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Abstract

The manufacturing industry, in general, and the plastic industry, in particular, have been
developing new materials and process methods that need a correct study and optimization.
Nowadays, the main approach to optimize these processes is using numerical methods
and, in the case of particulate materials, the Discrete Elements Method to estimate the
particles interactions. But those mathematical models use some parameters that depend
on the material and must be calibrated, thus requiring an important computational and
experimental cost. In this study, we integrate different speed-up procedures and present a
general calibration method of Low-Density Polyethylene particles, to obtain the calibrated
solid density and Poisson’s ratio of the material, the restitution, static and rolling friction
factors in the particle-to-particle and particle-to-wall interactions, and the contact model
variables (damping factor, stiffness factor, and energy density). For this calibration, four
different tests were carried out, both experimentally and with simulations, obtaining the
bulk density, the repose and shear angles, and the dropped powder. All these response
variables were compared between simulations and experimental tests, and using genetic
algorithms, the input parameters (design variables) were calibrated after 85 iterations,
obtaining a Mean Absolute Percentage Error of the response variables lower than 2%
compared to the experimental results.

Keywords: discrete element method; polymeric powder calibration; material calibration;
genetic algorithms

1. Introduction
There are several polymer processes where the feedstock material can be used in

powder or particle form. This is the case with conventional processes such as rotational
molding, extrusion, compression molding, or sintering under additive manufacturing such
as the technology of Powder Bed Fusion (PBF) [1].

Due to the complexity of all those manufacturing methods and the costs associated,
it is necessary to study the behavior of the powder during the process in the machine,
mainly before the melting stage. For this, nowadays the use of numerical methods is
generalized to predict the process conditions and final quality of the part. Additionally,
computational power has increased and allows us to know more and more precisely the
material behavior inside these simulated processes. Specially, the use of Discrete Elements
Method (DEM) allows us to understand how the particles interact with other particles and
with the boundaries.
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DEM is based on the use of mathematical models that represent the particle contact,
having different models depending on the characteristics of the particles being studied; and
the correct selection has a great impact on the final simulations [2]. Those mathematical
models are based on the use of certain parameters that depend on the model chosen, the
boundary material, and the particle material in each case. The process of obtaining these
parameters is called the calibration process and is widely studied in the bibliography. There
are several calibration methods, but all of them focus on the speeding-up of the calibration.

One speed-up method is scaling up the particles. The DEM is applied to each particle
for each iteration, and this means a direct relationship between the number of particles and
the calculation time. If we are able to scale-up the particles, there will be fewer particles
for the same volume of powder. Thakur et al. [3] and Roessler et al. [4] concluded that
it is possible to scale up the system or the particle when the dimensions of the system
are not comparable to those of the particles. In this context, Remy et al. [5] observed a
minimum relation needed between the system space and the particle diameter of 31.5 times
to guarantee the elimination of the wall friction effect.

When the particles are scaled, the generated forces change too; those stress relations
are called scale law and have been studied by some authors such as Janda and Ooi [6].
Following these laws, Coetzee [7] established the scaling factor limit up to 1.3–2.5 for
particle discharge operations and 4 times for dynamic operations. Lommen et al. [8]
calculated a limit scaling factor of 3–5 times, but it was limited by the system environment.
However, unlike the limits shown before, Yeom and Choi [9] validated a dynamic study
with a particle scaling factor of 100 times the particle diameter.

With the same objective of reducing the number of particles, Ahmadi et al. [10]
studied the option of truncating the particle distribution from a diameter and unifying the
diameter of the smaller particles in different percentages (scalping method). This process
increases the minimum diameter of the distribution, and as the time step of the simulation
is proportional to the minimum diameter of powder, it reduces the number of steps and
the computational time by up to 90%.

The process for obtaining the correct combination of parameters during the calibration
usually is by trial and error [11,12]; this means that it is necessary to do a large number of
tests to find it. Trying to reduce the number of iterations is another way to speed up the cal-
ibration process. Focusing on this reduction, there are three main lines of study: advanced
design of experiments (DoE), artificial neuronal networks, and evolutionary algorithms.

El-Kassem et al. [13,14] showed in two different studies a methodology based on
the multivariate regression analysis (MVRA), establishing which parameters affect each
calibration test type. Hanley et al. [12] studied the significance of the different variables
using a two-dimensional ANOVA study in the first step and a three-dimensional ANOVA
study for the most significant variables from the previous step. A DoE based on the
definitive screening design (DSD) method was chosen by Bhalode and Ierapetritou [15] to
analyze the impact of each calibration factor, obtaining a predicting equation for each test
and material.

Orefice [16] introduced a way to reduce the number of iterations using artificial neural
networks and tests chosen in such a way that the predominant variables overlapped at least
two by two. Something similar was studied by [17]. Zhou et al. used a Latin Hypercube
sampling for the initial sampling points.

Finally, using a genetic algorithm (NSGA-II optimization algorithm), Mohajeri
et al. [18] proved the possibility of using this kind of algorithm in any contact model
or configuration setup. With the same algorithm, Do et al. [19] applied a multi-objective
optimization, fitting the model to the real test and reducing the computational time. De-



Polymers 2025, 17, 2748 3 of 28

spite this, Rackl and Hanley [20] needed almost 51 iterations in the best case using Latin
Hypercube sampling and the Kriging interpolation method.

All the studies shown before used different tools for speeding up the calibration
individually, but there are no studies about the possibility of decreasing the calibration
time using most of these techniques in combination.

In this study, a new calibration process is presented using the scaling-up and scalping
particles methods for reducing the computational time. To reduce the number of iterations,
an initial population generated by a modified Latin Hypercube sampling and a subsequent
genetic algorithm application based on the Kriging interpolation method were chosen.

2. Materials and Methods
This method is divided into a first part of experimentation, where the particles are

characterized and the tests are carried out; after this, in the second stage, the particles
are represented in the DEM simulation setup with a representation of the experimental
test, and the final stage is the optimization using the results of the experiments and the
simulation. All the process is summarized in Figure 1.

Micronization

Granulometry

Disperser 
powder

Microscope 
observation

Flowability 
test

Flowability

Aspect ratio

Diameter

Bulk density test

Hollow cylinder test 

Liedge Box test ϕRLB

αRHC

mRB

Draw Down test
αRDD, ϕRDD, 

mRDD

Bulk density test

Hollow cylinder test 

Liedge Box test ϕVLB

αVHC
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Draw Down test
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Calibration
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DEM Contact Model 
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Figure 1. Experiment flow chart.
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2.1. Materials

For the realization of this experiment, Low-Density Polyethylene LDPE 1200 MN 18 C,
by Total (UUEE), Valencia, Spain, has been used. It is a thermoplastic polymer with a
density of 0.918 g/cm3.

LDPE is a material that presents very good characteristics both from the point of view
of its mechanical characteristics and its recyclability. The report about the plastic industry
situation from the Plastic Europe Marketing Report Group (PEMRG) places LDPE as the
second most used plastic, only behind polypropylene [21].

2.2. Experimentation
2.2.1. Powder Preparation and Shape Characterization

The material is provided in pellet format with 3 mm of approximate diameter. Since
the material is needed in powder format, these pellets were micronized by mechanical
methods with a centrifugal mill Retsch ZM 200 (Verder, Germany). This machine has
1300 W of power, and the configuration chosen was 10,000 rpm with a 500 µm sieve.

Since the powder particles obtained did not have a uniform size, a Mastersizer 2000
(Malvern Panalytical, Spain) was used to measure the particle size (laser diffraction technique).

Due to the intrinsic characteristics of the micronization process, the particles obtained
had a random shape. Because the aspect ratio (Equation (1)) is needed for representing the
particle in the simulation, an Olympus BX51 Fluorescence Microscope (Plympus, Japan)
was used to observe the particle shapes and be able to calculate the aspect ratio, taking
pictures from the observation and measuring them.

AR =
Particle length
Particle width

(1)

In order to do this observation, a vacuum powder disperser (Figure 2a) was developed
and used to prepare slides of isolated particles without stacking. This device generates a
vacuum chamber; when a valve is open, the powder is projected from the bottom to the top
part of the chamber. Once the atmospheric pressure is re-established, the powder drops to
the bottom again in an isolated form on the slide with a sticky surface, enabling the shape
characterization (Figure 2b).

 

Figure 2. Vacuum powder disperser (a) and slide with dispersed powder (b).



Polymers 2025, 17, 2748 5 of 28

After observation, the shape and the aspect ratio of each group of particles were
obtained (almost 5 measurements of each group). The resulting shape and aspect ratio
of each group are depicted in Section 3.2.1. This information was used as input for the
simulations carried out, which are explained in Section 2.3.

2.2.2. Determination of the Bulk Density, Tap Density, and Flowability

When a determined amount of powder is placed on a flat surface without receiving
external forces (except gravity), the powder tends to agglomerate itself, leaving little gaps
between particles. The bulk density (ρB) is the relationship between the volume (VB) and
the weight of this powder (without having been compacted) (Equation (2)).

ρB =
Sample weight

Volume without compacting
(2)

If this powder without compacting is subjected to different stress, the powder tends
to fill the air gaps, reducing the volume and increasing the density. This relationship
between the weight with respect to the new volume (VT) is called tap density (ρT), shown
in Equation (3).

ρT =
Sample weight

Compacted volume
(3)

To guarantee a proper comparison environment between particles, the compaction
stress was applied using a machine developed for this purpose (Figure 3), following the
standard ISO 3953:2011 [22]. This machine generates a known and controlled axial pulsated
movement according to the standard. This axial movement allows the compaction of
the powder.

 

Figure 3. Tap density test machine.
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This standard establishes the use of a cylinder with a 100 cm3 volume capacity that
is filled with 50 g of powder; this cylinder is stirred at a controlled frequency (normally
300 pulses per minute). While the standard focuses on metal powders, this study uses
LDPE. Therefore, for the same weight, we had too much volume, and the 100 cm3 cylinder
had insufficient capacity. For this reason, 20 g of plastic powder were used. The volume
occupied by the powder, before and after the stirring was applied, was determined, thus
obtaining the bulk (ρB) and tap (ρT) densities.

With the previous densities, the Carr’s Index (CI%, Equation (4)) and the Hausner
ratio ((H), Equation (5)) can be calculated.

CI% = 100 · ρT − ρB
ρT

(4)

H =
ρT
ρB

(5)

Both are indexes that quantify the flowability of dry powder according to Table 1.

Table 1. Haussner ratio and Carr’s index coefficients [23].

Flow Character Hausner Ratio CI%

Excellent/very free flow 1.00–1.11 ≤10

Good/free flow 1.12–1.18 11-15

Fair 1.19–1.25 16–20

Passable 1.26–1.34 21–25

Poor/cohesive 1.35–1.45 26–31

Very Poor/very cohesive 1.46–1.59 32–37

Very, very poor/Approx. non-flow >1.6 >38

2.2.3. Experimental Reference Tests

Several experimental tests were selected and carried out to use the output results as
reference values for the calibration process. Among all the available tests, according to
the literature, the Static Angle of Repose (α) in the Hollow Cylinder test is one of the most
commonly used tests to obtain the interaction coefficients between particles [24]. However,
Katterfeld et al. [25,26] highlighted the ambiguity of the results when only one test is used.
For this reason, we carried out an additional Liedge box test that provides the static friction
angle (ϕ) [27,28]. In addition, a bulk density test was conducted because this measurement
(bulk density) could change during the calibration. Finally, a drawdown test was also
carried out to obtain other repose and friction angles, as well as the discharged mass. The
following subsections explain all these experimental tests.

Bulk Density Test

In this research, experimental and simulated tests are compared to conduct the calibra-
tion. In the case of the bulk density, this data was measured with the method explained in
Section 2.2.2; however, replicating that test in a simulated environment needs too much
computational power to be reproduced. Therefore, a different bulk density measuring
device was used for more volumetric accuracy and for easier replicability in a virtual
environment. The device developed for this purpose is composed of two cylinders with a
diameter of 18.05 mm and a total height of 301.78 mm (one on top of the other) (Figure 4a).
These cylinders are held in alignment by a structure that allows them to be pivoted in the
horizontal plane without applying axial stress to the powder, avoiding the compaction,
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leaving a cylinder of 158.65 mm high full of bulk powder (Figure 4b). In this test, 200 mL of
powder was used, and the mass of powder obtained in the cylinder (mRB) was measured.

 

Figure 4. Alternative bulk density measuring device in initial position (a) and device sectioned with
the selected amount of powder for mass measuring for determining the bulk density (b).

Hollow Cylinder Test

The second reference test is the hollow cylinder method. The machine used in this
case (Figure 5) has three different parts: structure, hollow cylinder, and dropping base.

 

Figure 5. Hollow cylinder machine.

The cylinder in this machine has an inner diameter of 38 mm.
This method consists of filling a cylinder with a determined volume of bulk powder,

raising this cylinder with a controlled speed, and seeing the angle of repose (αRHC) of the
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powder pile (Figure 6). The angle of repose is measured on both sides (left and right) of the
pile, and the average is calculated.

αRHC

(a) (b)

up up up

Left Right

Figure 6. Hollow cylinder test principle starting test (a) and finishing test with the measured
angles (b).

In this test, the results are affected by many parameters (elevation speed, cylinder
shape, base, and cylinder materials, etc.), but in previous studies [29,30], the authors
indicated that to guarantee the tapered powder pile shape, it is better to use a ratio (a)
between the powder height (Hi) before the test and the cylinder radio (Ri) with a value
under 3 (6).

a =
Hi
Ri

(6)

Consequently, we decided to use a = 2, and, with our hollow cylinder machine
(Ri = 19 mm), a 38 mm powder column was used in the test, equivalent to 40 cm3.

In addition, Li et al. [31,32] and Cao et al. indicated that, in our case, it is better to
maintain a slow elevation speed, so we selected 0.01 m/s of elevation speed.

The angle of repose of this test (αRHC) was measured by image processing (method
explained in Section 2.4).

Liedge Box Test

The third test is the Liedge box test. In this test there is a dimensional limitation high-
lighted by Derakhshani et al. [33], who established a minimum distance between walls inside
the box must be 32 times the particle diameter. In this test we used an acrylic box with
75 × 100 × 16 mm inner dimensions filled with bulk powder. The right wall can be rapidly
opened by hand, eliminating the restriction and letting the powder flow freely in that direction
(Figure 7). The amount of powder that remains in the box allows us to measure the internal
friction angle (ϕRLB) by image processing (method explained in Section 2.4).

(a) (b)

Figure 7. Ledge box test principle starting test (a) and finishing test with the measured angles (b).
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For this test, a powder volume of 120 cm3 was used.

Draw Down Test

The last test is the drawdown test. The device is an acrylic box divided into two parts
(one on the top and another on the bottom) with a centered gate between them. Coetzee [34]
established the powder heap at a width of 10 to 24 times the particle diameter and the gate
width at 6 to 13 times the particle diameter. Additionally, several publications [15,34,35] set
a relation between the width and the length of a powder heap of 5 times.

Finally, the total inner dimension box was 125 × 60 × 12 mm, and 6.5 mm of gate
width. The test consists of filling the upper part with powder, waiting for one second for
powder stabilization, and opening the gate (Figure 8). When the powder stopped dropping,
the angle of repose in the lower part (αRDD) and the static friction angle on both sides of the
upper part (ϕRDD) were measured by image processing (method explained in Section 2.4).
The weight of fallen powder (mRDD) was measured too with a scale.

αRDD 

(a) (b)

Figure 8. Drawdown test principle starting test (a), finishing test with the measured angles (b).

For this test, a powder volume of 21.9 cm3 was used.

2.3. Virtual Environment

This section explains all the models and setups carried out to simulate and compare
the previous experimental tests.

2.3.1. Contact Model DEM Parameters

Polymeric particles are assumed to have some grade of elasticity. This entails that
when the particles interact, some deformation occurs; in the case of particles interacting
between them, the distance between their centers is reduced due to an overlap considered
between both particles (Figure 9b). In Figure 9a, the interactions in the contact point of two
particles are represented using a spring and a damper in parallel connection.

Depending on the mathematical model used, the energy transmitted by these interac-
tions has a minor or major representation in the movement equations. An example of that
is Figure 10, where the function contact force–displacement is represented, with Figure 10a
being the representation of the more basic model (Hert–Mindlin Contact Model—HMCM),
Figure 10b the representation of the hysteretic spring contact model (HSCM), and Figure 10c
the Edinburgh Elasto-Plastic Adhesion Contact Model (EEPACM).
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Figure 9. Schema of interaction representation between particles (a) and representation of the overlap
in the contact point and their principal measures (b).

Displacement (δ )

Co
nt

ac
t F

or
ce

 (N
)

Loading

Unload

(a)

Displacement (δ )

Co
nt

ac
t F

or
ce

 (N
)

Loading
K
1

K
2

Unload/reload

Displacement (δ )

Co
nt

ac
t F

or
ce

 (N
)

Loading
K1

K2

Unload/reload

Kadh

(b) (c)

Figure 10. Contact force–displacement function of Hert-Mindlin (HMCM) (a), hysteretic spring
(HSCM) (b), and Edinburgh elasto-plastic adhesion (EEPACM) (c) models.

Although each of these models is more accurate than the previous one, the complexity
of these has an impact on the computational cost, so not always the most complete model
is the most efficient one.

Following the literature, for this research the hysteretic spring contact model (HSCM)
is chosen (dry powder with good flow) for the interparticle interactions [36,37] and the
Hert–Mindlin model (HMCM) for the particle-wall interactions [13,38].

At the moment of contact between two particles, the force generated is divided into
two components named Normal Force (FN) and Tangential Force (FT), as shown in Figure 9a.
The definition of each force depends on the model.

The governing equations for the Hert–Mindlin (no slip) model are listed in Table 2 [39].
In the case of the HSCM, some changes are added to take into account the energy lost

during contact. The governing equations are listed in Table 3 [40–43].
To represent the cohesion force between particles, the Linear Cohesion V2 Contact

Model (LCCM) was integrated into the HSCM, adding the cohesive force to the total
normal force (FTN) [36,44]. There is a Linear Cohesion V1 Contact Model, but Version 2
modified the first version, changing the way the contact area is calculated. This V2 version
is recommended for non-uniform particle size distributions. This model is calculated with
Equation (10).

Fc
N = ξ·Ac (7)

where ξ is the energy density (Jm−3) related to the cohesion (kPa) between particles. Ac is
the contact area [45], defined by Equation (8).

Ac = π
Ri·Rj

Ri+Rj
·δN (8)
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Finally, the total normal force is obtained by Equation (9).

FTN = FN + Fd
N + Fc

N (9)

Table 2. Hert–Mindlin (no slip) contact model equations.

Normal Force FN = 4
3 Eeq

√
Reqδ3/2

n

Tangential Force FT = −min{KT , δT ,µs|FN |}·t
Normal and tangential damping force Fd

N,T = −2
√

5
6

ln e√
ln2 e+π2

√
KN,TmeqVrel

N,T

Normal and Tangential Stiffness KN = 2Eeq
√

ReqδN ; KT = 8Geq
√

ReqδN

Equivalent Young modulus 1
Eeq

=
(1−V2

i )
Ei

+

(
1−V2

j

)
Ej

Shear modulus Geq =

[
2(2−Vi)(1+Vi)

Ei
+

2(2−Vj)(1+Vj)
Ej

]−1

Equivalent Radio 1
Req

= 1
Ri

+ 1
Rj

Equivalent Mass meq =
(

1
mi

+ 1
mj

)−1

Rolling friction τ = −µr FN R

where N y T mean Normal and Tangential, respectively, i and j correspond to each particle interacting, e is the
restitution coefficient, µs represents the static friction coefficient, µr is the rolling friction coefficient, and V the
relative speed of the particle.

Table 3. Hysteretic spring contact model equations.

Normal Force FN =

 K1δN f or loading (K1δN < K2(δN − δ0))
K2(δN − δ0) f or unloading/reloading δN > δ0

0 f or unloading δN ≤ δ0

Tangential Force FT = −min
(
γTK1δT + Fd

T ,µsFN
)

Loading Stiffness K1 = 5Reqmin(Y1, Y2)

Unload Stiffness K2 = K1
e2

Material Yield Strength Y = 4
15

E√
R

1
70

Overlap
δ0 =


δN

(
1 − K1

K2

)
f or loading (K1δN < K2(δN − δ0))

δ0 f or unloading/reloading δN > δ0
δN f or unloading δN ≤ δ0

Normal damping force Fd
N = −bN

√
4mK

1+( π
ln e )

2 vrel
N

Tangential damping force Fd
T = −

√
4mγT K

1+( π
ln e )

2 vrel
T

Moment effect M = rcon·FT

Rotation moment Mr = −µr ·FN ·rcon·λθ

Resultant moment Mres = M + Mr

where δ is the overlap, δ0 is the residual overlap, e is the restitution coefficient, bN is the damping factor, γT is the
stiffness factor, µs the static friction coefficient, rcon is the distance between the contact point and the center of
mass, µr is the rolling friction coefficient, and λθ is the unit vector of angular velocity (θ).

2.3.2. Particle Shape Design

The diameter particle distribution was calculated using the Mastersizer 2000 test.
Five slides were obtained using the vacuum powder disperser, and several pictures of the
dispersed powder described in Section 2.2.1. were taken in the microscope, and the aspect
ratio of each group of particles was calculated. An example of the measuring of particles
in the picture taken during the microscope observation is shown in Figure 11. In order to



Polymers 2025, 17, 2748 12 of 28

ensure the correct representation of each particle group, a minimum of ten particles per
slide were measured for each granulometry group.

 

Figure 11. Capture of microscope visualization with aspect ratio measurements examples.

However, it should be noted that it is not necessary to use the exact real shape the
particle. Regarding particle shape complexities, Moncada et al. [46] concluded that more
complex particle shapes (polyhedra) achieve a better fit during calibration (evidenced by a
lower Weighted Mean Square Error, or WMSE) compared to spherical particles. However,
they acknowledged that the computational cost can be up to 24 times higher for polyhedra
than for simple spheres.

In contrast, Marín Pérez et al. [47] suggest that multi-sphere particles (clumps) are a
computationally efficient method for modeling irregular particles when compared to using
polyhedra. An approximation using 2 overlapped spheres is enough [48], maintaining the
aspect ratio [49].

2.3.3. Test Simulations

The experimental tests described in Section 2.2.3. were replicated in EDEM 2023 soft-
ware. This subsection explains the procedure carried out.

Bulk Density Simulation

Bulk density is directly related to the contact parameters. In the simulation of the bulk
density measuring device, the process starts with the empty cylinder (inner diameter of
38 mm and 158.65 mm high). This cylinder is filled with an amount of powder. Subse-
quently, we wait the necessary time to stabilize the gravity compaction. The following step
is to measure the weight of powder that fits in the bottom cylinder (Figure 12). The weight
of powder inside the cylinder (mVB) is measured directly by the EDEM software.

Hollow Cylinder Simulation

In the simulation of the hollow cylinder test, we have three parts: a funnel, a hollow
cylinder (38 mm in diameter and 200 mm high), and a flat surface. The simulation process
(Figure 13) starts with the empty cylinder on the flat surface and the funnel on the cylinder.
An amount of powder is generated, filling the cylinder. Subsequently, we wait for 3 s to
give enough time so that the powder can stabilize. After that, the cylinder goes up 100 mm
with a constant speed of 0.01 m/s, and we wait again the time necessary to stabilize the
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powder dropping. Now we can measure the angle with the horizontal (αSHC) using an
image processing method (explained in Section 2.4. angle measurement process).

Figure 12. Direct bulk density measurement in test simulation.

Figure 13. Hollow cylinder process in software for four different time steps.

Ledge Box Simulation

For the Ledge box simulation, the box (75 × 100 × 16 mm inner dimensions) is filled
with the necessary powder mass. After that, we wait 1 s for the powder stabilization.
Then, the right wall is opened with a velocity of π rad/s (Figure 14). Now, after powder
stabilization is possible to measure the static friction angle (ϕVLB) using an image processing
method (explained in Section 2.4. angle measurement process).

Draw Down Simulation

In the case of the drawdown test (the inner dimension box was 125 × 60 × 12 mm,
and the gat width was 6.5 mm), we start in the same way as in the other tests, filling and
waiting for the powder stabilization. After waiting 1 s, the gate is opened with a velocity
of 1 m/s (Figure 15). This test takes a long time to simulate the powder drop until the
stabilization. Therefore, we adjusted the total test time to each case study. When the test
is finished, we can measure directly in the software the weight of powder in the bottom
part (mVDD), but we need an image processing procedure to measure the angle of repose
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(αVDD) in the bottom part and the static friction angle (ϕVDD) in the upper section (method
explained in Section 2.4. angle measurement process).

Figure 14. Ledge box process in software for four different time steps.

Figure 15. Drawdown process in software for four different time steps.

2.4. Angle Measurement Process

For the angle measurement, an image processing method was developed for the
Matlab environment. This method starts with a picture of the finished test that we are
analyzing. This picture is sectioned and focused on the corresponding pile of powder. This
section is binarized (transformed to black and white), and the boundary contours of the
particle pile are obtained. By the least squares fitting method, we obtained the equation
that fits with the boundary (Figure 16).

With this last equation we are able to calculate the angle using the slope (m) and
Equation (10).

α =
tan−1|m|·180

π
(10)
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(a) (b)

(c)(d)

 

Figure 16. Image processing method: initial picture (a), sectioned part (b), binarized section (c), and
boundary with fitted equation (d).

2.5. Optimization with Genetic Algorithms

Genetic algorithms mimic the law of natural selection in nature [50–52], but in a virtual
environment, allowing for a robust search, in this case to find the optimal combination of
design variables so that the simulation results match well with the experimental results.
This algorithm starts with a 100 individual generation, which means 100 combinations of
variables created randomly. Afterward, the fitness functions are evaluated by the algorithm
for each design. In this case, this evaluation is carried out by the use of an interpolation
method (Kriging metamodel) [53,54] for the different response variables. These metamodels
are created using the obtained data in a group of previous experiments. An exponential
correlation model and a polynomial regression model are used in the Kriging metamodel.
However, the polynomial regression is able to change the order from 2 to 0 depending on
the available data. The chosen order depends on the number of samples and the distribution
of them, so a 0-order polynomial is easier to calculate and needs fewer samples, but it is
also less accurate.

This is the reason why the algorithm includes a loop that starts using a 2nd-order
regression model for the prediction of each response variable; in case the meta-model
fails, the order of the regression is downgraded to 1 automatically; if it fails again, it is
downgraded to a zero-order regression model. Therefore, this loop guarantees the use of
the best regression model possible with the available data.

For the application of this algorithm, an initial database is necessary. These data are
generated using the Latin Hypercube design of experiments [51] but with some modifi-
cations. In a first step, a combination with all the variables with the minimum values, a
second combination with all the variables in the middle of its range, and a third combina-
tion with all the variables at the maximum of its range are generated. This implies three
different designs. Subsequently, the Latin Hypercube algorithm is applied, adding n points,
where n is the number of variables (10 in this work). Therefore, the algorithm divides
the range of each variable into equal parts, chooses a random value of each variable, and
deletes the corresponding range for each variable in the list of possible values to use in the
next variable combination. This process is repeated until adding n points. This means the
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optimization process begins with a total of 3 + n sample points (13 initial combinations in
our case).

As the Kriging metamodel achieves better results when interpolating rather than
extrapolating, the Latin Hypercube algorithm was modified to choose the minimum or
maximum value of each range when sampling points are on extreme ranges. This way,
the data inside the extreme ranges were displaced to the border of the search space, thus
promoting interpolation over extrapolation.

The genetic algorithm, implemented in MATLAB (R2022a), allows the search of the
combination of coefficients that results in the minimum error between the simulated test
and the real results.

2.6. Calibration Process

The calibration process started with the limit selection for each variable and estab-
lishing the fixed data. Those limits were defined according to the limits found in the
bibliography and the information provided by Altair EDEM (2023) software (Table 4).
Those parameters depend on the particle material, the boundary material, and the kind of
experiment chosen as reference.

Table 4. Variable limits.

Units Min Max Reference

LDPE

νLDPE Dimensionless 0.2 0.5 Altair Edem software

ρLDPE kg/m3 450 1400 Altair Edem software

G Pa 1.00 × 107 Altair Edem software

Acrilic

νAcrilic Dimensionless 0.4 [49]

ρAcrilic kg/m3 1385 [49]

G Pa 1.60 × 1010 [49]

Particle-Particle

epp Dimensionless 0.1 0.78 [55,56]

µspp Dimensionless 0.1 0.95 [57,58]

µrpp Dimensionless 0 0.25 [20,34]

Particle-Wall

epw Dimensionless 0.1 0.78 [55,56]

µspw Dimensionless 0.1 0.95 [57,58]

µrpw Dimensionless 0 0.2 [13]

Particle-Particle HSCM
bN Dimensionless 0 0.1 Altair Edem software

γT Dimensionless 0.67 1 [40]

Particle-Particle LCCM ξ J/m3 1 8000 [36]

During the calibration process, the flow chart shown in Figure 17 was used.
As mentioned before, the variables to optimize or calibrate in this study were the

powder density (ρLDPE), the Poisson’s Ratio (νLDPE), coefficients off restitution (epp and
epw), coefficients off static friction (µspp and µspw), the coefficients off rolling friction (µrpp
and µrpw), the damping factor (bN), the stiffness factor (γT) and the energy density (ξ). The
restitution, static friction, and rolling friction factors are calibrated both for the particle-
particle interaction and the particle-wall interaction.

On the other hand, as previously mentioned, the response variables (result values to
compare between estimated results by the genetic algorithm and simulations) were the
estimated bulk mass (mEB), the estimated static angle of repose (αEHC), the estimated shear
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angle (ϕELB), the DD estimated static angle of repose (αEDD), the DD estimated shear angle
(ϕEDD), and the estimated dropped mass (mEDD).

Material 
Properties

Particle and wall 
coefficientes

Material 
properties

Hysteretic 
Spring Model

Static friction (μspp and μspw), 
Rolling friction (μrpp and μrpw) 

& Restitution (epp and epw)

Density (ρLDPE) & Poisson 
Ratio (νLDPE)

Optimal design simulation parameters calibrated

(ρLDPE, νLDPE, μspp , μspw, μrpp , μrpp, epp, epw,  bN, γT, ξ)

 M< 2%  &  
Min FF confirmed ?

Damping Factor (bN) 
&Stiffness Factor (γT)

Running of Simulation and 
Determination of reference values 
(mVB, αVHC, ϕVLB, α VDDI, ϕVDD, mVDD)

Modified Latin Hypercube

Apply Genetic 
Algorithm

Evaluation of the optimum 
estimated and determination of 

reference values 
(mVB,αVHC, ϕVLB, αVDDI, ϕVDD, mVDD)

Reference values 
(mRB, αRHC, ϕRLB, 
αRDD, ϕRDD, mRDD)

Yes

Hysteretic 
Spring Model

Energy density (ξ)

Sampling data

NO
Estimated values 

(mEB, αEHC, ϕELB, αEDD, 
ϕEDD, mEDD)

Figure 17. Flow chart calibration process.
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The Mean Absolute Percentage Error (MAPE, or M in Figure 18) between the estimated
values during the optimization (or the simulated responses) and the reference results from
the experimental tests was used as a fitness function (FF) for the optimization (and also as
adjusting stop criterion), since it measures the accuracy of the predicted data, in percentage,
attending to Equation (11).

MAPE = 100/nr

nr

∑
t=1

|(At/Ft)/At| (11)

where nr is the number of response variables (6 in our case), At is the reference value (the
real result from the experimental test), and Ft is the predicted response by the genetic
algorithm during optimization (or the simulation data for the stop criterion), all of this for
each response variable (t).

Figure 18. Particle size distribution of LDPE powder.

Once the genetic algorithm obtains the optimal design (design with the minimum
estimated MAPE), the selected combination of design variables is introduced into the four
reference virtual test simulations. The results of these simulations are used to evaluate
the MAPE between the simulated results and the experimental reference values. The
calibration process finishes in the moment that the minimum estimated MAPE is obtained
(using the estimated values of the genetic algorithm) and the MAPE between the simulated
results of the selected optimum and the corresponding experimental values is lower than
2%. If these criteria are not met, the genetic algorithm is run again, but the results of
the simulations of the estimated optimal design in the previous iteration are added as an
additional sampling point.

Since sometimes the stopping criteria are not reached after a great number of itera-
tions, every 10 iterations without reaching the stopping criterion, the results of those last
10 iterations are analyzed. If the trend of these results is towards the objective (2% MAPE),
10 more iterations are performed. In case the results start to fluctuate without a tendency to
improve, the best result in the last 10 iterations will be assumed to be the optimum.

To ensure that this procedure remains universal and applicable across any Discrete
Element Method (DEM) software, the process of reading and inputting data into the
simulation software is performed manually, following these sequential steps.

We manually input the desired set of parameters into the EDEM configuration and
launch the simulation.
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Once the simulation concludes, we read the resulting mass outputs and capture an
image of the results to measure the angles, as described in Section 2.4.

These resulting data are then manually entered into a spreadsheet (e.g., Excel), where
the optimization criteria (Mean Absolute Percentage Error (MAPE) <2% and Fill Factor (FF)
confirmation) are calculated.

Should the stopping criteria not be met, we copy the table containing all previously simu-
lated parameter combinations and their objective results into our genetic algorithm (MATLAB).

With this new information, we execute the genetic algorithm once more.
The new parameter combination suggested by the algorithm is then used to manually

configure a new batch of simulations, and the cycle recommences.

3. Results and Discussion
3.1. Real Environment
3.1.1. Powder Preparation and Shape Characterization

After the micronization, the diameter distributions obtained in the granulometries
were the ones shown in Figure 18, with a surface-weighted mean D (3,2) of 472.997 µm and
a volume-weighted mean D (4,3) of 579.025 µm.

The particles were divided into 19 groups (according to the particle size distribution)
to measure the average aspect ratio for each group. The results are shown in Table 5. The
third column shows the truncated groups (from group 1 to group 6) and the equivalent
aspect ratio. These groups were chosen because they represent less than 20%, of the total
volume. If the group number 7 were added, the truncated volume would exceed that limit
of 20% affecting the performance of the powder in the simulations. Finally, 14 groups of
particles were represented in the simulations.

Table 5. Particles aspect ratio.

Group of Particles Average Aspect Ratio Truncated Group Aspect Ratio

1 1.75

1.64

2 1.70

3 1.42

4 1.59

5 1.54

6 1.82

7 1.25 1.25

8 1.74 1.74

9 1.46 1.46

10 1.32 1.32

11 1.20 1.20

12 1.30 1.30

13 1.43 1.43

14 1.63 1.63

15 1.08 1.08

16 1.48 1.48

17 1.48 1.48

18 1.48 1.48

19 1.48 1.48
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3.1.2. Determination of the Bulk Density, Tap Density, and Flowability

Eight replicates of the flowability test were carried out. The results (including the
Haussner and Carr Indexes) are shown in Table 6.

Table 6. Flowability results.

Vb (cm3) Vt (cm3) ρb (g/cm3) ρt (g/cm3) Pb (kg/cm3) ρt (kg/cm3) H Ci%

1 54.5 44.5 0.367 0.449 367 449 1.22 18

2 52.5 47 0.381 0.426 381 426 1.12 10

3 56 46.75 0.357 0.428 357 428 1.20 17

4 55.5 47 0.360 0.426 360 426 1.18 15

5 55 47 0.364 0.426 364 426 1.17 15

6 57 47.5 0.351 0.421 351 421 1.20 17

7 54 47 0.370 0.426 370 426 1.15 13

8 52.5 47 0.381 0.426 381 426 1.12 10

Average (standard
deviation) 54.6 (1.60) 46.71 (0.92) 0.366 (0.01) 0.428 (0.01) 366 (10.76) 428 (8.77) 1.17 (0.04) 14 (2.90)

Based on these results, the powder is determined as to be “Good/free flow” and
compatible with the use of the hysteretic spring contact model.

3.1.3. Experimental Reference Tests

Three iterations of each experimental reference test were performed, and the bench-
mark data were recollected. Table 7 shows a summary of the results.

Table 7. Real benchmark results.

Real Measures

Test Variable Measure It1 It2 It3 Total Average

HC αRHC (o)

Left 30.8 38.6 32.3

35.6Right 35.8 31.8 44

Average iteration 33.3 35.2 38.15

LB ϕRLB (o) Unique 50 66.3 65.7 60.7

DD

ϕRDD (o)

Left 45.2 56.1 55.3

55.4Right 52 53.3 70.3

Average iteration 48.6 54.7 62.8

αRDD (o)

Left 43.4 34.9 40.7

38.9Right 39.3 38.8 36.5

Average iteration 41.35 36.85 38.6

mRDD (gr) Direct 3.3 3 3.7 3.3

Bulk density mRB (gr) Direct 60.14 59.04 58.98 59.4

It is shown some differences in the angle measures in each iteration, something that
affects all tests. This could be an effect of different variables, such as the humidity absorbed
by the powder, the static electricity of the acrylic, or the random effect of the natural
compaction during the refill of the machine or the use process itself. For that reason, three
iterations are made, and the data used as reference is the average of those iterations, which
is given by the average of the two sides measured.
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3.2. Virtual Environment
3.2.1. Particle Shape Design

The particles were represented with two overlapped spheres (Figure 19). According
to Section 3.1.1, the particles were grouped by diameter into 14 different groups (the first
group being the set of the six initial smallest groups), each of them with the corresponding
aspect ratio. For representing this in the virtual environment, two spheres were used,
defining their diameter as the average width of the measured particles and adjusting the
overlapped distance (OD) to match the measured length (and consequently) the aspect
ratio. Table 8 shows the final dimensions and OD between spheres.

Figure 19. Representation of the particle shape used for the study.

Table 8. Particle dimensions.

(µm)

Particle Group Radio (R) Lenth (L) OD

1–6 138 501 113

7 158 394 39

8 182 632 134

9 208 610 96

10 239 630 76

11 275 660 55

12 315 822 95

13 362 1034 155

14 416 1360 264

15 477 1033 39

16 548 1625 264

17 629 1866 304

18 723 2143 349

19 830 2460 400
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3.2.2. Calibration Process

The fitness function for the optimization process is defined with the information from,
which is represented in Equation (12).

FF = M = 100
6
(
(| 35.6−obj(1)

35.6 |) + (| 60.7−obj(2)
60.7 |) + (| 55.4−obj(3)

55.4 |)
+(| 38.9−obj(4)

38.9 |) + (| 3.3−obj(5)
3.3 |) + (| 59.4−obj(6)

59.4 |)
) (12)

During the optimization, some combinations resulted in a powder with a flowability
so poor or a resiliency so high that any measurement in the virtual environment was
impossible. For this reason, objectives 7 (for the Ledge box test) and 8 (for the drawdown
test) were also introduced as restrictions. When it was impossible to measure the result
of the simulation test, a 0 was assigned; when the possibility of measuring was perfect, a
1 was assigned; and when it was possible to measure, but the powder was not stable during
the time proposed, a 0.5 was assigned. The limits for these restrictions were established at
0.5, so values of 0.5 or higher were considered feasible.

With this, the modified Latin Hypercube algorithm was applied for a total of 14 dif-
ferent points. In this case, the variables corresponding to the initial sampling points are
shown in Table 9, and the results in Table 10.

Table 9. Initial sampling.

Particle Particle-Particle Particle-Walls P-P HSMC P-P LCMC

PLDPE NLDPE epp µspp µrpp epw µspw µrpw bN γT ξ

EP1 450 0.2 0.1 0.1 0 0.1 0.1 0 0 0.67 1

EP2 925 0.35 0.44 0.53 0.13 0.44 0.525 0.1 0.05 0.835 4000

EP3 1400 0.5 0.78 0.95 0.25 0.78 0.95 0.2 0.1 1 8000

EP4 623 0.26 0.207 0.479 0.044 0.503 0.739 0.085 0.054 0.776 5959

EP5 765 0.43 0.553 0.950 0.077 0.230 0.950 0.015 0.079 0.813 2543

EP6 450 0.25 0.503 0.394 0.064 0.215 0.345 0.039 0.085 0.949 1099

EP7 1284 0.20 0.618 0.726 0.058 0.632 0.687 0.033 0.070 0.914 5181

EP8 978 0.45 0.333 0.711 0.017 0.290 0.583 0.068 0.025 0.872 8000

EP9 1400 0.37 0.460 0.560 0.100 0.538 0.499 0.100 0.039 1.000 4037

EP10 587 0.42 0.780 0.211 0.036 0.365 0.307 0.018 0.031 0.906 2936

EP11 1208 0.35 0.238 0.100 0.086 0.433 0.212 0.079 0.000 0.735 5061

EP12 1130 0.32 0.100 0.617 0.023 0.100 0.411 0.000 0.012 0.846 1475

EP13 942 0.29 0.712 0.318 0.045 0.780 0.100 0.048 0.063 0.670 1

EP14 819 0.5 0.398 0.847 0.000 0.710 0.847 0.055 0.100 0.719 6788

With these sampling data, the optimization algorithm was run. The estimated opti-
mum was simulated in the reference tests to obtain the simulation outputs and use these
results to assess the stop criteria. If the stop criteria were not achieved, the data were added
to the sampling data and the optimization applied again. Finally, after 85 iterations, the
genetic algorithm reached the stop criteria.

The best combination of variables is shown in Table 11, and the simulation results for
that combination in Table 12.

To achieve this objective, almost twice as many iterations were performed as in the
previous literature. However, given the low minimum error percentage achieved in the FF,
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we can see that the scaling of the powder and the manipulation of some particle diameters
did not affect its performance in the different tests.

Table 10. Initial sampling results.

Simulation Results

Objective (MAPE)obj(1) obj(2) obj(3) obj(4) obj(5) obj(6) obj(7) obj(8)

αHC ϕLB ϕDD αDD mDD mVB VDD VLB

EP1 3.3 14.6 13.3 21 7 50.8 1 0.5 68.86

EP2 34.4 47.6 51.2 24 2.9 92.3 0.5 0.5 23.18

EP3 40.6 60.2 52.2 21.6 1.8 124.5 0.5 0.5 36.81

EP4 29.2 42.8 40.8 28.5 4.7 65.2 0.5 0.5 25.2

EP5 33.2 43.4 50.2 24.9 3.7 70 0.5 1 18.22

EP6 35.4 43 44.3 36.1 5.4 45.4 1 0.5 23.73

EP7 28.8 46.3 48.4 38.2 2.6 121.3 1 1 30.56

EP8 25 40.8 42.6 25 3.7 102.8 1 0.5 34.23

EP9 28.5 51.2 45 18.1 2.3 140.1 0.5 1 45.76

EP10 22.2 26.5 31.6 24.1 5.7 60.8 1 0.5 41.38

EP11 17.4 22.6 23.3 28.2 4.5 134.3 1 0.5 60.07

EP12 16.4 44.1 34.9 12.6 4 123.4 0.5 0.5 52.26

EP13 11.1 24.3 22.1 28.5 5.6 94.9 1 0.5 57.23

EP14 24.9 31 37.7 23.9 4.5 83.6 0.5 0.5 37.53

Table 11. Final combination.

Particle Particle-Particle Particle-Walls P-P HSMC P-P LCMC

ρ ν e µs µr e µs µr bN γT ξ

Op85 664 0.20 0.662 0.526 0.149 0.463 0.950 0.107 0.081 1.000 5750

Table 12. Final simulation results and comparison with the experimental results.

obj(1) obj(2) obj(3) obj(4) obj(5) obj(6)
FF Objetive (MAPE)

αHC ϕLB ϕDD αDD mDD mVB

Op85 35.0 51.0 56.9 37.0 3.3 62.7 2.98 1.8

Experiments 35.6 60.7 55.4 38.9 3.3 59.4

Figure 20 shows how the objective function is progressively achieved until it reaches
a point where it begins to fluctuate, and it is not until the stopping criterion is met that
we end the iterations. All data recollected during the iterations could be shown on the
Supplement Material (Table S1).
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Figure 20. Trend of the results of the calculated equations (MAPE) for the different iterations.

4. Conclusions
Using a powder calibration procedure for DEM (Discrete Element Method) based

on the application of genetic optimization algorithms, which have undergone simulation
acceleration procedures known as scaling and scalping, a combination of material physical
variables has been achieved. This combination enables bringing the simulation results
closer to those obtained in real experiments.

After a total of 85 iterations, the results of the genetic algorithm reached the stop
criteria. This means that the error of the prediction by the genetic algorithm was less than
2% with respect to the simulation results and the error of the fitted function—comparing
the simulation results, with the real experiments—is the minimum obtained (2.98%). The
best result, as well as the rest of the iterations, could be found in the Supplementary
Material (Table S1).

As suggested by reference [59], calibration results may exhibit ambiguity, especially
when calibrating more parameters than available reference values. This issue may be solved
by using surrogate models and population-based optimization algorithms, as proposed
in [60]. However, in this reference [60], the authors used fewer calibration parameters
than objective references, leaving for future work the analysis of the suitability of the
developed algorithm for the calibration of more parameters. In this regard, we must
highlight the following:

The application of genetic algorithms combined with the Kriging metamodel and
design of experiments has successfully demonstrated the capability to converge on a result
with a very small mean absolute percentage error (MAPE), even when using more calibra-
tion parameters than objective references. Furthermore, upon examining the combinations
of parameters that yield the best MAPE values in our study, we observe that several of
them are coincident. We can therefore conclude that the resulting optimal combination is
not ambiguous and appears to be unique or near-unique.

On the other hand, it was observed a considerable increase in the iteration number
compared to previous works [20], but this may be due to high number of variables used.
In previous studies, six variables were used, which after 51 iterations resulted in a ratio of
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8.5 iterations per variable, whereas in this study, a total of 11 variables were used, calibrated
in 85 iterations, resulting in 7.7 iterations per variable. This leads us to conclude that
the method works just as fast as previous studies and approximately proportional to the
number of variables. It also demonstrates that the genetic algorithm optimization is not
affected by the other speed-up methods.

This opens the possibility of calibrating more complex contact models with more
variables and a better approximation to reality.

The scaling-up method sometimes is limited by the experiment’s dimensions, so it is
something to take into account when the experiment is designed. For example, the gate
width on the drawdown test could produce stuck powder if we scale up too much. To
avoid this, we can consider how much the particle will be scaled and design the experiment
dimensions accordingly.

Regarding the scalping method, no contraindications to its use have been found.
In light of the preceding analysis, it has been successfully demonstrated that the

combined use of both methods is indeed feasible. However, to achieve optimal efficiency, it
has been observed that the best practice is to first employ the scalping method up to the
limiting size established in the literature. Once this initial simplification is performed, we
then proceed to scale all the resulting particle groups.

Should the particles be overscaled, we might consequently be compelled to also scale
the boundaries of the computational domain. Conversely, insufficient scaling will result
in an unacceptably excessive number of particles requiring simulation. It is therefore
imperative that future investigations meticulously analyze the optimal balance between the
degree of particle scaling and the necessity of maintaining a computationally reasonable
particle count.

Another matter we intend to study in future work is the addition of dynamic flow tests.
These tests could significantly improve the fidelity of the simulation’s approximation to
the material’s real-world behavior [61,62]. Furthermore, they would help to accelerate the
calibration process by incorporating additional objective functions into the fitness function
assessment without increasing the number of calibration variables.

In addition, two overlapping spheres were used to represent the particles in this study.
However, it has been shown that the shape of the particle can affect the macroscopic results
of the powder [46,63,64]. Future research will analyze how this improved representation
affects the calibration speed of the procedure.
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