios of G1P to primer (represented as ―feed ratio G1P‖ on the x-axis in Figure 7) structures with 
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differently sized hyperbranched polysaccharide moiety were realized. With each glucose residue added 

to the acceptor substrate, an inorganic phosphate is released. By measuring the amount of released 

inorganic phosphate via the (modified) [44] method as proposed by Fiske and Subbarow [45] it became 

possible to measure the amount of incorporated glucose residues. 

Figure 7 shows the amount of incorporated glucose residues after 24 h of incubation with PP and 

GBEDg. For all modified primers a linear dependency was observed just like in controlled/living 

polymerizations in which the degree of polymerization is related to the ratio monomer over initiator 

concentration. Only for the PEG-(G7)1 primed reactions, a deviation was seen at a feed ratio of 1000. 

These deviations may be due to the fact that equilibrium conditions were not yet reached after  

24 h. The conversion of the differently primed reactions varied from 62% for PEG-(G7)1 primed 

reactions to 80% for TREN-(G7)3 primed reactions. However, in general reactions catalyzed with PP 

resulted in conversions between 60% and 80% and there is no evidence that the core molecules 

interfere with the PP catalyzed polymerization. In conclusion, by choosing the feed ratio G1P, the 

length of the hyperbranched polyglucan chains can be predetermined and bioconjugates can be realized 

with differently sized glyco moieties. 

Figure 7. Amount of incorporated glucose residues as a function of the feed ratio G1P. 

 

GBEDg catalyzed the branch formation in the tandem polymerization. Branch formation occurred 

only at the α(1→4,6) position to an average extend of 11% in the case of maltoheptaose primed 

reactions as was determined with 
1
H-NMR [53,54]. The NMR-signal (at 5.0 ppm) of the anomeric 

protons of the α(1→4,6) linked glucose residues were used to quantify the degree of branching and is 

expressed as a percentage. 

 
(1)  

H1(m) and H1(n) are the H1 protons of glucose residues in the middle of the chain and at the  

non-reducing end (both at 5.4 ppm) respectively. Figure 8 shows the degree of branching for a given 

feed ratio of G1P. The continuous curve gives the theoretical degree of branching if on average every 

%100
)64,1(1)(1)(1

)64,1(1
branching of Degree 






HnHmH
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9th glucose residue acts as a branching point and approaches a degree of branching of 11%. Whereas 

the difunctional BDA-(G7)2 and trifunctional bioconjugates TREN-(G7)3 followed the G7 primed 

branching profile, the synthesized PEG diblock copolymers showed a degree of branching below 

average. The hydrophilic PEG chains may interfere with the branch formation resulting in a decreased 

branching profile. Nevertheless, a degree of branching of 8% was obtained for the hyperbranched 

diblock copolymers at a high feed ratio of G1P. 

Figure 8. Degree of branching as a function of the feed ratio G1P. 

 

3.3. Dynamic Light Scattering (DLS) Analysis of Hyperbranched Glycoconjugates 

The different hyperbranched glycoconjugates were subjected to dynamic light scattering 

measurements in order to study the particle size. DLS measurements showed diameters in the order of 

14–28 nm depending on the feed ratio G1P. The DLS autocorrelation functions of the hyperbranched 

glycoconjugates were recorded with DLS in triple, the CONTIN algorithm was used to calculate the 

decay rates (of the distribution functions at different scattering vectors (q). The translational 

diffusion coefficient (Dt) was obtained from the decay time (), according to the relationship as 

displayed in Equation (2). 

 (2)  

The diffusion coefficient is related to the hydrodynamic radius (RH) via the Stokes-Einstein 

Equation (3). Since the Stokes-Einstein relation is only valid for hard spherical particles the term 

apparent hydrodynamic radius is introduced (RH(app)). 

 
(3)  

where kB, T and η are the Boltzmann constant, temperature (K) and the solvent viscosity. 

A linear variation of  versus q
2
 passing through the origin is characteristic of a translational 

diffusive process typical for spherical particles [55]. Although Figure 9 shows only one example  

tDq 21




t

B
)app(H

Dπη6

Tk
R 
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(di-functional primer, BDA-(G7)2, it is representative for all measurements as conducted in this 

research proving that all aggregates have a spherical form.  

Figure 9. (Left) Example of the distribution functions as calculated with CONTIN at 

angles between 30° and 150°. (Right) Example of the determination of the Dt from the 

linear function (q
2
). 

  

Figure 10 shows the resulting apparent hydrodynamic radii of the hyperbranched glycoconjugates. 

The radii increased to a certain extent with increasing feed ratio G1P. The radii of BDA-(G7)2 and 

TREN-(G7)3 based glycoconjugates level off at higher feed ratios G1P. Steric hindrance at the periphery 

may be responsible as this phenomenon is also seen for dendrimers at higher generations [56]. The 

volume required for the exponential growth of dendrimers at higher generations is not available since 

the volume increases only cubically. The hyperbranched glycoconjugates with BDA-(G7)2 and  

TREN-(G7)3 as core molecules can be compared with the initiator cores used in the divergent synthesis 

of dendrimers and the same limitation in growth is seen.  

Figure 10. Relation of the apparent hydrodynamic radius with the feed ratio G1P. 
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The G7 primed products and the PEG based diblock copolymers do not show this plateau because 

the available space for chain growth is hardly limiting. Surprisingly, the two different PEG diblock 

copolymers cannot be distinguished by hydrodynamic radius although the molecular weight of the 

PEG block varies from 2000 g∙mol
−1

 to 20000 g∙mol
−1

. This can be explained by the fact that the 

hydrodynamic volume of PEG45 and PEG454 in water are an order smaller than the size of the observed 

particles. The hydrodynamic radius of PEG45 and PEG454 are, respectively, ~1.3 nm and ~4.5 nm [57]. 

When the PEG chains are entangled (interpenetrating coils), the contribution of the PEG block to the 

volume increase of the glycoconjugates is negligible. 

Water soluble hyperbranched polysaccharides tend to form aggregates in water due to intermolecular 

hydrogen bonding between the abundant hydroxy groups. Therefore, the hydrodynamic radii as shown 

in Figure 7 represent the radii of aggregates rather than single polymer chains. The increase in feed 

ratio of G-1-P therefore results in aggregates build up from larger hyperbranched polysaccharides.  

To obtain more information about the aggregate formation light scattering measurements should be 

conducted with DMSO as solvent instead of water. DMSO is known to break the inter- and 

intramolecular hydrogen bonds of polysaccharides, leading to the dispersion of the aggregates and 

making it may be possible to study individual polymer chains. 

4. Conclusions 

The coupling of maltoheptaose to butane diamine (BDA), tris(2-aminoethyl)amine (TREN) and 

amine functionalized poly ethyleneglycol (PEG) via a reductive amination resulted in 2-, 3-functional 

primers and, in the case of PEG, in macroprimers. Phosphorylase was able to start polymerization from 

these modified maltoheptaose derivatives. By combining the action of potato phosphorylase with the 

glycogen branching enzyme from Deinococcus geothermalis, hyperbranched polyglucan ―arms‖ were 

grown from the modified acceptor substrates. Therefore, we have shown that with this technique it 

becomes possible to grow linear as well as hyperbranched polyglucans from virtually any substrate.  

The degree of branching was limited to 11% due the specificity of the GBEDg. However, the 

hydrophilic PEG chains caused a decrease in branching density as the degree of branching dropped to 

8% in the case of the diblock copolymers. Non-specific interaction of the PEG chains may reduce the 

enzyme activity. The size of the hyperbranched glyco moiety can be controlled by the feed ratio of 

G1P. About 60 to 80% of G1P was consumed by PP and incorporated in the hyperbranched polyglucan. 

DLS measurements showed the hydrodynamic radii of the different hyperbranched glycoconjugates. 

The measured radii are the result of aggregate formation of different hyperbranched structures. 
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