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Abstract

Edible coatings and films are gaining the attention of researchers, consumers, and the
food industry as a sustainable alternative to conventional plastic packaging. This review
provides an overview of recent advances in their development, with a particular focus
on new natural sources of biomaterials (e.g., proteins and polysaccharides) and natural
additives (antioxidants and antimicrobials). Special attention is given to high-technology
preparation methods, including electrohydrodynamic atomization (EHDA), as well as
controlled release systems for bioactive compounds designed to preserve foodstuffs and
extended their shelf life. The application of edible coatings as carriers of nutrients (vitamins)
and bioactives (probiotics and polyphenols) to improve the nutritional value and support
the development of functional foods is also discussed. In addition, this review addresses
safety considerations and regulatory aspects that are crucial for commercialization and
consumer acceptance. Finally, key challenges are highlighted, including the improvement
of mechanical and barrier properties, scalability of innovative technologies, consumer
education, regulatory support, and the integration of circular economy principles, to
encourage the adoption of these sustainable solutions.

Keywords: edible coatings; biobased materials; coating technology; control release; natural
extracts; functional foods; safety and regulation

1. Introduction

Biobased systems are emerging as effective alternatives to conventional plastic pack-
aging [1]. Within this context, edible packaging arises as a promising option since it is
recognized as safe, biodegradable, low-cost, and sustainable. Edible coatings and films are
thin layers composed by food-grade ingredients applied in direct contact with the food.
They can be consumed as part of the product while preserving its nutritional and sensory
attributes [2]. Although both share similar biopolymeric matrices, their applications differ:
films are preformed standalone layers that can be placed onto food surfaces, while coatings
are generated directly on the product during application. This conceptual and functional
difference is critical, as it determines their formulation, preparation methods, structural
properties, and technological implications in food packaging. Edible coatings and films can
be produced with biopolymers and active compounds extracted from agri-food residues.
Such materials can improve food quality, extend shelf life, and reduce environmental
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waste [3,4]. The correct application of these biomaterials comprises the development of
food contact materials with acceptable barrier and mechanical properties. In addition,
the functional activity and nutritional value of edible coatings can be enhanced by incor-
porating additives, such as colours, flavours, antioxidants, antimicrobials, vitamins, and
nutraceuticals, into their polymeric matrix [5]. To fulfil the desired function, an efficient
encapsulation technique enables the compound of interest to be delivered to the target
and express its functional activity after ingestion. Common production and encapsulation
methods described in the literature include dipping, brushing, spraying, solvent casting,
and extrusion [6].

Despite the benefits of using edible coatings and films to improve the quality, shelf life
and safety, the commercial applications of many of these coatings are still rather limited [3].
Global regulations, industrial application, cost feasibility, consumer acceptance, and ensur-
ing environmental sustainability are the biggest obstacles to the commercialization of these
packaging systems. Consumer acceptance is mandatory for the successful development
of food products and significantly influences the global food market. Increasing demand
for healthy, safe, and sustainable foods has led to a greater acceptance of natural edible
packaging. However, edible coatings and films sometimes provide undesirable flavours or
potential toxicity to food products. Therefore, their acceptance relies not only on the func-
tional properties, but also on other factors, such as film appearance, organoleptic properties,
effective marketing, and the overall cost of the final food product [7]. While several reviews
have summarized the fundamentals and general applications of edible coatings and films,
important aspects remain underexplored. In particular, there is limited discussion on
(i) the incorporation of new biopolymer sources and the exploitation of nanostructures and
other advanced technologies to enhance mechanical and barrier properties; (ii) the design
and verification of controlled release systems for bioactive compounds, which is still an
emerging research area with high potential for food preservation; and (iii) the role of edible
coatings as carriers of nutrients and bioactives to develop functional foods, an aspect that
has not been sufficiently emphasized in earlier works.

This review addresses these gaps by providing an update perspective on recent
materials and technologies, with special attention to controlled release strategies and
their implications for food functionality. Furthermore, safety considerations, regulatory
challenges, and their social and environmental impact are critically discussed to offer a
comprehensive outlook on the opportunities and limitations of edible coatings and films.

2. Biopolymers for Edible Films and Coatings Development

The research development of active and edible coatings and films is currently focused
on searching for suitable materials, such as polysaccharides and proteins, increasingly used
as biopolymers [1]. As such, Table 1 displays current commercialised edible coatings and
films. Additionally, fortification with bioactive compounds might enhance the capability to
extend the shelf life of perishable food products, as well as to improve the physical limita-
tions usually associated with these biopolymers [2]. Table 2 summarizes the state of the art
in the development of biopolymer-based systems that incorporate bioactive or functional
compounds through various technologies described in the following section. It outlines
the types of biopolymers used, the nature of the active compounds, and the technologies
employed for their integration. The table also details the specific food applications and
highlights the resulting effects on both the material properties of the biopolymer system
(such as mechanical strength, barrier properties, and biodegradability) and the preservation
of food products (including antimicrobial activity, oxidation delay, and shelf life extension).
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Table 1. Examples of industrial commercially available edible coatings and films for food packaging applications from natural resources.

Manufacturer

Commercial Name-Patent Number

Specifications

Application

Bio2Coat SL/Universitat Politecnica
de Catalunya

(Spain)

Website: https:/ /bio2coat-group.com/
(accessed on 27 August 2025)

Poly-natural

(Chile)

Website: https:/ /polynatural.com/ (accessed
on 27 August 2025)

Notpla *

(UK)

Website: https://www.notpla.com/ (accessed
on 27 August 2025)

AgroSustain

(Switzerland)

Website: https:/ /www.agrosustain.ch/
(accessed on 27 August 2025)

LiquidSeal HoldingBV

(The Netherlands)

Website: https://www.liquidseal.nl/
(accessed on 27 August 2025)

Mori

(UsA)

Website: https:/ /www.mori.com/ (accessed
on 27 August 2025)

No trade name

Shel-life®

Ooho
Patent N: US20200047927A1 (Method of
encapsulating liquid products)

Afondo®
Patent N: WO 2024 /110661 Al (Edible
coating for use as a plant biostimulant)

Liquidseal®

Patent N: WO 2020/226495 A1 (Edible
coating composition for coating fresh
harvest products)

Mori®

Coating and film formulation: Mix of biopolymers, natural
plasticizers, and bioburdens from food by-products and
agrifood-sourced plant-based by-products (e.g., tomato
concentrate for rice packaging; cocoa concentrate for
packaged rice).

Currently filing patents

Effects: Maintains freshness and preserves firmness and
humidity. Antimicrobial properties. Prolongs fruit shelf life
by 40% by reducing fruit weight loss by 50%. Suitable for
celiacs and allergen-free.

Coating formulation: Plant-based coating. Organic oils and
extracts from vegetables (not specified).

Effects: Preserves firmness of cold-stored fruit. Reduces
dehydration (20-30%). Maintains internal quality

avoiding browning.

Formulation: Algae-based films. Products: containers, trays,
bags, sachets, rigid cutlery, energy gel pods, etc.
High-performance barrier to fats and moisture (coating

in containers).

Effects: Generally intended to provide edible packaging and
substitute plastics and PFAS, depending on final application.
Coating formulation: o/w microemulsion made with
diverse vegetable oils.

Effects: Extends shelf life of crops, replaces post-harvest
treatments, waste reduction up to 50%, taste preservation,
reduces water loss up to 70%, minimizes plastic

packaging use.

Coating formulation: aqueous emulsion.

Effects: Limits infections and cross-contamination. Improves
taste and appearance, extends shelf life, maintains product
quality, preserves firmness, and reduces weight loss.

Coating formulation: silk protein
Effects: improves quality and extends freshness of food

Fruits (spraying, nebulizing)

Fruits (spraying)

Food products: oil, water. ..
Other products: laundry,
bath oil. ..

Fruits, vegetables, and flowers
(spraying, dipping)

Fruits: avocado, citrus, mango, and
papaya. Vegetables: cucumbers.
Flowers (spraying, dipping)

Perishable food (wherever a food
interacts with water) (dipping,
spraying, glazing)



https://bio2coat-group.com/
https://polynatural.com/
https://www.notpla.com/
https://www.agrosustain.ch/
https://www.liquidseal.nl/
https://www.mori.com/

Polymers 2025, 17, 2472

4 of 57

Table 1. Cont.

Manufacturer Commercial Name-Patent Number Specifications Application
Coating formulation: emulsion of carnauba wax, shellac,
No trade name ine resin, etc Fruits and vegetables (fluidization,
Margrey Industrial SA Patent N: WO 2018/174699 Al b vete . it &€ ’
. ps - . Effects: gives high shine, does not alter organoleptic dipping, spraying or roller
(Mexico) (Wax composition for coating fruit . ! . .
properties, decreases weight loss, permeable to gas exchange, impregnation)
and vegetables) . . .
antifungal activity, improves shelf life.
gf;rzni; oup Services International Ltd. No trade name Coating formulation: emulsion of soybean salad oil, Baked food products
. Patent N: US 2011/0014333 A1 (Oil-based = rosemary extract, oleoresin turmeric, paprika oleoresin, etc. . proc¢
Website: https:/ /www.kerry.com/ (accessed . 1 . . (spraying, dipping)
coating for baked food products) Effects: reduces rancidity and increases shelf life.
on 27 August 2025)
Tomorrow Machine and Eckes Granini Formulation: Potato starch-based bottles.
(Sweeden) ® Currently a prototype .
Website: https://goneshells.com/ (accessed GoneShells Effects: water-resistant. Bio compostable. General Juices
on 27 August 2025) packaging purposes.
Do eat
(Belgium) Formulation: Potato starch. Products: bags, vessels, etc. Bakeries, take-away food (chips,
Website: No trade name Effects: Gluten free and suitable for vegetarians. Neutral bagels.). Convenience food,

https:/ /www.food.be/companies/do-eat
(accessed on 27 August 2025)

Valdis Steinars
(Iceland)

Evoware *

(Indonesia)

Website: https:/ /rethink-plastic.com/home/
(accessed on 27 August 2025)

Caragum

(France)

Website: https:/ /www.caragum.com/en/
(accessed on 27 August 2025)

Bioplastic Skin

No trade name

Fibrecoat®

flavour. General packaging purposes.

Formulation: gelatine meat by-products.

Effects: General packaging purposes. Transparency is
pursued to assess freshness through visual indication.
Formulation: seaweed, cassava starch, sugarcane bagasse,
etc. Ingredients depend on the formulation. Products: bags,
sachets, straws, food containers, cups, etc.

Effects: General packaging purposes.

Coating formulation: plant fibre and seaweed extract.
Effects: Reduction in fat absorption in fried breaded
products (26.4% reduction in fat content), improves
crunchiness, slightly improves the organoleptic properties of
fried breaded products

prepared meals and dishes

Meat

Food and beverages

Fried breaded products
(spraying)

* Not all the products developed by the company are edible.
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2.1. Proteins

A wide range of proteins from animal and plant sources can be employed as biopoly-
mers. Gelatin is a denatured protein obtained from acid, alkali, or enzymatic collagen
hydrolysis that shapes transparent, odourless, and tasteless films that demonstrated good
gas barrier properties and high mechanical resistance and elasticity; although its high-water
permeability limits its use in food packaging [8,9]. Gelatine is first dissolved in hot water
to create a film-forming solution. The film is then produced using the casting technique,
followed by drying. For instance, Moreno et al. (2020) [10] have developed an active,
gelatine-based coating loaded with an ethanolic propolis extract that effectively extended
raspberries’ shelf life by avoiding fungal growth.

Whey protein, constituted principally of 3-lactoglobulins, a-lactalbumins, and bovine
serum albumin, has gained relevance over recent years for being a by-product of cheese
processing. It is tasteless, transparent, and has proved to be a controlled barrier against
oxygen, but with high water permeability [11]. When the protein percentage is ~90%, it
is known as whey protein isolate, but when the content ranges 70-80% it is recognized
as whey protein concentrate [12]. Whey-based films and coatings containing bioactive
compounds have largely demonstrated its effect on shelf life extension by decreasing
microbial growth and/or enhancing antioxidant properties. For example, Sajimon et al.
(2023) [13] have observed a water resistance improvement on films loaded with oregano
essential oil, while effectively extending the shelf life of grapes without affecting perceived
sensorial quality (see Table 2).

However, it is important to use protein from plant-based resources for vegetarian
diets and, if possible, agro-industrial by-products, aiming to reduce the environmental
impacts that petroleum-based packaging and animal use lead to [14]. In this sense, soy
protein has been used since the beginning of the century. It is derived from soybeans,
which contain up to 44% protein, primarily classified as globulins, with 3-conglycinin and
glycinin being the major fractions [15-17]. Soy protein is water-soluble and commonly
requires the addition of plasticizers or other biopolymers to enhance its mechanical and
barrier properties in film-forming solutions [18]. For instance, Mostafa et al. (2023) [19]
reported that the incorporation of cellulose nanocrystals into soy protein isolate films
significantly improved their mechanical strength. Additionally, the introduction of date
palm leaf extract conferred antioxidant properties. However, the liquid form of the extract
reduced tensile strength, while the powder form preserved the mechanical performance of
the original blend. In another study, Yousuf et al. (2020) [20] developed a coating solution
comprising soy protein isolate and lemon extract, which was applied to fresh-cut melon.
The coating effectively retained vitamin C, reduced microbial growth, and improved key
physicochemical properties, thereby extending the shelf life of the fruit.

Zein protein, the main storage protein and a residue in corn starch production, has
been investigated over the last few years. Zein is an amphiphilic protein, composed by more
than 50% of hydrophobic amino acids, which depending on their structural setup, can be ex-
ploited to formulate a hydrophobic surface for food packaging applications. It is considered
that the rate of solvent evaporation is a key step to control surface hydrophobicity. As such,
electrohydrodynamic processing can lead to the formation of superhydrophobic surfaces
due to high-speed solvent evaporation, while samples prepared by solvent casting induced
self-assembly with resulting hydrophilicity behaviour due to conformational transitions
from a-helix to 3-sheet [21]. It has a good film-forming capacity, high tensile strength,
and low water and oxygen permeability, and it can be used to encapsulate bioactive com-
pounds, which can improve barrier properties through the formation of non-covalent
bounds, mainly H-bonds and hydrophobic interactions [22,23]. Xia et al. (2023) [24] have
developed a hydrophobic film based on peppermint oil-zein nanofibers further coated by
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sprayed methyltriethoxysilane. They studied the effect of solvents (aqueous acetic acid
and ethanolic solutions) on a zein protein secondary structure. As result, they observed
that 3-chain was predominant in acetic acid solutions, while x-helix was the major struc-
ture found using an ethanolic solution. Furthermore, they observed that hydrophobic
behaviour was further enhanced by peppermint oil loading, which increased antioxidant
and antimicrobial properties, successfully prolonging the shelf life of coated pork.

Silk fibroin has gained significant attention in recent years as a promising material
for edible coatings and films. It is the main structural protein of silk, typically accounting
for 65-85% of its composition [25]. Due to its high -sheet content, which can be further
increased through water annealing treatments, silk fibroin exhibits excellent gas barrier
properties. This was demonstrated by Marelli et al. (2016) [26] in the preservation of
strawberries, where increasing the (3-sheet content up to 58% significantly enhanced the
fruit’s shelf-life. Building on this approach, Jaramillo-Quinceno and Restrepo-Osorio
(2020) [27] improved the performance of silk fibroin coatings using the same annealing
methodology. Notably, they successfully extracted silk fibroin from fibrous silk waste for
the first time, and applied it to fruit coatings. Their study also included an analysis of metal
contaminants, indicating a low-to-moderate risk for human consumption, thus supporting
its potential for safe food applications. Reflecting the growing industrial interest, Mori®
has already commercialized an edible silk fibroin-based coating in the USA, designed for
various food types, primarily fruits and vegetables, to effectively extend their shelf life (see
Table 1).

2.2. Lipids
2.2.1. Resins

Shellac is a resin produced by the Kerria lacca insect composed primarily of long-chain
aliphatic hydroxy acids and sesquiterpenoid acid, which make it insoluble in water. Its
unique physicochemical properties, including low vapour permeability, high gloss, and
good adhesion, have led to its use across various fields, such as pharmaceuticals, food, or
archeology [28-31]. In the food industry, shellac is approved as a food additive under the
code E904 [32,33]. In food packaging applications, shellac is widely employed as a coat-
ing, particularly for fruits and confectionery, to enhance moisture resistance, appearance,
and shelf life. Due to its versatility, it is also explored as a delivery system of bioactive
compounds through the development of nanofibers, nanoparticles, microparticles, and
microcapsules [34,35]. Its mechanical and functional properties can be further improved
through polymer blending or chemical modification, expanding its potential in active
packaging systems.

2.2.2. Waxes

Waxes are among the most historically used materials in edible coating applica-
tions [15]. Although they are not classified as biopolymers—due to the absence of a
repeating monomeric structure—their functionality in food packaging is well recognized.
They are often directly applied as coatings or as components in composite films with
proteins or polysaccharides [36,37]. Chemically, waxes consist predominantly of long-
chain aliphatic esters, fatty acids, and alcohols, which confer strong hydrophobicity. This
property significantly enhances their barrier performance, particularly by reducing water
vapour permeability [38]. As a result, wax-based coatings effectively limit moisture loss
and reduce weight loss in coated food products [39]. Additionally, the incorporation of
bioactive compounds—such as polyphenols or plant-derived extracts—further enhances
their functional properties. These bioactive-enriched systems can impart antioxidant and
antimicrobial activity, contributing to improved food quality and extended shelf life [40,41].
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Commonly used waxes include beeswax, carnauba, and candelilla waxes. More recently,
rice bran wax obtained from rice processing by-products was more recently employed, due
to its circular economy approach. As such, Abhirami et al. (2020) [42] employed a 10% w/v
rice bran wax emulsion to successfully extend tomato shelf life up to 27 days, compared to
18 days for the control.

2.3. Polysaccharides

On the other hand, polysaccharides attract attention in food packaging for their gelling
properties. Chitosan results from the deacetylation of chitin, a biopolymer found in crusta-
ceous exoskeletons. It has a relevant impact in the development of non-plastic alternatives
in food packaging due to its biodegradability, non-toxicity, biocompatibility, antimicro-
bial properties, and film-forming ability, in addition to its demonstrated elasticity [43,44].
As such, Davoodi et al. (2020) [45] have employed chitosan as a functional additive to
mucilage-based films to enhance biopolymer performance and provide antibacterial activity
to extend the shelf life of cherries and apples. Moreover, many authors have developed ac-
tive chitosan films or coatings with phenolic compounds, phenol-rich extracts, or essential
oils to enhance antioxidant properties and extend food shelf life [46,47].

Nevertheless, as has occurred with protein biopolymers, research recently has been
conducted on plant-based alternatives. In this sense, starch and cellulose from different
sources have been widely employed for decades [48,49]. Starch is the most abundant
polysaccharide, composed of amylose (20-30%) and amylopectin (70-80%) in different
proportions depending on the origin. It is mainly obtained from potato, corn, wheat, rice,
barley, cassava, etc. [50,51]. In starch-based films, additives are required to improve their
inherently poor mechanical and barrier properties. To address the brittleness caused by
starch’s crystalline structure, thermoplastic starch (TPS) is produced, typically through
extrusion and by blending with plasticizers, such as glycerol. Kumar et al. (2024) [52]
have developed starch-based active coatings incorporating clove essential oil and glycerol
as a plasticizer. The authors observed wide differences between starch of various origins
(mango kernels, corn, and litchi seed), with litchi seed starch films being the most effective
at preserving mandarins.

Cellulose and its derivatives, such as carboxymethyl cellulose (CMC), hydroxypropyl
methylcellulose (HPMC), or nanocellulose, have been extensively investigated and used in
blends and laminates. Cellulose is formed by the polymerization of D-glucose through a
[3-1,4 glycosidic bond. Both starch and cellulose blends are mostly employed in industrial
applications. However, cellulose’s water insolubility and crystallinity make cellulose-based
alternatives more suitable for packaging development [53]. CMC is a cost-effective anionic
cellulose derivative produced through the incorporation of the -CH,COOH group into the
cellulose chain. Its water solubility causes a superior film-forming capacity than that of
cellulose. It provides good oxygen barrier properties, higher flexibility, and high-water-
vapour permeability films and coatings [54]. HPMC is a non-ionic derivative formed by
the inclusion of -OCHj3 and -CH,CHOHCHj3 groups, which has gained attention over the
years because of its water solubility and improved mechanical properties compared to CMC,
its gel-forming capacity, and its ability to encapsulate bioactive compounds [55,56]. As such,
Igbal et al. (2024) [57] have developed a nanoemulsion to be applied as an edible coating
made of HPMC, beeswax, Tween 80 as a surfactant, glycerol as a plasticizer, and thyme,
cinnamon, and peppermint oil as functional additives, effectively extending the shelf life
of sweet cherries. On the other hand, nanocellulose, typically classified into cellulose
nanocrystals (CNCs) and nanofibers (SNFs), has attracted growing interest regarding
the development of composites and coatings, particularly for its ability to reinforce the
mechanical and barrier properties of biopolymers [58-60]. Moreover, the formation of
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H-bonds and electrostatic interactions not only enhance matrix integrity but also promote
the encapsulation and controlled release of bioactive compounds [61,62]. For instance,
Wardak et al. (2024) [60] developed an edible coating that significantly increased the shelf
life of tomatoes using various concentrations of CNFs to reinforce starch-based films, which
improved their mechanical, thermal, and barrier properties. CNCs and CNFs are generally
extracted from plant biomass through acid hydrolysis or alkaline treatments [63]. However,
more environmentally friendly approaches, such as enzymatic hydrolysis and bacterial
production, have recently gained attention [64,65]. Among these, bacterial cellulose (BC)
stands out due to its high purity and uniform nanofibrillar structure. These characteristics
have enabled BC to find a wide range of food industry applications, not only in packaging
but also as a food additive or ingredient, where it serves as an emulsifier, stabilizer, and
thickener [66]. In packaging, BC’s high crystallinity, mechanical strength, and barrier
properties make it an excellent reinforcement agent. For example, Li et al. (2023) [67]
used BC as a nanofiller in biopolymer films, significantly enhancing crystallinity, thermal
stability, and barrier performance, while also improving the shelf life of fresh-cut apples
through superior freshness retention properties.

Arabinoxylans are a type of hemicellulose found in the cell walls of various cereal
grains, such as rice, wheat, or corn. They are composed of xylose units forming the
backbone, with arabinose side chains. Due to their excellent film-forming ability, arabinoxy-
lans can produce transparent and flexible films suitable for food packaging applications.
Moreover, arabinoxylans exhibit natural antioxidant properties, attributed to phenolic
compounds, such as ferulic acid, that remain bound to their structure during their extrac-
tion. Their biopolymer functional performance can be enhanced by incorporating bioactive
compounds, nanocomposites, or blending with other polymers [68-70].

Gums are diverse group of polysaccharides. Depending on their origin, they include
marine gums (e.g., alginate, carrageenan, and agar), plant gums (e.g., gum arabic and gum
Tragacanth), seed gums or galactomannans (e.g., guar gum), mucilages (e.g., psyllium
gum), and microbial gums (e.g., pullulan, kefiran, xanthan gum, and levan) [71,72].

Algae are a rich source of polysaccharides commonly used in food packaging develop-
ment. Alginate, composed of guluronic acid and mannuronic acid units, is a water-soluble
biopolymer that has displayed moderate oxygen and low water barrier properties. Its film
fragility and mechanical properties can be improved with plasticizers. It has gained impor-
tance in the field of food packaging owing to its ability to prepare hydrogels and to retain
water, thus controlling the moisture levels in the packaged food, and the encapsulation and
controlled-release capacities of its bioactive compounds [73,74]. Thus, Das et al. (2020) [75]
prepared an alginate-based nanoemulsion loaded with Citrus sinensis essential oil to provide
antibacterial activity to coatings to extend the shelf life of tomatoes. Carrageenan is another
polysaccharide derived from seaweed; specifically, it is obtained from the Rhodophyceae
family. It is water-soluble and used for its film-forming capacity, barrier, and antibacterial
properties. Blends with other polysaccharides improve its thermal stability and poor me-
chanical and barrier properties [76,77]. Agar is a polysaccharide derived from marine red
algae that consists of D-galactopyranose and 3,6-anhydro-L-galactopyranose, and is soluble
in hot water. Despite it being used for its good film-forming capacities, its poor water
vapour barrier properties, thermal stability, mechanical properties, brittleness, and high
hydrophilia limit its application in food packaging. To overcome these drawbacks, agar is
used in food coatings or films with other polymers, nanomaterials, or plasticizers [78,79].

Some bacterial polysaccharides, such as xanthan gum, have been widely used in the
food industry for decades. In contrast, others like kefiran and levan have more recently
gained attention due to their bioactive properties and film-forming abilities, making them
promising candidates for edible and active food packaging.
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Kefiran is an exopolysaccharide composed of glucose and galactose units, predom-
inantly by Lactobacillus kefiranofaciens, the principal bacteria in kefir grains [80]. Kefiran
exhibits antioxidant and antimicrobial activity, and forms transparent films with good
barrier properties, enhancing its potential for food packaging applications. As with many
other polysaccharides, its inherent brittleness often needs the incorporation of plasticizers
or other biopolymers to improve flexibility and mechanical performance [81,82]. Addi-
tionally, the integration of bioactive compounds can modify the structural and functional
properties of kefiran-based films. For instance, Hasheminya and Dehghannya (2024) [83]
developed active kefiran—gelatin films incorporating a Zhumeria majdae essential oil na-
noemulsion. The films exhibited reduced water vapour permeability and tensile strength,
while showing significant improvements in elongation at break and light-blocking capacity.
The nanoemulsion also enhanced the antioxidant, antimicrobial, and antifungal properties
of the film, which was effective in preserving sponge cake over 16 days of storage [83].

Levan, another bacterial exopolysaccharide, is produced by species such as Bacillus
subtilis and Zymomonas mobilis. 1t consists of 3-(2—6)-linked fructose units and shares
similar functional properties with kefiran, including film-forming capacity and antioxidant
and antimicrobial activities [84]. However, like kefiran, levan-based films tend to be
brittle, a limitation that can be addressed by blending with other biopolymers to enhance
flexibility and functional performance. As such, Wang et al. (2022) [85] incorporated levan
into chitosan-based films, improving their mechanical strength, UV light absorption, and
surface hydrophobicity, while reducing swelling and water vapour permeability. The
resulting films exhibited good thermal stability and were effective in preserving fresh
pork, as indicated by a reduction in total volatile basic nitrogen [85]. Furthermore, levan-
based systems can be functionalized by incorporating additional bioactive agents. In a
study by Gan et al. (2022) [86], a levan—pullulan—chitosan composite coating enriched
with e-polylysine was applied to strawberries. The coating demonstrated significant
improvements in microbial control, moisture retention, and oxidative stability, effectively
extending the shelf life of the fruit.

On the other hand, fungal exopolysaccharides are also gaining interest as biopolymers.
Among them, pullulan is the one that is most employed for food packaging applications. It
is composed of maltotriose units bound through «-1,6 glycosidic bonds. It is a water-soluble
biopolymer with poor water barrier properties but is an excellent barrier against oxygen.
It displays moderate mechanical properties and thermal stability. The incorporation of
bioactive compounds can improve the physical-chemical properties of pullulan-based coat-
ings [87,88]. Therefore, An et al. (2023) [89] demonstrated that pullulan coatings enriched
with Auricularia auricular extracts not only exhibited enhanced mechanical properties but
also provided antioxidant and antimicrobial capacity. These improvements extended the
shelf life of fresh-cut potato by reducing weight loss and limiting browning index, among
other quality-preserving effects.

Scleroglucan, schizophyllan, and lentinan are other examples of fungus-derived ex-
opolysaccharides. Sclerogucan is produced by Sclerotium rolfsii, schizophyllan by Schizo-
phyllum commune, and lentinan by Lentinula edodes (shiitaki mushroom) [90-92]. While all
three share a 3-(1—3) backbone with 3-(1—6) branching, they exhibit variations in their
branching degree, solution behaviour, and biofunctional attributes.

These polysaccharides typically adopt a triple-helical conformation in aqueous en-
vironments, which contributes to their functional stability. Scleroglucan is valued for its
excellent rheological properties, exhibiting shear-thinning behaviour, thermal resistance,
and pH tolerance (maintaining viscosity up to pH 13 before decreasing) [93,94]. Schizophyl-
lan also shows high thermal and salt stability and has demonstrated antioxidant activity,
with primary applications in biomedicine [95]. For example, Hamedi et al. (2021) [96]
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developed a schizophyllan/bacterial cellulose-based hydrogel incorporating ZnO nanopar-
ticles for wound healing purposes. However, no studies have yet reported its use in food
packaging [96].

All three polysaccharides are currently utilized in cosmetics and biomedical formu-
lations, but scientific research on their application in edible coatings or films remains
scarce. In food systems, scleroglucan and schizophyllan are mainly used as stabilizers,
thickeners, and gelling agents, particularly in Japan [97]. On the other hand, lentinan has
demonstrated several beneficial effects, highlighting its antioxidant, antimicrobial, and
lipid-lowering properties, as well as resistance to gastric digestion and high bioavailability,
which makes it a promising candidate for edible coating applications [92,98,99]. A recent
example is provided by Cui et al. (2023) [100] who developed a lentinan-based film for
beef preservation. To overcome the brittleness of the polysaccharide matrix, the researchers
incorporated soy protein nanoparticles loaded with Litsea cubeba essential oil. The resulting
composite film demonstrated significantly improved mechanical properties, gas barrier
performance, and thermal stability. Moreover, it exhibited strong antioxidant and antibacte-
rial activities, effectively delaying lipid oxidation on the beef surface for up to seven days,
thereby extending its shelf life [100].

Other known gums, such as xanthan gum, mucilage, gellan gum, dextran, or locust
bean gum, are also currently being studied and their ability as biopolymers to incorpo-
rate bioactive compounds to extend food shelf life is being proven. Thus, Aayush et al.
(2024) [101] have developed a nanoemulsion with xanthan gum, with Tween 80 as an
emulsifier and betel leaf extract, to effectively extend the shelf life of tomatoes by 6 days by
improving several physical-chemical properties.

Tamarind polysaccharide is an underexploited biopolymer for food packaging appli-
cations that has recently emerged as a biopolymer, considering tamarind seeds form a large
proportion of the fruit and are already being exploited by the pharmaceutical industry for
drug delivery purposes. It is mainly composed of xyloglucan, based on units of xylose,
galactose, and glucose. Contrary to most of the previously described biopolymers, tamarind
polysaccharide possesses good mechanical and moderate barrier properties [101-104].

Finally, among polysaccharides, pectin is being considered as a biopolymer due to
being easily recuperated from industrial fruit by-products, mainly apples and citrus peels.
Depending on its purification process, it can possess antioxidant capacity due to the
covalently bound phenolic compounds, but can also be included to functionalize pectin-
based films [105,106]. Its water retention capacity makes it a material of interest in moisture
control to enhance the shelf life of food. Its combination with plasticizers improves its
mechanical properties, especially regarding flexibility aspects [107].

The abridgments that all biomaterials have shown regarding mechanical and bar-
rier properties can be improved by modifying the polymeric structure using plasticizers
(e.g., glycerol, sorbitol, or polyethylene glycol) [108], crosslinking agents (e.g., citric acid
or CaClp) [109,110], nanomaterials, or grafting bioactive compounds [111,112]. Further-
more, the inclusion of bioactive compounds, such as polyphenols, functionalizes films and
coatings by providing antioxidant, antifungal, or antimicrobial properties. This function-
alization primarily involves the use of phenolic compounds (e.g., ferulic acid or resver-
atrol) [113], natural extracts (e.g., rosemary or lemon extracts) [114], essential oils (e.g.,
cinnamon or oregano essential oils) [115], aldehydes (e.g., linalool or citral) [116], or organic
acids (e.g., acetic or sorbic acid) [117].
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3. Technologies for Edible Coatings and Film Development and
Applications in Food

The development of active packaging to extend food shelf life has driven significant
advances in techniques for producing and applying films or coatings on food products.
These technologies enable the incorporation of bioactive compounds, particularly natural
extracts rich in phenolic compounds or isolated phenolics, which provide antioxidant and
antimicrobial properties. Recent years have seen a growing trend in optimizing these
methods to enhance both the functional performance of the coatings and the preservation
of food quality. Figure 1 illustrates the formulation of edible coatings and films using
biopolymers, additives, and bioactive compounds such as antimicrobial agents, plasticizers,
and essential oils. It also shows common production techniques used for their application
or formation, including dipping, spraying, casting, and electrohydrodynamic atomization
(EHDA). Coatings are typically applied directly onto the food surface, while films are
formed separately and later applied. Each method involves a drying step to stabilize the
coating or film. All the methodologies described, both for coating application and for film
formation, are found in Table 2, which summarises the state of the art in the development
of biopolymer-based systems that incorporate bioactive or functional compounds through
the technologies described in the current section.

Coatings and films formulations Production techniques

Coating formation

Dipping 3
\ ’ drying
Additives Bioactive compounds
- Crosslinking agents - Natural extracts
- Plasticizers - Phenolic compounds X I—:—I
- Essential oils Spraying - :
\
A\ gy ,
7 4 \( drying
/ &
Film formation
Casting
Biopolymers drying
-Polysaccharides
- Proteins . —
- Lipids Spraying —
drying
EHDA

1

Figure 1. Formulation and application methods of edible biopolymer-based coatings and films for
food applications.

3.1. Films Fabrication Methods

Melt extrusion is a thermomechanical processing technique that involves melting
a biopolymer/blend, which is subsequently passed through a die to form continuous
films. The resulting films are then solidified by cooling down. It is a technique widely
employed in industry for petroleum-based or biobased material processing due to its high
production, versatility, and low-cost. Currently, it is also investigated for its application in
edible biopolymers. As such, Cheng et al. (2022) employed blown extrusion to produce
e-polylysine hydrochloride-loaded starch/gelatin edible antimicrobial films [118]. Addi-
tionally, Huntrakul et al. (2020) have developed acetylated cassava starch and pea protein
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isolate films, successfully improving starch processability in blown extrusion and barrier
properties [119].

Injection moulding is a manufacturing process broadly used in conventional plastics
production. This method is emerging for employment in the production of edible and
active films for food packaging applications. It involves a mould to obtain the desired
shape of a directly injected molten material, which is then solidified. Recently, Plasencia
et al. (2025) [120] have developed compostable and thermoplastic zein-based films, demon-
strating the feasibility of injection moulding processing in producing films with valuable
physicochemical properties.

Casting is a low-cost technique widely employed to develop active films, especially at
a lab-scale level. It consists of solubilizing the materials for further solvent evaporation,
incorporating directly the bioactive compounds and other additives into the polymeric
matrix [121-123]. Alterations in the biopolymer structure to improve its biopolymer perfor-
mance and enabling the controlled release of bioactive compounds are highly employed in
the development of active coatings and films. In this sense, the addition of crosslinking
agents, including molecules, such as CaCly, citric acid, or cinnamaldehyde is a commonly
used technique. Whitehead et al. [124] demonstrated that adding genipin as a crosslinking
agent has led to an impact on morphological matrix characteristics and, consequently, on
the delivery of ascorbic acid. Phenolic compounds can also act as crosslinking agents
because of their binding affinity to the polymeric matrix, which directly depends on the
number of hydroxyl groups [125,126]. Thus, phenolic compounds can improve mechanical
and barrier properties, while performing antioxidant action.

In recent years, research into encapsulation technologies has significantly increased,
focusing on protecting bioactive compounds from environmental degradation caused by
factors such as humidity, UV light, and heat, while also enhancing their controlled release.

The use of nanoemulsions to ameliorate the solubility of bioactive compounds and
entrap them into the biopolymers to provide a controlled release has increased in the last
10 years [127]. Nanoemulsions are more homogeneous and provide higher encapsulation
efficiency compared to microemulsions. Their lower particle size (20-200 nm) is related to a
large surface volume that allows slow diffusion rates [128]. The efficacy of an active coating
loaded with a nanoemulsion was verified by Y. Xiong et al. [129] since the preservation
and coating stability was enhanced by the inclusion of oregano essential oil and resveratrol
in a nanoemulsion system. Different high-energy and low-energy methods are required
to develop nanoemulsions, with the former highlighted for its extended use of high-
pressure techniques and ultrasonication [130]. Due to the thermodynamic instability
of these formulations, surfactants are employed to reduce the interfacial tension, avoid
coalescence and flocculation phenomena, and to reach the desired small particle size [131].

Finally, electrohydrodynamic atomization (EHDA) has arisen as an encouraging tech-
nique in active packaging development due to its capacity to transform biopolymer solu-
tions into nanostructures, generating films or coatings. This technique employs an electric
field to produce electrospun nanofibers or electrosprayed nanoparticles, ranging in size
from the micrometric to the nanometric. Both structures’ properties can be modulated by
modifying parameters, such as the material concentration, needle opening, and distance-
to-collector or voltage [132,133]. Electrospun nanofibers and electrosprayed nanoparticles
have a high porosity and surface area-to-total volume ratio that allow the loading and
controlled release of the encapsulated bioactive compounds, which aids in improving
water and oxygen barrier properties [134]. Zein electrospun nanofibers developed by M.A.
Moreno et al. [135] reached encapsulation efficacies of ~90% and increased the controlled
release of phenol-rich extracts by applying glutaraldehyde as a crosslinker agent. One
of the main advantages of EHDA is its versatile use since it can process a wide range of
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biopolymers, as is also the case with non-electrospinnable materials, using recent advances
in its setups (e.g., coaxial or trilayer) [136].

Multilayer formulations have been shown to improve the physicochemical properties
of films and coatings. Among the various techniques for producing multilayer films, the
electrohydrodynamic atomization (EHDA) of multilayer films has proved to enhance the
performance characteristics of the films, boosting mechanical strength and flexibility, while
also improving their functionalization with bioactive compounds [137,138].

3.2. Coating Application Methods

Coating formulations unloaded or loaded with bioactive compounds can be applied
as coatings using various methods, with dipping being the most common and cost-effective
technique. In this process, the food product is immersed in the solution, followed by the
evaporation of solvents, leaving a protective coating on the surface [139-142].

Spraying, another widely used coating technique, offers the advantage of precise
control over key factors in the coating process, including system conditions, operational
parameters, and the structural characteristics of the polymer. This method produces
uniform layers with well-controlled thicknesses, ensuring the consistency and quality of
the final coating [52,143]. Thus, Zhong et al. (2014) [144] have observed that spraying and
electrostatic spraying led to thinner coating deposition on Mozzarella cheese among all
biopolymers tested (alginate, chitosan, and soy protein).

Spreading or brushing techniques consist of the direct application of the coating with
a brush. They are commonly used for small fruits and vegetables. However, the drawbacks
of these techniques are related to the non-controlled coating thickness and the limitations in
terms of large-scale applications [145,146]. Hence, Rajaei Lak et al. (2024) [147] found that,
of the studied methods, brushing is the least effective, just below the dipping method [147].

Vacuum impregnation is a useful technique for applying coatings to porous fruits
and vegetables, but is not suitable for delicate fruits. It is a non-thermal technique which
removes the air and moisture from the food matrix, followed by coating infusion. It allows
a thicker deposition, higher concentration, and controlled deposition compared to the
dipping technique [148,149]. Vacuum impregnation can also be employed to enhance the
colour, texture, flavour, and aroma of porous foods [150]. When combined with osmotic
dehydration, vacuum impregnation can increase mass transfer efficiency while minimizing
structural alterations and reducing process duration [151]. The technique is inherently
complex and strongly influenced by multiple intrinsic and extrinsic variables, making
process optimization essential for achieving optimal efficiency and consistent product
quality. Senturk Parreidt et al. (2018) [152] evaluated the effect of dipping and vacuum
impregnation on melon coated with an alginate-based formulation. The authors observed
that vacuum impregnation was more effective in terms of firmness, weight, and colour
preservation than the dipping method.

The panning method is well-established in the food industry and, in particular, the
pharmaceutical industry, due to its efficiency in processing large food quantities. It involves
placing food products in a large rotating pan while the coating solution is evenly sprayed
onto their surfaces as the pan continuously spins. Thus, it is especially useful for spherical
foodstuffs, such as nuts. It ensures a homogeneous distribution of coating whose thickness
can be controlled by the pan’s rotation speed. After coating application, food is commonly
subjected to a drying process [153-155].

The enrobing method is another methodology commonly employed in the food indus-
try for applying coatings, particularly for confectionery products. This process involves
dipping or passing food through a curtain or bed of coating material or formulation, such
as molten chocolate, to achieve a uniform and continuous coating. As such, enrobing is
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commonly employed for products like chocolate-covered nuts [144,156]. Rajaei Lak et al.
(2024) [147] evaluated the effect of applying a zein-based coating enriched with Heracleum
persicum essential oil onto cheese using different methods. The results demonstrated that
the enrobing method was the most effective in preserving the cheese’s physicochemical
properties, notably by reducing microbial counts, minimizing pH fluctuations, and limiting
moisture loss.

Fluidized-bed processing method consists of solid particles suspension in a stream
of air or gas, enabling thin and uniform coating layer application on small and dry food
products. It is followed by a drying process [157,158]. Moreover, fluidized-bed-processing
is a useful method for encapsulation purposes, enhancing product functionality. It is a
high-cost technique compared to those previously reported, although it is greatly employed
by the food industry [159,160].

Cold plasma treatment is an innovative technique used in food packaging applications
to enhance the properties of edible coatings. It involves generating plasma by apply-
ing an electric field to a neutral gas under atmospheric pressure, exposing materials to
low-temperature plasma. Various approaches, including laser treatment, ozonation, UV
radiation, or gamma rays can be employed to induce physicochemical changes on biopoly-
mers. Plasma-based methods are utilized to improve the functional characteristics of
biopolymers for the intended applications, such as adhesion or barrier properties [161,162].
For instance, Akhavan-Mahdavi et al. (2023) [163] successfully extended pistachio shelf life
using a cold plasma and chitosan coating, thus reducing mould and yeast growth and afla-
toxin concentration, without significantly altering the other physicochemical characteristics
Or sensory perception.

Ultrasonic spray coating is a next-generation spraying technique that enables mul-
tilayer coating through layer-by-layer deposition, promoting bond interactions between
layers and addressing issues such as cross-contamination and time-consuming processes.
Ultrasonic spray coating produces uniform droplets with a consistent size and distribution,
ensuring a high-quality coating. The technique allows for the incorporation of various addi-
tives and materials, facilitating the encapsulation of bioactive compounds and the creation
of multifunctional coatings [164,165]. Additionally, UA operates at low pressure, requiring
less energy for atomization, making it an efficient and versatile method for advanced
food coating applications [166]. Some studies have explored the advantages of its use for
conventional polymers or its application as a technique for food products, ingredients, or
bioactive compound processing, but it is currently an underexploited technology in terms
of the development of edible and active films or coatings [167,168].

All the described techniques have shown encouraging potential in the production
of edible and active coatings or films. However, more studies should be performed
to overcome the drawbacks regarding scalability and cost-effectiveness for large-scale
packaging applications.
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Table 2. Biopolymer-based systems incorporating bioactive compounds, production technologies, food applications, and their effects on material properties and

food preservation.

. Bioactive/Functional -
Biopolymers Compounds Technology Application Effect Ref.
Proteins
o Protective effects against metabolic changes. | changes contents
Tilapia fillets . ) o .
. . . . the main metabolites. Inhibited the formation of harmful
Gelatin Grape seed extract Coating dispersion (vacuum irabl th off [169]
impregnation) substances or undesirable compounds with off-odours. | pH
p changes, | TVB-N, and | K-value variations
. Peppermint and - 1T WCA, 1 antioxidant properties (>chamomile EO), 1
Gelatin chamomile EOs Electrospinning NA antibacterial activity (>peppermint EO), and not cytotoxic [134]
Casting Kiwifruit, avocado
Zein-gelatin Tea polyphenol (multilayer stacking) and banana Fruits: | WL, | AE, 1 TPC, and | microorganism growth [170]
(packaged)
Irradiated S . Chicken Films: 1 mechanical properties and | microorganism growth
starch—gelatin Lime juice Casting (packaged) Chicken: | lipid oxidation and 1 SL (12 days) [171]
Casting
. . (extract encapsulation in zein ~ Raspberries Films: 1 flexibility, 1 film colour, and 1 antifungal activity
Gelatin Propolis extract nanocapsules—antisolvent (dipping) Raspberries: 1 SL (11 days) (101
precipitation)
Gelatin Tomato by-product Casting quk l.om Por-k: T WL, 1 AE, ~ pH, ~ water activity, | lipid oxidation, and 1 [172]
hydrolysate (dipping) antioxidant activity
Casting
. . (Cinnamaldehyde-sulfobutyl ~ Grass carp fillets Films: 1 flexibility, T opacity, and | microorganism growth
Gelatin Cinnamaldehyde ether-B-cyclodextrin inclusion  (dipping) Carp fillets: | protein degradation [173]
complex)
Casting Film: | L*, 1 AE, 1 roughness, 1 TS, | EB, | WCA at 0 min, T WCA
Gelatin— Curcumin and (pickering emulsion of Pork meat at 10 min, |WVDP, 1 antioxidant capacity, and 1 antibacterial [174]
chitosan cinnamon oil cinnamon oil with oxidized (covered) properties
CNF) Pork meat: | TVB-N, 1 SL, and freshness indicator (AE)
. Films: | L*, | WS, | mechanical properties, 1 thermal stability, |
. . . Chicken breast . . L -
Gelatin—pectin  Lemongrass EO Casting (packaged) microorganism growth, and 1 antioxidant activity [175]
p & Chicken: | WL and ~ pH
Natamycin or/and Films: | TS and elastic modulus, 1 opacity, T AE, T WVP, |
Whey a-tocopherol Casting NA microorganism growth (natamycin), and 1 antioxidant activity [176]

nanoemulsion (o/w)

(x-tocopherol)
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Sweet . . . Bananas Films: 1 UV barne'r, T.swelhng., T toughness, | microorganism
whev—starch Chlorogenic acid Casting (dipping) growth, and 1 antioxidant activity [177]
y Bananas: 1 antioxidant activity and | browning
Cheese Films: ~ phage viability (2 weeks) and | microorganism growth
WPI A511 bacteriophage  Casting (dipping) Cheese: 1 colour, 1 hardness, 1 springiness, ~ adhesiveness, ~ [178]
pping cohesiveness, ~ gumminess, and ~ chewiness
Tomato seed Fish fillet Fish fillet: 1 L*, | WL, | hardness, | chewiness, | springiness, |
mucilage— Shallot EO Casting (dipping) cohesiveness, | gumminess, | pH, | TBA, | TVB-N, | AE,and |  [179]
whey ppimg microorganism growth
Nanochitosan— Rainbow trout fillets
WPI Summer savoury EO  Casting (dipping and packaged Films and fish: | microorganism growth [180]
in pouches)
Pectin-WPC Lactobacillus helveticus ~ Casting (Adi)d};fqu Cheese Cheese: ~ colour, >~ moisture, and | microorganism growth [181]
Casti Fresh-cut appl Films: T mechanical properties and 1 water resistance
WPI Transglutaminase (rifciggmulsion) (;ies i_rc1u) appie Apple: | WL, | browning index, | PPO activity, | CAT activity, |  [182]
Ppmg H,0O; production, and | MDA accumulation
. Fresh Cheese T antioxidant activity
WPC Green tea extract Casting (packaged) Cheese: | lipid oxidation and 1" AE cheese [183]
WP NA Coating dispersion Peanuts 1 lipid oxidation and 1 SL (3 months) [155]
. . . Chocolates WPI-sucrose provided chocolates with the most gloss (even after
WrP NA Coating dispersion (pan coating) 5 months). Sucrose crystallization contributed to coating gloss [154]
Casting . . . .
WPI Bergamot oil (nanoemulsion with NA T mechanical properties, v WVI.)’ i L*, T opacity, T homogeneous [184]
structure, and 1 antioxidant activity
nanocellulose)
Grapes Films: | mechanical properties, | microorganism growth, 1
WPC Oregano EO Casting (pac11)<age d) antioxidant activity, | WS, and | light transmittance [13]

Grapes: | AE grapes, >~ weight, >~ pH, ~ acidity, o~ Brix value
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. Bioactive/Functional C
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Films: 1 TS, 1 fibre membrane, | crystallinity, 1 thermal stability,
. . - Sea Bass 1 WCA, | microorganism growth, irregular network structure,
Zein Methyl ferulate Coaxial electrospinning (wappred) smooth surface, T membrane hydrophilicity, and sustained release [185]
Sea bass: ~ pH and ~ TVB-N content
Films: T mechanical properties, 1 flexibility, | WVP, and UV
Zein-PVA- Anth inextract  Laver-bv-l i Shrimp protection [186]
chitosan nhocyaiin extrac ayerby-layer casting (covered) Shrimp: 1 antioxidant activity and colorimetric response to
TVB-N (1 AE)
. . Casting Vannamei prawn Pr.awn: d 11p1d oxidation, | T\./B—.N, LHZS.p?oductlon, J
Zein Garlic EO . .. microorganism growth, 1 antioxidant activity, 1 SL, and 1 [187]
(nanoemulsion) (dipping) 1
acceptability
. . T-hymol; thyme, Casting Strawberries Micelles: | particle size and | C potential
Zein-chitosan  cinnamon and ) . . . . . . [188]
(micellar particles) (dipping) Strawberries: | moisture loss, | microorganism growth, and 1 SL
oregano EOs
Cheese: Hardness preserved, | microorganism growth, |
. Cheese . o~ 1 .
. Heracleum persicum . . . . . moisture loss, | lipid oxidation, | pH increase, 1 overall
Zein Coating dispersion (Brushing, dipping, - N . . [147]
EO . . acceptability over storage, T SL, and >~ L*. Enrobing > spraying >
spraying, enrobing) . A
brushing > dipping
Zein—beeswax  Nisin Coating dispersion Ngcta.rmes and apples  Nectarines and apples: | WL, 1 firmness, 1 antibacterial activity, [189]
(dipping) and ~ mould and yeast growth
Films: | zein aggregation, 1 zein solubility, | light transmission, 1
: . . hydrophilia, T WVP, | moisture content, 1 UV-light blocking
Zein 2 hydroxypropyl B Casting Stl'"aw'berrles properties, T TS, | strain at break, | YM, | WVP, and | antioxidant [139]
cyclodextrin (dipping) .
properties
Strawberries: | WL, | microorganism growth, and 1 SL
Films: 1 antibacterial properties, | moisture content, 1 thermal
stability, 1 L*, 1 surface roughness, 1 TS (with extract, EO free and
Castin encapsulated), | TS (with extract and EO, free or encapsulated,
Zein Dill leaf extract and (EO en%:a sulation in Carp fillets combined), T EB (with extract, EO free), and ~ EB (with EO [190]
dill leaf EO P (wrapped) encapsulated; extract and EO, free or encapsulated, combined)

[-cyclodextrin)

Fillets: | microorganism growth, | lipid oxidation, | pH increase,
L TVB-N, 1 desirable aroma, 1 overall acceptability over storage
time, and 1" SL
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. Bioactive/Functional C
Biopolymers Compounds Technology Application Effect Ref.
. . 1 TS, 1 EB, | moisture, | WS, 1 opacity, 1 antioxidant activity, |
Starch—zein Sorghum bran extract Casting NA microorganism growth, and TWVTR [191]
Electrospinning (zein) Apple slices Films: 1T moisture permeability, T EB and | TS (with T PEG), and 1
Zein-chitosan ~ NA Casting (zein and chitosan) ( V\E)I' E ed) antioxidant activity [192]
(bilayer films) PP Apples: 1 anti-browning ability and T WL
(SI:EZ‘I/ZSCTEEZSPET Nanofibers: linear morphology, smooth surface and bead-free
Zein Thyme EO Electrospinning container with the structure, .and physmal enca}psulanon Process . [193]
N Strawberries: | microorganism growth, | biochemical changes, 1
active film attached to M .
I SL, and ~ antioxidant properties for 15 days
its lids)
Core-shell microparticles
(2:1 zein-CNCs)
1. Solvent e-rveiporation. | particle size and 1 stability with 1 curcumin, | particle size at 1
Zein—CNC Curcumin (Ct'lrcurmn. oaded zein NA pH, | bioaccessibility with T CNCs, 1 degradation under UV light, [194]
microparticles) and CNCs 1 thermal stability
2. Antisolvent
precipitation
Zein TiO; nanotube arrays Casting NA T mechanical strength, ~~ flexibility and 1 water resistance [195]
(TNTASs) (bilayer films, TNTAs-zein) (compared to zein), and 1 antimicrobial activity
Films: shear-thinning behaviour, 1 TS, 1 EB, | WVP, | oxygen and
1 Eugenol or/and . Blueberries CO; permeability, | surface roughness, | L*, and 1t AE
Zein~chitosan curcumin Casting (dipping) Blueberries: 1T UV and pH stability, | microorganism growth, 1 [196]
antioxidant properties, | WL, and 1 hardness
Films: T mechanical strength, | WVDP, | oxygen permeability, T
Zein—chitosan— Casting Strawberries UV-light blocking properties, T hydrophobicity, | WS, | moisture,
dialdehyde Cinnamaldehyde (cinnamaldehyde—zein (packed) J L* and | AE [197]
CMC antisolvent precipitation) P Strawberries: | WL, | microorganism growth, 1 antioxidant
properties, and 1 SL
T thermal stability, | water uptake along weeks, 1 EB, |
Zein NA Injection moulding NA elongation (1 urea), and | toughness (1 urea). Clearer colour and [120]

1 hydrophilic properties (1 urea). Plasticizers | glass transition
temperature. 80% degradation after 6 weeks
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. Blown extrusion . .
Sodium ) . . 1 Young’s modulus (1 glycerol % and | relative humidity), 1+ EB
caseinate NA (ecxc,)[rﬁ)ézil)ng twin-screw NA (glycerol > 25% and 1 RH), and 1 WVP (1 glycerol) [198]
Pea protein | film transparency. T TS, 1 Young’s modulus, and | EB (70% pea
isolalze NA Injection moulding NA protein). T water uptake. 30-40% glycerol needed for 1 [199]
processability
Polysaccharides
Coating dispersion " .
. (substitution of wheat flour Fish sticks T L ’.i wl}lten.ess, | Hue angle, | f.a tuptake, | TVB_.N’ + PO value,
Chitosan NA . L . . J lipid oxidation, | hardness, | crispness, | gumminess, | [200]
by chitosan solution in frying  (enrobing) W, ler shear f d h
batter) arner-Bratzler shear force, and | toughness
. Kojic acid and clove . . . White shrimp | microorganism growth, | TVB-N, | pH, | AE, 1 sensory scores,
Chitosan EO Coating dispersion (dipping) and | WL [201]
Chitosan—
gelatin— Castin 3 WS, 1 surface roughness, T TS, | EB, | WVP, and 1 antibacterial
catechol- AgNP & . . NA o & ’ ’ ’ ! [202]
modified (catechol—chitosan synthesis) properties
chitosan
Casting 1T TS, 1 EB, | WVP, | oxygen permeability, | swelling, | WS, 1
Chitosan Gallic acid (gallic acid encapsulation in NA UV-barrier properties, 1 antibacterial properties, and 1 [203]
ZnO NP) antioxidant properties
Saloia . Films: 1 thermal stability, 1 TS, | EB, | WVP, | WS, | moisture
macrosiphon . Cherries and apples : :
X NA Casting L content, 1 UV-barrier properties, 1 transparency, and 1 roughness  [45]
seed mucilage- (dipping) Fruits: 1 antibacterial properties and 1 SL
chitosan ZTULS: prop
Chitosan— NA 7T elastic modulus, >~ TS, | EB, T oxygen barrier properties, || WVP,
hydrolysed . Lo 1 thermal properties, | moisture content, T UV-barrier properties,
NA Casting (overall migration .. . . . [204]
orange peel assay in Tenax®) T WS, 1 transparency, 1 antioxidant capacity, 1 antibacterial
(pectin-rich) y properties, and fast biodegradability (62.9% WL after 26 days)
Castin Films: T UV-barrier properties, | L*, 1 AE, T WS, T+ WVP, | TS, |
Collagen— Gallic acid and '8 - Pork EB, ~ thermal stability, T antioxidant capacity, and 1 antibacterial
chitosan e-polylysine (grafting of gallic acid onto (wrapped) roperties 471
POYLy chitosan backbone) PP prop
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Films: 1 TS, 1 EB, | WVDP, | oxygen permeability, 1 thermal
Chitosan-guar ~ Watermelon rind . Fresh-cut bananas stability, | L*, | moisture content, | WS, 1 antioxidant capacity, 1
Casting . . . [205]
gum extract (packaged) antibacterial properties
Bananas: | WL, 1 firmness, | TSS, 1 sensory quality, and 1" SL
Nanofibers: | NP ¢ potential
Films: 1 compactness, 1 TS, 1 EB, 1 thermal stability, 1
Chitosan— Eeoplant Casting Pork hydrophobicity, | L*, 1 AE, T WVP, T oxygen permeability, |
i, 58P . (chitin nanofibers (film fixed on the top of moisture content, | WS, 1 UV barrier properties, 1 antioxidant [206]
chitin anthocyanins . . ) . e .
development) the box) capacity, 1 antibacterial properties, pH sensitivity, ammonia
sensitivity, acid sensitivity, and colour changes easily detected by
the naked-eye
Casting NA %m: lfofnl:())(;frrlgilta}}, f E{ ;gé 1 compactness, | WVD, |
Chitosan Luteolin (luteolin encapsulation in (specific migration — o ! SR o ’ [207]
. . o oxygen permeability 1 TS, 1 EB, 1 antioxidant capacity, 1
0o/w nanoemulsion) assay in EtOH 95%) . . .
antibacterial properties, and slow controlled release rate
Grass carp fillets . 1 drip loss, | texture softening, 1 sensory scores, |, lipid oxidation,
Carboxymethyl Pomegranate peel . . . (vacuum impregnation; . : . ; .
. Coating dispersion . , L TVB-N, | K-value, | bioamine accumulation, | microorganism  [46]
chitosan extract packaged in sterile
bags) growth, and 1 SL (3 days)
Pumpkin Vacuum impregnation: 1 thickness, 1 incorporation, 1
Chitosan NA Coating dispersion (dipping and vacuum  homogeneity, | water content loss, T pH variations, 1 acidity [208]
impregnation) changes, 1 AE, and 1 firmness
. . preserved hardness and colour indices, | PO, | microorganisms
Pistachio growth, | aflatoxins, and 1 overall acceptance
Chitosan NA Coating dispersion (dipping and cold (1.5% chitosan coating and 120 s of cold plasma treatment, most [163]
plasma treatment) .
effective)
1 swelling ratio over time and 1 pH, porous hydrogel
Chitosan Pomegranate extract ~ Hydrogel pad NA (cross-linking), T TPC, 1 antioxidant capacity, 1 antibacterial [209]
properties, and water absorption
Cassava Pea protein: stabilized films during blown-extrusion, |. flexibility,
starch—pea NA Blown extrusion Soybean and olive oil | non-homogeneity AS-PI blend matrices. 1 TS, | WS, | [119]
proteinp (sachets) light-transmission, 1 crystallinity, T WCA, | WVP, | OP, |

humidity-induced shrinkage, and 1 thermal stability




Polymers 2025, 17, 2472 21 of 57
Table 2. Cont.
Biopolymers giﬁ:;::iﬁ:ndmnal Technology Application Effect Ref.
Cc}isti;‘;iitamh NA Coating dispersion Guavas ¢ WL, | tit?atable aci.dity, J vitamin C, 1 soluble solids, | ripening [210]
gelatin index, | microorganism growth, and 1 SL (9 days)
Films: | complex viscosity, | storage modulus, 1 gelatinization
Starch-gelatin ~ e-polylysine Blown extrusion Bread degree, T WCA, | WVE, T WS, | TS, T EB, and T antimicrobial [118]
(wrapped) effect
Bread: | microorganism growth and 1 SL
Films: | WS, | TS, | YM, ~ WVP, ~ moisture content, ~
Paipa cheese transparency, ~ swelling behaviour, and 1 antioxidant properties
Potato starch Carvacrol Casting (brushing) Cheese: 1 brightness, ~ water activity, >~ moisture content, ~~ [146]
& colour attributes, | microorganism growth, 1 hardness, 1
gumminess, T springiness, and 1 chewiness
| rot lesion on infected pear caused by Alternaria alternata, |
S changes in fruit colour, | firmness changes, . chlorophyll
weet potato Cumin EO Coati | Pears d dati d th t of oli teric rise i [140]
starch umin oating ge (dipping) egradation, suppressed the onset of climacteric rise in
respiration, WL, o~ stomata densities, | microorganism growth,
and 1 sensory quality
Pomegranate peel Grapes Film: 1 TPC, 1 antioxidant properties, 1 thermal stability, ~ WS, 1
Jackfruit starch extract Casting (dipping) TS (] concentrations), T WVP, 1 oxygen permeability [211]
pping Grapes: | WL, 1 firmness, and 1" L*
Strawberries | ripening, | firmness reduction, | WL, | total soluble solid
Starch NA Coating dispersion (dipping, then packed  reduction, | ascorbic acid loss, | microbial load, and | redness [142]
in PET containers) reduction
Formulations: 1 consistency (mango < litchi < corn starch), ~
particle size, | ¢ potential (litchi < mango < corn starch), and |
Mango kernel PDI (corn < litchi < mango starch)
e Casting Khasi mandarins Films: 1 TS, | transparency, | WS (litchi < corn starch), 1
corn, and litchi Clove EO . . . . . : [52]
(Ultrasonication) (spraying) antioxidant capacity, and | microorganism growth

seed starch

Mandarin: | firmness reduction, | WL, 1 TPC 1 TEC, 1
antioxidant activity, | respiration rate, and | TSS
Litchi seed starch—-CEO—ultrasonication, the most effective
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Buckwheat Films: | moisture content, || WS, 1 L*, 1 thermal properties
Casting Plum (compared to commercial starch), 1 TS, | EB, {[WVP, + WCA, 1
starch— Lemongrass EO . L .o . L . LY [212]
xanthan gum (Ultrasonication) (dipping) antioxidant capacity, and 1 antimicrobial activity
Plum: | ripening, | WL, | TSS, | pH increase, and | shrinkage
“Fino” lemons 1 WL, | gas exchange, >~ firmness, ~ pH, ~ Hue angle variation,
Potato starch Sodium benzoate Coating emulsion (dipping) o~ titratable acidity, and | disease severity and incidence (lemons [141]
pping were inoculated with Penicillum digitatum)
Silver pomfret fish
?gi:aksin . individuall Bacteriostatic effect (1 antibacterial activity), | H,S production, |
Corn starch Fumaric acid Coating dispersion pacl:pli d ‘cfr’l y pH increase, | TVVB-N increase, | lipid oxidation (| TBA, | PV [213]
nylon-EVOH-PE increase) 1 overall acceptability reduction, and 1 SL (9 days)
pouches)
Films: 1 TS, 1 EB, 1 thermal stability, | WVDP, | swelling degree,
~ Citric acid . Tomatoes and | transparency
Starch-CNF (crosslinking agent) Casting (dipping) Tomatoes: | WL, | firmness reduction, | TSS loss, | pH increase, [60]
and ~ colour
Films: 1 UV blocking properties, ~~ transparency, ~ mechanical
Tangerine, strawberry  properties, T WVP, | oxygen permeability, t WCA, 1 antioxidant
. (dipping; migration properties, T antimicrobial activity, negligible cytotoxicity, and 1
CNF Carbon dots Casting assays in H,O, 10, 50 CDs release in more hydrophilic simulants [214]
and 95% EtOH) Fruits: inhibited fungal growth and 1 SL (>10 days for tangerine,
>2 days for strawberries)
Films: | viscosity, 1 particle size, 1 opacity, | WS, | WVP ¢
. antioxidant properties, and 1 antifungal activity
Alginate-CNC Egyme and/or clove fiiﬁ:ﬁn emulsion) (C;lav;an ) Guavas: | WL, | hue angle decrease, | pH increase, 1 vit C [61]
p & ppng retention, | firmness reduction, | titratable acidity reduction, and
J TSS increase
. Casting 4 YI, 1 AE, | moisture, | TS, 1 EB, and ~ WVP
HPMC Rutin (liposomes) NA (compared to edible coating with free rutin) [215]
HPMC-  Thyme,cinnamon . NA Sweet cherris respration sate,  frmncss, | TPC. rduction, T sensory quaity, (57
beeswax and peppermint oil Nanoemulsion (dipping) P o / ! y quatty

and 1 antimicrobial activity
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| firmness reduction, =~ colour, | superficial scald, | antifungal
growth, | ACS activity, | ethylene production, ~~ starch index, ~
“Golden Reinders” and  soluble solids content, ~ total titratable acidity, | VOCs (}
HPMC NA Coating dispersion “Granny Smith” apples terpenoids, | esters, | aldehydes) | consumer acceptance, | [216]
(dipping) a-farnesene levels and its oxidation products, and 1 ethanol
accumulation
Most effective in “Golden Reinders” apples
HPMC- . Films: T WVP, 1 oxygen permeability, T WS, | transparency, 1
chitosan— Nisin Eé?f;n;%) 8};(282:1; thermal stability, | TS, and | EB [217]
alginate y Pping Chestnut: | respiratory intensity, | WL, and | decay rate
Polysaccharide and 1 WL, | gas permeability (Op, CO, and C;Hy), | microbial
phenolic compounds . . . Goldenberries growth, ~ TSS, 1 polysaccharides, 1 antioxidant properties (just
CMc from spent coffee Coating dispersion (spraying) the coating with phenolics), | Vit C reduction, and ~ sensorial [143]
grounds parameters
CMC— Film: ~ WS, ~ moisture, | TS, 1" EB, non-toxic toward NIH-3T3
bacterial Olive and eincer oil  Castin Oranges and tomatoes  fibroblasts, and antimicrobial activity [218]
cellulose sNE & (dipping) Fruits: | WL, 1 overall acceptability along storage time, and 1 SL
(films containing ginger oil were more effective)
1 oil binding capacity (1 ethyl cellulose).
Medium chain . . PEG addition: 1 overall printability, 1 plasticity, 1 viscosity, 1
Ethyl cellulose triglyceride oleogel Hot extrusion 3D food printer  NA storage modulus, 1 gel strength, 1 shear thinning behaviour, and [219]
1 G’ in melting point (45 °C)
Xanthan ' Tomatoes F11r.ns:. 1T op.ac1ty, T f[hermal stability, | WVP, 1 TS, | EB, and
um—CMC ZnO-NPs Casting (dipping) antimicrobial activity [220]
& Tomatoes: | WL and 1 SL
Chia seed
. . . . Strawberries 1T TPC, 1 TFC, ~ TAC, 1 Vit C, T antioxidant activity, | PO activity,
mucﬂgge— NA Coating dispersion (dipping) and | peroxidase enzymes activity [221]
bacterial CNF
. ‘ L
' Chicken fillets | release rate (con}pared.to freg quercetm), 0 L preservation, ~
Alginate Hydroxyapatite— NA (dipping, layer by AE, | WHC, 1 antibacterial activity, | harness increase, | [22]
quercetin Solubilization layer) ’ springiness reduction, | gumminess and chewiness decrease, |

TVB-N, and 1 overall acceptability throughout storage time
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Alginate, Mozzarella cheese 1 WL (> chitosan > alginate >soy protein), ~ hardness, | WL
chitosan, .amd NA Coating dispersion (dlppl.ng, enrobing, (dipping > enrgbmg > spray > electrgspray), ¢ thickness (sp.ray [144]
soy protein spraying, and and electrostatic spray), T homogeneity (dipping and enrobing),
isolate electrostatic spraying)  and 1 spreadability (alginate)
Melon 1 firmness (vacuum impregnation), T weight gain (vacuum
Alginate NA Coating dispersion (dipping and vacuum . . pres : 518 [152]
) . impregnation), and 1 AE (vacuum impregnation)
impregnation)
Films: 1 thermal stability, 1 TS, 1 EB, 1 brightness, 1 yellowness
Alginate Aloe vera and . Casting Green capsicums an.d greenness, =~ transparency, 1 UV-shielding, | WVP, and | [223]
Frankincense oil (wrapped) microorganism growth
Green capsicums: | senescence and | WL
Brassica juncea extract Casting Films: 1 thermal stability, 1 hyc?rophol.naty, .i water absorption, |
. . ) . . ) Tomatoes WCA, | TS, 1 EB, | WVP, 1 antibacterial activity, and 1
Alginate and Raphanus sativus  (zein-chitosan microparticles . . . [224]
sprout extract containing the extracts) (dipping) antioxidant capacity
p & Tomatoes: ~ appearance, >~ texture, and 1" SL (30 days)
Beef cattle meat ¢ lipid oxidation, 1 apt10x1daqt properties, | L*, 1 redness, |
Aleinate Myrtle, rosemary Coating dispersion (dipping and packed firmness, ~ pH, | microorganism growth, and 1 SL (6 days) [225]
& extract, irradiation (most effective treatment: irradiation and coatings with myrtle
PP trays) extract)
Alginate Citrus sinensis EO Nanoemulsion To.mafroes T whiteness index, 1 antlbacterla}l-actlwty, 1 firmness, | WL, | pH [75]
(dipping) increase, and 1 overall acceptability
. Rainbow trout fillets . . . I . . .
Algmate— Fucoidan Coating dispersion (dipping. 1 fish quality, | l%p'ld oxidation, | TYB—N, 1 antibacterial activity, 1 [226]
chitosan overall acceptability along storage time, and 1 SL (10 days)
Layer-by-layer)
Glucomannan—  Salmonella enteritidis Casting Chicken meat Film: 1 TS, | EB, T water swelling ratio, T moisture content, | WS,
K-carrageenan hage PBSE191 (Hydrogel film) (wrapped) and | WVP [227]
& phag yerog PP Chicken meat: Salmonella-killing (| bacterial growth)
tand -
carrageenan— . . . .
high and low  Tomato paste Casting NA red colour f11m§, T .WVP’ i moisture f welg.ht,. T opacity, 1 . [228]
methoxyl strength, 1 flexibility, 1 stiffness, and 1 antioxidant properties

pectin




Strawberries: | WL, | firmness decrease, and | TSS
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. . | pH increase, | TVB-N, | conjugated dienes, | lipid oxidation, |
Dill EO-oxygen . . . Ch111ed rainbow trout protein carbonyls, | electric conductivity, | organoleptic
K-carrageenan Coating dispersion fillets L e . . ) . [229]
absorber (dipping) deterioration, 1 antioxidant properties, 1 antibacterial properties,
ppms and 1 SL (16 days)
Konjac Chicken meat L WL, | pH increase, | lipid oxidation, | TVB-N, 1 antibacterial
glucomannan— Camellia oil Coating dispersion (dipping) properties, 1 overall acceptability along storage time, and 1" SL (10  [230]
carrageenan Ppig days)
Tragacanth .
gum- Clove EO Casting NA + T.S’ + YM’ TEB, | m01sture contgnt,. TWS, | WYP’ TAE T [231]
antibacterial properties, and 1 antioxidant capacity
carrageenan
Spent coffee grounds  Casting L .
K-carrageenan (emulsion) NA 1 TS, 1 EB, 1 WS, and 1 antioxidant capacity [232]
Films: | transparency, 1 compactness, 1 thermal stability,  WVP,
Auricularia auricular . Potato fresh cut T WS’.T TS’. TEB, 1 AE’ T antioxidant properties, and f
Pullulan extracts Casting (dipping) antimicrobial properties [89]
pping Potato: | browning index, | microbial growth, 1 TSS, | WL, and 1
SL
Casting NA 1 antibacterial properties, | density (NE) and 1 with emulsion, |
Pullulan— Clove EO (nanoemulsion and pickering (release assay in 95% moisture content, | WVP, | TS, | EB (NE) and ~ with emulsion, | [233]
gelatin emulsion using WPI and EtOH) y ? AE (NE) and 1 with emulsion, 1 antioxidant properties, emulsion
inulin) and | release rate after 72 h
Pullulan— Maneo Films: | WVP, T WS, 1 TS, 1 thermal stability
. Galangal EO Casting ang Mangoes: | WL, | firmness decrease, 1 titratable acidity, and | [234]
chitosan (dipping) S
Bacteriocin of ' Curd cheese Fﬂmsz i WVP, T.V\'ZS, 1T1TS, 1 EB, | thermal stability, and 1
Agar—agar Lactobacillus sakei Casting (covered) antibacterial activity [235]
Cheese: | bacterial growth
Films: ~ WC, | WS, 1 antioxidant properties, and 1 antimicrobial
Agar-gelatin Aloe vera EO Casting %jjf:ar gil)e ese properties [236]
pp Cheese: ~ pH and | colour variance
Levan— Films: | WVP, | oxygen permeability, t+ WCA, | TS and 1 EB (
. . Strawberries levan-pullulan ratio), 1 opacity, T AE, | L*, 1 moisture content, |
pullulan— e-polylysine Casting o L il X [86]
chitosan (dipping) WS, and 1 antimicrobial properties




CMC

Apples: | AE and 1 SL
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Pecti Films: | L*, 1 AE, 1 UV-blocking properties, T TS, | EB, ~ WVP, ~~
ectin—- . Peanuts . . . . .
ullulan Grape seed extract Casting (dipping) WCA, 1 antibacterial properties, T antioxidant properties [237]
P ppmg Peanuts: | peroxide value, | lipid oxidation, 1 SL
NE: 1 viscosity (with 1 xanthan gum), 1 antimicrobial activity
. . Tomatoes Tomatoes: | WL, | pH increase, | TSS, | firmness decrease, 1 Vit
Xanthan gum  Betel leaf extract Coating nanoemulsion (dipping) C, 1 TPC, 1 an tioxiclijan ¢ capacity, 1 overall acceptance along [101]
storage time, | microorganism growth, and 1 SL (6 days)
Films: | moisture content, | WVP, | TS, | EB (4% of emulsion),
Persian Thvme EO Casting Barred mackerel fillet and | opacity (4% of emulsion) [238]
gum-gelatin y (Pickering emulsion) (dipping) Mackerel: | pH increase, | lipid oxidation, | microorganism
growth, and 1 sensory attributes perception
Films: | TS, T EB, | L*, T AE, 1 thermal stability, and 1 antioxidant
Butea menosperma . Tomatoes roperties
Guar gum flower extral::t Casting (dipping) gor‘r}:atoes: } firmness reduction, | WL, | TSS, | decay, 1 [239]
acceptability, and 1 SL
Alginate—
algaroba seed G e 1e 1 WL, | firmness reduction, | TSS, ~ L*, ~ pH, 1+ TPC, and 1
. . . rapes ‘Italia . )
galactoman- NA Coating dispersion dipping) antioxidant properties [240]
nans/cashew (dipping (2% alginate, 0.5% glucomannans, 0.5% cashew gum)
gum-gelatin
Kefiran— 7h . \iae EO Casting Sponge cakes Lilm?: + W}Y bl FES’ TbE.JII? L T.AE.’ dT YT, | light .transrgission, T 83
gelatin umeria majdae (nanoemulsion) (packaged) opacity, T thermal stability, T antioxidant properties, and 1 [83]
antimicrobial capacity
Chia seed Strawberries ~ TAC, 1 vit C, T TPC preservation, 1 antioxidant properties, |
mucilage— NA Coating dispersion (dipping) 1:0 I P/ A, | SO/D d f ALP ! prop ! [221]
bacterial CNF PPING ! / san
Plantago major ) . . . . Buffalo meat J PO (| lipid oxidation), | microbial growth, ~ pH, | moisture
seed nglucilefge Citrus limon EO Coating dispersion (dipping) reductionl,ji hardness reduction, | AI%, and 1 ovzrall acceptance [241]
Films: | moisture content, T WVP, | WS, | L*, 1 AE, | light
Fenugree1‘< . Apples transmission, 1 transparency, | thermal stability, | TS, | EB, 1
seed mucilage- Rosemary EO Casting (dipping) TPC, and 1 antibacterial activity [242]
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MHEC-
brewer’s spent . 1 TS, 1 thermal stability, 1 hydrophobicity (t WCA), | moisture
grain NA Casting NA content, | WS, 1 WVTR, and 1 antioxidant properties [243]
arabinoxylans
Brewer spent  Ferulic acid or
grain feruloylated Castin NA 1 UV-blocking properties, | YM, | TS, ~ EB, 1 thermal stability, 1 [244]
arabinoxylans— arabinoxylo- & antioxidant properties, and 1 antimicrobial activity
CNF oligosaccharides
Films: | light-transmittance, 1 TS, | EB, | WVTR, and 1
. . Grapes antioxidant properties
Arabinoxylan  Tea polyphenol Casting (diplloaing) Grapes: | trfnsgiration of water, | WL, 1 titratable acids, 1 vit C, [245]
| shrivelling rates, and | spoilage
Films: 1 flexibility, T WVP, 1 thermal stability, ~ TS, ~ EB, and =~
Water Cherry and strawberry ‘12?1/11’:5 + WL, | colour degradation, | decay, | TSS, | TAC loss, |
extra}ctable NA Casting (dipping) softening process, | vit C decline, | malondialdehyde content, [246]
arabinoxylans and 1 SL
(more effective on cherries)
Carboxymethylated Films: T WVP, | WCA, | TS, | EB, 1 antioxidant properties, and 1
tamarind seed e-Polvlvsine Castin Green Bell Pepper antimicrobial activity [247]
polysaccha- Yy & (dipping) Pepper: | WL, | malondialdehyde content, | hardness decrease, |
ride vit C loss, | nutrients reduction, and 1 SL
Tamarind
xyloglucan/proteilA Casting NA 1 thermal stability, | TS, 1 EB, T+ MC, | WS, and | swelling degree  [248]
chitosan
Films: | thermal stability, 1 TS, 1 EB, 1 OP (just with EO), | WVP,
Glutenin- Melatonin-pummelo  Casting White mushroom 1 UV-blocking properties, and 1 antioxidant properties [249]
tamarind gum EO (microemulsion) (covered) Mushroom: 1 overall acceptability, | respiration rate, |
malondialdehyde content, and 1 SL
Tamarind Banana Films: T TS, T EB, | YM, T WCA, | WVP, 1 TPC, and 1 antioxidant
xyloglucan— Lignin nanoparticles  Casting dipping) properties [250]
starch (dipping Banana: 1 UV-blocking properties, | WL, and | colour change
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1 WL, | firmness reduction, | respiration rate, | browning index,
Mangoes 1 lipid oxidation, | TSS, 1 TPC, 1 antioxidant properties, |
Shellac Tannic acid Coating dispersion (dipping) membrane permeability, | enzymatic activity, | vit C loss 1 [251]
pping volatiles preservation, 1 antifungal activity, 1 overall quality, and
1 SL (10 days)
- J pure kernel loss, | acid value increase, | fat loss, T PO, 1 overall
Shellzflc—soy Juglone from walnut Coating dispersion Wichita pecans tals)te, 1 interior brown colour, and 1 antibacterial activity [252]
protein-starch  green husk extract (smeared) (combination of shellac, soy protein, and starch with juglone)
$ WVP, ~ WS, | EB, 1T TS (1, 3% curcumin), | TS (5, 7% curcumin),
Zein—shellac Curcumin Casting NA TWCA, | L*, 1 AE, T YI 1 opacity, ilthermal stabi.lity. Controlled [253]
release, pH responsiveness, 1 antioxidant properties, and
antibacterial properties
r ¢ Coating: 1 TS, | WVTR, | OP, | oil permeability, T moisture
Shellac NA Electrospinning (c;ai(;ng (Enn}l:;per) © resistance, 1 paper integrity (| roughness, T homogeneity) [254]
package tomatoes Tomatoes: | WL, | citric acid decrease, and | pH increase
Hlex paraguariensis ~ WVP, | L*, 1 AE, 1 TPC, 1 antioxidant properties, 1 thermal
Pectin extract Casting NA resistance, and T UV blocking properties [255]
(10% extract, 15% sorbitol optimum, compared to control film)
Satureja montana,
Cinnamomum | fungal growth, | WL (Commiphora myrrha most effective), T SL,
Pectine zeylani’cum, “Valencia” oranges ~ firmness, and ~ titratable acidity 4
beeswax Commiphora myrrha Coating dispersion (rubbing) Antifungal properties: Vanillin > propolis extract > Satureja [256]
EOs, eugenol, montana > Cinnamomum zeylanicum > eugenol > geraniol >
geraniol, vanillin, Commiphora myrrha
and propolis extract
Coatings: | thermal stability, 1 antioxidant properties, and 1
antibacterial properties
Low-methoxyl  Epigallocatechin Lyophilization Grapes Grapes: | WL, 1 TPC, | firmness reduction, | polyphenol oxidase [257]
pectin gallate (free radical grafting method) (dipping) activity, | malondialdehyde content, | lipid oxidation |

microorganism growth, 1 wetting, T water adhesion, and | water
spreading
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Carvacrol/2-
. hydroxypropyl-f3- . cyclodextrin 1 carvacrol solubility and stability, | viscosity, 1
Pectin cyclodextrin Casting NA WCA, 1 thermal stability, and 1 antifungal activity [258]
inclusion complex
Others
Apple snacks
(vacuum 1Ippregnat10n 1 L* 1 AE 1 antioxidant capacity, and ~ TPC Freeze-drying:
and osmotic .
NA Jaggery NA dehydration; preserves the antioxidants [151]
freeze-drying and hot Convective hot air drying: tantioxidant properties
air-drying)
Frz)zlyiegcturonase Pumpkin | stiffness values, no fracture point, homogeneous texture profile,
NA POYE ! Coating dispersion (vacuum 1 antioxidant capacity, and | total and [150]
pectin methylesterase impregnation) reducing sugars
and pectin lyase) pregh & SU8
E;T:;ie white rice Recycling of 80% exhaust air | fissured kernels (<11.8% moisture
NA Turmeric extract NA . content) and saved the energy consumption (41.7-46.5%). Coating  [259]
(Top-Spray Fluidized efficiency 75-86%. Head-wrapped yield 94-95%
Bed Coating) '
Encapsulation with Microcrystalline Coating efficiency: 64.3-79.2. Agglomerates 0.2—-47.7. Layering >
NA Rosemary extract maltodextrin-gum cellulose cores agglomeration as the main growth mechanism of MCC cores. [159]
arabic-WPC (fluidized bed coating)  Retention efficiencies ~ 70% (except for caffeic acid, ~ 60%)
@ Chitosan-— PBS
graphene NA NA (ultrasonic spra 1 moisture resistance, T mechanical and scratch resistance, | OP, | [260]
oxide Coating dispersion . pray CO; permeability, | swelling, and | light transmission
. coating, layer-by-layer)
nanofiller
Casting Ar-treatment: 1 EB, 1 TS, | WVP, 1 L* and 1 ink adhesion
Defatted NA (cold plasma treatment with Smoked salmon (15 min, 400 W) [261]

soybean meal

0O5-, N»-, air-, He-, and Ar-)

(packed)

Salmon: | lipid oxidation, | Hue angle reduction, and | hardness
reduction

2 Not edible, but the only scientific paper found that has used ultrasonic spray coating in food packaging. WPC: whey protein concentrate; WPI: whey protein isolate; CMC:
carboxymethyl cellulose; CNC: cellulose nanocrystals; CNF: cellulose nanofibers; PVA: polyvinyl alcohol; MHEC: methyl hydroxyethyl cellulose; NP: NP; EO: essential oil. VI: vacuum
impregnation; TS: tensile strength; EB: elongation at break; YM: YM; L*: lightness; YI: yellowness index; SL: shelf life; TVB-N: total volatile basic nitrogen; WL: weight loss; TPC: total
phenolic content; TEC: total flavonoid content; TAC: total anthocyanin content; WS: water solubility; WCA: water contact angle; WHC: water holding capacity; WVP: water vapour
permeability; WVTR: water vapour transmission rate; AE: total colour difference; TSS: total soluble solids; PO: polyphenol oxidase; PA: peroxidase activity; SOD: superoxide dismutase

activity; ALP: Ammonia-lyase phenylalanine activity.
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4. Controlled Release in Active Edible Coatings and Films

Recently, active packaging has attracted great attention as a carrier for controlling
the release of bioactive species, such as antimicrobial or antioxidant agents [262]. The
controlled release of active agents through food packaging materials is a novel release
technology in which the active compound is released in a controlled manner over time, en-
suring the desired concentration on the surface of the food, thereby performing its function,
maintaining the quality of the food product, and extending its shelf life [263,264]. Among
controlled-release packaging types, edible coatings have gained widespread attention [264].
Coating represents a key method for producing controlled-release active packaging, where
food products are coated with a thin layer of biopolymers with bioactive-loaded parti-
cles [265]. A variety of functionally bioactive compounds can be incorporated into the
active films and coatings to be used as active packaging materials and vehicles to deliver
key compounds [266], including phenolic compounds, probiotics, and prebiotics [6].

One of the principal factors in the development of controlled-release active packaging
is determining the release mechanism [267]. Three types of release mechanisms have been
proposed for active packaging systems incorporated directly into food (Figure 2):

1.  Diffusion-induced release: volatile bioactive compounds diffuse from the packaging
into the food through air or non-direct contact spaces. This mechanism is common in
petroleum-based and water-resistant polymers.

2. Swelling-induced release: bioactive compounds are released when moisture-sensitive
packaging material, such as polypeptides or polysaccharide-based films, swells, al-
lowing the bioactive compounds to be released by direct contact.

3. Disintegration-induced release: applicable to biodegradable or reactive non-biodegradable

polymers where the packaging material partially breaks down releasing the active
compounds [263,264,267].

A) DIFFUSION-INDUCED
RELEASE

C) DISINTEGRATION-INDUCED
RELEASE

. Food
. Edible coating
* Bioactive compound

B) SWELLING-INDUCED
RELEASE
Figure 2. Controlled-release mechanisms of bioactive compounds from edible coatings: (A) illustra-
tion of diffusion; (B) swelling; and (C) disintegration processes.

The diffusion process is the main phenomenon in the release of bioactive compounds
from active packaging, generally described by Fick’s second law [267]. The main challenge
is to control the rate or kinetics of the release of the active compounds during the shelf life
of the food: too slow a release may not provide sufficient bioactive agents at the beginning
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of storage, while too rapid a release may deplete active agents before the end of shelf
life [263-265,267].

Mathematical modelling based on Fick’s law, together with the diffusion coefficient (D)
and the partition coefficient (K), provides a useful framework to predict and optimize con-
trolled release. These parameters describe how molecules migrate through the packaging
material and how they distribute between the polymer matrix and the food or simu-
lant [231]. Food simulants, established by Commission Regulation (EU) No. 10/2011 [268],
are often employed to facilitate such studies [269].

However, mathematical models present limitations in real food applications since the
release of active compounds is affected by certain conditions, including internal factors
(bioactive agents, polymer matrix, and active layer) and external factors (storage and
product characteristics) [262,264,267,270,271]. For example, larger bioactive agents have a
slower release rate, while polymers with higher porosity or storage at elevated temperatures
accelerate release [89,103]. Additionally, the pH of the medium can significantly alter release
behaviour, as observed for rosemary essential oil and carvacrol [264,272].

Table 3 shows some examples of controlled release in active edible coatings and films.
Pinheiro et al. (2012) [273] investigated and revealed how the spatial position of methylene
blue within a k-carrageenan/chitosan nanolayered coating, as well as the environmental
conditions (pH and temperature), significantly affected the release profile, highlighting
the importance of these factors in designing controlled-release systems. The study by
Mastromatteo et al. (2009) [274] also showed that thymol release from a zein-based film
decreased with increasing film thickness, while higher spelt bran content significantly
accelerated its release. Arcan et al. (2014) [275] found that the use of fatty acids with
different chain lengths in the production of zein blend films affected the release rate of
lysozyme and catechin, while changing the number of double bonds in the fatty acids
affected only the release rate of catechin.
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Table 3. Application of bioactive compounds in controlled release systems using edible polymer matrices, with encapsulation methods, food product or food

simulant applications, and observed food effects or controlled-release behaviour.

C Coatin, Encapsulation/
Bioactive Matrix% Controﬁed-Release Food ITroduct/Food Observed Effect/Benefit Reference
Compound Simulant
Polymer Method
Thymol release can be controlled by
Thymol Zein Mono and multilayer films Distilled water varying the thickness of the layers and the  [274]
amount of biodegradable fibre
é;giﬁ;ﬁﬁggg:gds \-carrageenan Emulsified film with lipid Not applicable Improved retention of polar aroma . [276]
globules compounds and gradual release over time
ethyl-esters, alcohols)
K-carrageenan and Multilayer nanocoating PBS of a certain pH (2.0 or  Controlled and modulable release
Methylene blue chitosan on polyethylene  via layer-by-layer 7.0) and temperature (4 or  behaviour, adjustable according to pH, [273]
terephthalate deposition 37 °C) temperature, and incorporation layer
HCl solution (pH 1.2);
simulated gastric
Whev protein with eum condition (pH 1.2) with Gum arabic showed better control of the
Riboflavin and b'y pl “meth gl Water-in-oil-in-water 0.1% pepsin; liposoluble vitamin (x-tocopherol), while [277]
a-tocopherol arabie, Jowmmerioxy (W/O/W) microcapsules  phosphate-buffered saline  k-carrageenan showed better control of the
pectin or k-carrageenan (pH 7.4); and simulated water-soluble vitamin (riboflavin).
intestinal condition (pH
7.4) with 1.0% pancreatin
All lysozyme-containing films inhibited L.
Lysgzyme, catechin, and Zein-wax composite Aggrega’fed hydrophobic Fresh Kashar cheese monocytogenes grqwth for 8 "Neelfs, while [278]
gallic acid wax particles films with catechin and gallic acid
effectively prevented oxidative changes
The use of fatty acids with varying chain
Zein blended with oleic, Microsphere lengths affected the release rates of both
Lysozyme and (+)-catechin linoleic, or lauric acids enca sﬁ lation Water compounds, whereas changes in the [275]
(with lecithin) p number of double bonds influenced only
the release of catechin
The liposomal oil combined with mucilage
inhibited polyphenoloxidase, lipoxygenase
Rosemary oil Mucilage Liposomes Fresh-cut banana activities, fruit softening and weight-loss, ~ [279]

and retained higher firmness and soluble
solids content
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Table 3. Cont.
. . Coating Encapsulation/
Bioactive Matrix/ Controlled-Release Food lfroduct/Food Observed Effect/Benefit Reference
Compound Simulant
Polymer Method
Nanocapsules and d .
nanospheres; Improved [3-carotene retention was
/ Fresh-cut melon (Cucumis  achieved with minimal changes in
[3-carotene Xanthan gum Korsmeyer-Peppas and . . : [280]
Higuchi matrix-type melo, var. cantaloupe) whiteness and firmness helping to extend
& shelf life to 21 days at 4 °C
models
Nanolaminated films by The release profiles were affected by pH
S . . the layer-by-layer Phosphate-citrate buffer conditions, showing a greater release in
Folic acid Alginate/chitosan technique and solutions at pH 3 or 7 small intestine pH conditions where it is [281]
post-diffusion supposed to be adsorbed
. Carboxymethylated Nano metal-organic . On day 6, theorotten.alje.a s of the cut treated
Curcumin . Pitayas were below 5%, exhibiting a [282]
filter paper frameworks -
superlong-acting performance
Microencapsulation of SBT protected its
Spent black tea Pectin-sodium caseinate . . o antioxidants during film processing and
(SBT) extract in a cassava starch matrix Microencapsulation Water and 95% ethanol significantly enhanced their migration into [283]
both simulants
This coating enabled long-term release (up
. o . to 38 days) of natural preservatives on the
Curcumin Chitosan Hydrog.en bonding Litchis, strawberries, surface of the fruit, maintaining freshness  [284]
interactions mangos, and plums
and appearance at least 9 days longer than
uncoated samples
Inhibited the contamination of Botrytis
cinerea; preserved weight, acidity, total
Angelz'ca arf:hangelzca Chitosan Nanoemulsion Grapes (Vitis vinifera L.) 501‘.1b1‘? solids, phenolics, p.H ’ ?nzymatlc [285]
essential oil antioxidants; reduced respiration rate; and
enhanced sensory quality over 30 d
of storage
Improved antimicrobial activity, enhanced
Cinnamon essential Chitosan /gelatin Pickering emulsion 50% ethanol and thermal and mechanical stability, and [286]
oil (CEO) & & 95% ethanol exhibited better barrier properties and

controlled release of CEO




lipid carriers

respiration rate, total soluble solids, weight
loss, and decay, particularly with
nanostructured lipid carriers
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Table 3. Cont.
. . Coating Encapsulation/
Bioactive Matrix/ Controlled-Release Food lfroduct/Food Observed Effect/Benefit Reference
Compound Simulant
Polymer Method
Encapsulation improved volatile retention
Thyme essential oil Whey protein Co—prec1p1tat.10n n Water and ethanol 95% m the film and enflbled gradual release, [287]
-cyclodextrin with slower rates in water compared to
95% ethanol
The emulsion effectively prevented weight
Thyme essential oil Chitosan Pickering emulsion Strawberries loss, reduced firmness decline, inhibited [288]
pH increase, decreased titratable acidity,
and restricted microbial growth
It extended shelf life and maintained
2-hydroxypropyl-f3- . . .
L sensory quality by delaying pH increases,
e . cyclodextrin; . . ) )
Vanillin Chitosan Chicken preventing the proliferation of [289]
pH-dependent ) . .
microorganisms, and inhibiting
controlled release . 2
lipid oxidation
Potent antimicrobial effect, effectively
L Chitosan and Water-in-oil . COI‘ltI‘OH.l & fch.e growt h o B.otryt?s cinered
Thyme essential oil . Strawberries and maintaining fruit quality (significantly [290]
carboxymethyl cellulose nanoemulsions : :
reduced weight loss, preserved firmness)
for 15 days at 4 °C
Whey isolate protein fibre Temperature-responsive Maintained pH, soluble solids, and vitamin
y proter Sodium alginate be p Grapes C; reduced weight loss by 44.5% at 45 °C [291]
and glycyrrhizic acid (3:1) emulsion system
after 6 days
Higher peroxidase activity, total phenolic
. content, flavonoid content, DPPH radical
Nanoemulsion and scavenging activity, pH, and lower
Thymol Alginate nanostructured Carrot sIng Y P [292]
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When conducting experimental tests, it is very important to design them correctly
and to consider that the release depends entirely on the compatibility of the bioactive
compound and the selected food product or food simulant. However, it was found that
most studies focus on the development and physicochemical characterization of active
edible coatings and films by scanning electron microscopy, Fourier transform infrared
spectroscopy analysis, zeta potential, particle size, etc., but only a few of them evaluate
the release of the active compounds through testing with food simulants or in the foods
themselves. For example, Rajapaksha and Shimizu (2021) showed a significantly higher
release of antioxidant compounds from spent black tea microcapsule films in water than
in 95% ethanol [283]. Fan et al. (2023) [286] evaluated the controlled release of cinnamon
essential oil from gelatin/chitosan films stabilized with Pickering emulsion in 50 and 95%
ethanol solutions, simulating semi-fatty and fatty foods, respectively. The release rates
depended on the concentration of the essential oil in the matrix, showing that adjusting
its content makes it possible to modulate the release. In the system with 50% ethanol, the
higher amount of water caused swelling and the partial dissolution of the film, weakening
the network structure and increasing the release [286]. Edible whey films incorporating
thyme essential oil encapsulated in 3-cyclodextrin inclusion complexes demonstrated a
gradual release of volatiles, with significantly higher release rates in 95% ethanol than
in water, indicating controlled and matrix-dependent release behaviour relevant to food
packaging applications [287]. Some studies have investigated controlled release in the
gastrointestinal fluids themselves. Acevedo-Fani et al. (2018) [281] developed edible algi-
nate/chitosan nanolaminates loaded with folic acid, designed for pH-dependent controlled
release. Release was tested in simulated gastrointestinal conditions (phosphate—citrate
buffers at pH 3 and 7, 37 °C for 7 h) and the nanolaminates exhibited minimal release at
acidic pH values and a pronounced release at a neutral pH. These results suggest that the
system enables targeted folic acid delivery, protecting it in the stomach and promoting
its release in the small intestine, the primary site of absorption. Liu et al. (2013) [277]
prepared a film-forming emulsion of polysaccharide and whey protein containing both
liposoluble and water-soluble vitamins. Different polysaccharides such as gum arabic,
low-methoxyl pectin, and k-carrageenan showed distinct synergistic effects with whey
protein, resulting in different results regarding the controlled-release properties of the
vitamins in simulated gastrointestinal conditions. Gum arabic showed better control of
the liposoluble vitamin (x-tocopherol), while k-carrageenan showed better control of the
water-soluble vitamin (riboflavin).

Table 3 also shows several studies that conducted shelf life studies with real foods
coated with active edible coatings or films. As can be seen in the table, most are applied to
fresh fruits (such as banana, litchis, strawberry, mango, plum, pitaya, grape, and melon),
but there are also studies on other foodstuffs like cheese, chicken, and vegetables. Various
natural polysaccharides have been used as polymeric matrices, since they are renewable re-
sources with excellent biocompatible, degradable, and antimicrobial properties [246], with
chitosan being the most common. Conventional systems such as liposomes, nanoemulsions,
and modified cyclodextrins have been used, as well as more advanced technologies such
as Pickering emulsions, metal-organic frameworks, and lipid nanostructures. These tech-
niques allow the release to be tailored to environmental factors such as pH, temperature, or
the polarity of the medium. Kinetic models such as Korsmeyer-Peppas and Higuchi have
been useful to describe the dynamics of 3-carotene release through xanthan gum coatings
combined with nanocapsules [280].

In some cases, edible coatings are intended to impart flavour by encapsulating and
gradually releasing aromatic compounds, particularly the more polar volatiles that are typ-
ically evaluated by gas chromatography-mass spectrometry (GC-MS) [277]. For example,
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Marcuzzo et al. (2010) [276] developed edible films based on a (-carrageenan emulsion that
managed to retain volatile compounds during the film formation process and gradually
release them over time.

Studies on the release of bioactive compounds from active and edible coatings are still
scarce, so it is important to continue researching how the film matrix, the carrier particle,
and the type of bioactivity affect this release, as well as to investigate the mechanisms
involved and develop mathematical models that enable the description and prediction of
the release profile [264].

5. Functional Food Applications

Edible coatings and films are a sustainable and effective method of preserving food
and increasing its shelf life by acting as passive barriers that alleviate the need for chemicals,
protecting products from moisture, oxidation, mechanical stress, and microbial infesta-
tion [293]. As shown in Table 4, numerous studies demonstrate the potential of edible
coatings and films not only to extend the shelf life of foods—such as vegetables, fruits, fish,
meat, cereals and their derivatives, and dairy products—but also to enrich their content in
bioactive compounds, thus improving their functionality and health benefits (functional
foods) including antioxidant, anti-inflammatory, and cardioprotective effects; improving
gut and immune health; aiding in disease prevention; and enhancing nutrient absorp-
tion, among other effects [6,294]. Edible coatings/films may include bioactive compounds
transforming food products into “functional” foods, which can be defined as “foods that
beneficially affect one or more specific functions of the body, beyond the proper nutri-
tional effects, in a manner that is relevant to improved health and well-being and/or a
reduction in disease risk” [294]. Among these compounds, polyphenols stand out due
to their antioxidant, anti-inflammatory, and antimicrobial functions, which not only help
protect food quality but may also confer health benefits after long-term storage. These
natural plant-derived molecules can modulate oxidative stress and are associated with a
reduced risk of chronic diseases such as cancer, diabetes, osteoporosis, neurodegenerative
diseases, and cardiovascular disease. In addition to polyphenols, other compounds such
as vitamins, minerals, probiotics, and prebiotics, among others, may also be incorporated
depending on the functional goal of the coating (Table 4) [295,296]. However, due to their
chemical and physical properties, many bioactive substances cannot be introduced into the
food system in a simple free state [295]. Their inclusion in edible films and coatings is a
way to increase their viability and survival during food production processes and to reach
the gastrointestinal tract in sufficiently large quantities so that they can be effective [294].
For example, El-Sayed et al. (2021) [297] developed an ecological probiotic edible coating
based on chitosan, sodium alginate, and carboxymethylcellulose with probiotic strains
(Bifidobacterium lactis, Lactobacillus acidophilus, and Lactobacillus casei) to improve the shelf life
of ultrafine soft cheese for 45 days, thus achieving a functional product with antimicrobial
properties. Semwal et al. (2022) [298] developed a sodium caseinate-based edible probiotic
film for wheat buns with chia mucilage as a protectant to improve the viability of probiotic
bacteria (Limosilactobacillus fermentum NKN51 and Lactobacillus brevis NKN52) for 3 weeks
at 4 °C and 2 weeks at 25 °C.

However, sometimes, after intestinal simulation, the probiotic load decreases sharply
due to the change in pH and the presence of different enzymes that can affect the integrity
of the coating [294]. In these cases, prebiotics can also increase the viability of probiotics
in films [299]. For example, Sdez-Orviz et al. (2020) [294] designed symbiotic bioactive
coatings combining lactobionic acid as a prebiotic and Lactobacillus plantarum as a probiotic
to produce a novel functional dairy product. The results showed that probiotic levels
remained within acceptable ranges after simulated digestion, thanks to the protective effect
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of lactobionic acid. In another study, Alvarez et al. (2021) developed a new non-dairy
probiotic food by adding an alginate-based solution enriched with prebiotics (inulin and
oligofructose) and probiotic cultures (Lactobacillus rhamnosus and Bifidobacterium animalis
subsp. lactis), which resist simulated gastrointestinal digestion conditions, to fresh-cut
apples [300].

In addition, it is essential to conduct studies that confirm the ability of active com-
pounds to diffuse through coatings and reach the food matrix, as demonstrated by Tampucci
etal. (2021) [301] in their research on tyrosol-enriched tomatoes. The authors evaluated a
coating based on chitosan, and found that tyrosol, a hydrophilic molecule associated with
health benefits, could pass through the tomato peel and infiltrate the pulp, maintaining
constant levels for seven days of storage [301].

Edible coatings are also used in combination with osmotic dehydration to develop
healthy and sustainable fruit and vegetable snacks with improved properties, as they
allow the removal of water without significant nutrient losses, optimizing the texture and
physicochemical properties [302].

Although studies on functional food applications are limited, there is considerable
interest in the potential of nanocomposite systems as carriers of bioactive compounds to
improve edible coatings, enhance the controlled release and dispersibility of bioactives
within the food matrix, and increase the overall functionality of food systems [296]. Khatreja
& Santhiya (2024) [303] developed an oral disintegrating film (ODF), a convenient and
friendly alternative for patients with swallowing difficulties, composed of hyaluronic
acid, okra mucilage, suspended vitamin C-loaded bioactive glass nanoparticles, and clove
essential oil as a potential functional food. The developed ODF showed antibacterial,
antioxidant, and hemocompatible properties. The incorporation of nanoparticles and
essential oil improved the thermal and mechanical properties and porous nature of the
films, making them useful for treating mouth ulcers, which also alleviates the pain due to
the effect of the eugenol in clove oil [303].
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Table 4. Recent advances in the use of functional compounds for the development of edible coatings and films materials with food applications, functional properties,

and health benefits.
Functional Compound Co:/[t;rt\egl{il:lllm Functional Property Food Product Health Benefit Reference

Probiotic (Lactobacillus plantarum Symbiotic delivery increases the viability of Regulation of the gastrointestinal
CIDCA 83114) and prebiotic Methylcellulose prObIOhCS. after .bOth 90 days of §torage and Apple snacks tract.and preven’flon of . [304]
(fructooligosaccharides) contact with a simulated gastrointestinal cardiovascular disease and different

environment, and maintain sensory properties forms of cancer, among other effects
Lactobacillus casei Shirota Inulin, gela.tm and PrOb%OHC dehx{ery, Stab.l lity in 19w-m01sture Cracker cookies Preventing various health problems  [305]

whey protein matrices, and increase in shelf life
K-Carrageenan or Improves product stability by enhancing Rszggitfg;;ii};to_eat
Iron and ascorbic acid tapioca gtarch ascorbic acid retention and iron bioaccessibility };wscﬁa t2 Duchesne Carrying micronutrients [306]
P under intestinal conditions ex Poiret)
Enhanced microbial safety against
. . . . . . Escherichia coli (minimizes foodborne
Lytic bacteriophage Chitosan Antimicrobial delivery Tomatoes pathogen risk through inactivation [307]
and growth inhibition)

Increases antioxidant properties (synergistic Antioxidant (anti-diabetic,
Garlic essential oil Chitosan . prop ynerg Beef meatball anti-cancer, and anti-atherosclerotic [308]

effect), especially as a radical scavenger activities)
Probiotic (Lactobacillus rhamnosus Synbiotic delivery, improved probiotic viabilit zggsli(tm; Czir;ﬁrfxli?b?)r;fegomstlc
CECT 8361) and prebiotic (inulin ~ Alginate ynoie . Y, tmprovec pr Y Blueberries Y ag . [309]
and oligofructose) antimicrobial activity, antilisterial effect pathogens and improvements

& regarding male fertility

Probiotic (Ezﬁdobactermm anzrfzal.zs Whey protein isolate Syn‘.blot.lc c%e.hvery and improved probiotic Antioxidant properties and supports
subsp. lactis BB-12) and prebiotic and alinate strain viability throughout storage and Cereal bars ut health [310]
(inulin) & throughout in vitro gastrointestinal digestion &
Probiotic (Lactobacillus plantarum i . . I
CECT 9567) and prebiotic Sodium alginate Syl’ﬂ.:)lOt.IC Qe.hvery and 1n}proved prf)bwt.l ¢ Cottage cheese Improved h.ealtl} and/or reduces the [257]
(lactobionic acid) strain viability after the simulated digestion risk of certain diseases
Prebiotics (oligofructose and
inulin) and probiotic cultures . . » o Antioxidant activity; complementary
(Lactobacillus rhamnosus and Alginate Synbiotic delivery; increases the viability of Fresh-cut apple strategy in the management [300]

Bifidobacterium animalis
subsp. lactis)

probiotics; antimicrobial activity

of obesity
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Table 4. Cont.
Functional Compound Co;/:;?;gl{illlm Functional Property Food Product Health Benefit Reference
o . 3 ’ Chitosan, sodium D1gest1ve regulation, st}mulatlng the
Probiotic strains (Bifidobacterium . o . . . immune system, lowering
; . ) ) alginate and Antimicrobial preservation to extend shelf life 7
lactis, Lactobacillus acidophilus, - UF soft cheese cholesterol levels, lactose intolerance, [297]
. . carboxymethyl and ensure stability .
and Lactobacillus casei) cancer prevention, and
cellulose . .
cardiovascular diseases
. . Antioxidant, cardioprotective,
Tyrosol Chitosan gﬁf:is ft(})f dshelf life and preserves the quality Tomatoes antitumoral, anti-inflammatory, and ~ [263]
neuroprotective properties
Probiotic bacteria
(Limosilactobacillus fermentum Sodium caseinate and  Probiotic delivery, improving their viability and Wheat buns Gut health support and disease [261]
NKNB51 and Lactobacillus brevis chia mucilage stability on bakery products risk reduction
NKN52)
Probiotic strain Enterococcus Mucilage of cactus Probiotic delivery, improving the preservation . Antioxidant activity, potential gut
. AP . Fresh-cut apple slices . - . [311]
faecium FM11-2 (Opuntia ficus-indica) and shelf life of the product health benefit from probiotic delivery
Probiotic (L. acidophilus) and . . Synb.lot.lc dghvery, increases the ylablhty of Corn-based snack Reduction in the duration of Fharrhga
L Sodium alginate probiotics, improves thermal resistance and . and reduction in body mass index in  [312]
prebiotic (agave fructans) ; . (churritos) almasalud e
increases shelf life obese individuals
. Reduces oil absorption, minimizes water loss, Reduction in the intake of saturated
. . Alginate and S Mackerel (Scomber . .
Seaweed (Pelvetia canaliculate) preserving fish succulence, and prevents fat and trans fatty acids, preventing [313]
carrageenan . . . scombrus) . .
oxidation during cooking cardiovascular diseases
Encapsulated raspberry Aloe ferox gel Increasing shelf life while minimizing weight Ready-to-eat High antioxidant, anti-mutagenic, [314]
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In addition to the challenges of ensuring functionality under gastrointestinal condi-
tions, consumer acceptance remains a critical factor. In this context, evaluating sensory
attributes such as colour and appearance, odour, and taste is essential to determining the
feasibility of incorporating functional ingredients into new food products. For instance, Al-
varez et al. (2021) [300] reported that the addition of probiotic strains to a prebiotic-alginate
coating negatively affected the product’s sensory quality at the end of storage. Apples
containing L. rhamnosus showed browning, off-odours, and a deteriorated appearance after
8 days, with scores below the established acceptability limit. Furthermore, the complexity
and variability of food matrices is another challenge to consider in these trials. For ex-
ample, in the case of apple snacks [304], brushing dry and crunchy snacks with a liquid
film-forming solution can soften them and impair their sensory properties. The problem of
variability within batches, and even within individual fruits, is an accepted fact in these
food matrices [309].

6. Overview on Social and Environmental Impact and Scalability

According to the United Nations” 17 Sustainable Development Goals (SDGs) out-
lined in the 2030 Agenda, edible packaging can contribute to achieving some of them.
In particular, Goal 2 (Zero Hunger) and Goal 3 (Good Health and Well-being) may be
supported through the use of active edible materials [315]. These materials can extend
food shelf life, enhance nutritional profiles by delivering bioactive compounds, and reduce
food industry waste by utilizing it as a source of high-value ingredients. This integrated
approach supports both food security and public health, while promoting more sustainable
production systems.

Nonetheless, edible films and coatings must face a scalability challenge, since they are
usually developed at lab scales and their acquisition is limited, leading to high production
costs. Additionally, these biopolymers exhibit wide variability in molecular weight, chain
branching, and purity in each batch, depending on their origin and extraction protocol [316].
Consequently, this inconsistency affects their brittleness, thermal stability, and barrier or
mechanical properties, complicating reproducible processing.

Casting is the methodology most employed in coating/film formulation, and it is
not compatible, as are other lab-scale methods, with industrial processes [317]. Many
biopolymers cannot tolerate the thermal and shear stress of extrusion, resulting in film
thickness variations or adhesion issues. Alternative technologies like electrospraying or
electrospinning show lab-scale promise for active coating production, but their low yields
and lack of uniformity make industrial upscaling difficult [317]. Other techniques, such as
microbial biopolymer production (pullulan or xanthan gum), require specific environmental
conditions, which increases operational costs and is vulnerable to contamination. The
absence of standardized production protocols and the difficulties of processability and
scalability lead to high production costs, challenging the commercializing of innovative
packaging [318].

Furthermore, the use of biopolymers is eco-friendly, since their production exhibits
lower non-renewable energy use, CO, emissions, and overall greenhouse gas emissions,
compared to conventional plastics and biobased alternatives (PHA, PLA, PBAT, etc.).
Nonetheless, environmental concerns are raised when considering their life cycle assess-
ments (LCAs) [319]. Many studies have focused on the most currently employed biobased
and biodegradable materials, with little research found on the biopolymers reviewed in
the present study [120,204]. Hence, considering bioplastics end of life, recycling (thermo-
mechanical, chemical, and biological) may reduce greenhouse gas emissions, since the
potential to replace virgin materials is found to be >80% [320,321]. However, the num-
ber of recycling cycles remains inconclusive [322]. On the other hand, landfilling and
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composting are among the most common disposal or degradation pathways, although
none of them are inherently more environmentally favourable than energy recovery, nor
the most employed [320,323]. Despite the fact that bioplastics can be landfilled without
prior separation or cleaning, this method involves uncontrolled methane emissions, whose
energy recoveries do not exceed 20%. Industrial composting was found by some authors to
be the pathway with highest negative impact, due to high CO, and N, O production or soil
acidification, which negatively impact seed germination [319,324]. Conversely, anaerobic
digestion has been found to be the degradation pathway with the lowest footprint, due to
the use of biogas for electricity production [319].

Consequently, bioplastics also lead to environmental impacts, including eutrophication
due to biomass cultivation, acidification, or land use change. Therefore, the scalability of
the production of active and biodegradable polymers should be assessed in a way that
aims to incorporate investigations into their real-world use. Although the production of
bioplastics leads to lower energy costs and greenhouse gas emissions, more research and a
better understanding of the LCA and end of life of bioplastics must be achieved in order to
reduce their environmental impact by achieving a circular economy.

7. Safety and Regulation of Active and Edible Coatings

Edible coatings are subject to regulations that apply to food as they are part of the
edible portion of the food product. Thus, the substances used in the preparation of edible
coatings must be of food grade. In Europe the components used in the manufacture of edible
coatings are mainly constituted by additives which are regulated under the Regulation (EC)
No 1333/2008 of the European Parliament and of the Council on food additives [325] and
they are included in the union’s list of food additives published in Commission Regulation
(EU) No 1129/2011 [326]. Moreover, they must meet specifications concerning purity as
stated in Commission Regulation (EU) No 231/2012 [327] and this must be indicated on
the label either with the chemical name or the E number.

In the United States the substances used in edible coatings must be classified as
Generally Recognized As Safe (GRAS). The Food and Drug Administration (FDA) provides
an inventory of substances allowed in edible coatings, which fall into the categories “Food
additives permitted for direct addition to food for human consumption” and “Secondary
direct food additives permitted in food for human consumption”. In addition, other
substances including copolymers (e.g., vinyl chloride—vinylidene chloride copolymer),
dispersing adjuvants (e.g., polyethylene glycol), film formers (e.g., sodium lauryl sulphate),
and adjuvants (e.g., polyvinylpyrrolidone) are also allowed [7,328-330].

Other important aspect that should be considered include the presence of ingredients
that are potentially allergenic, which also should be declared in the label [7,328].

Active coatings which are not part of food and are not intended to be consumed
together with the food are regulated by Commission Regulation (EC) No 450/2009 on active
and intelligent materials and articles intended to come into contact with food. However, it
is worth mentioning that active substances that are intentionally added with the purpose
of being released into the food and are intended to have a technical effect on the food must
meet the requirements of food additive legislation [331].

Regarding bioactive substances, currently plant extracts are being investigated to be
incorporated into active coatings, due to, on the one hand, the better acceptance of natural
compounds by the consumer and, on the other, the use of natural resources. However, a
very limited number of plant extracts (e.g., extracts of rosemary) have been authorized as
additives in the EU, which hinders the commercialization of these active systems. Therefore,
the regulatory requirements remain a critical issue for their commercialization.
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8. Conclusions and Future Perspectives

Studies on edible films and coatings are a trending topic in sustainable packaging
that enhances food functionality and extends shelf life. Biobased materials from food
by-products have emerged as a sustainable alternative, reducing environmental impact
while contributing to circular economy strategies. Despite their potential, several chal-
lenges remain before these materials can achieve large-scale commercialisation. Their
mechanical and barrier properties are still inferior to those of conventional plastics, and
thus the incorporation of additives and the use of advanced techniques, such as EHDA or
spraying for nano- or micro-structured multilayered coatings, should be further explored.
Additionally, the incorporation of bioactive compounds and natural extracts not only im-
proves food safety and quality but also enables the development of nutrient-enriched and
functionalized foods. However, regarding the controlled release of pre- and probiotics,
nutrients, and bioactives, key parameters such as compatibility, stability during processing
and storage, bioactivity, and functionality require deeper investigation. Edible coatings
and films are recognized as a safe, renewable, low-cost, and sustainable. However, barriers
remain, including consumer acceptance, scalability, and the high costs associated with
industrial production (e.g., controlled release nanosystems). Bio-based materials and encap-
sulation technologies need to become cost-competitive with conventional alternatives. For
regulatory approval, compliance with food safety standards, and allergenicity assessment,
digestibility and toxicity testing remain critical requirements. Therefore, future efforts
should not only focus on technical progress but also address consumer education, regula-
tory support, the integration of circular economy principles, and cost competitiveness to
facilitate broader adoption.

Importantly, this review goes beyond summarizing the general fundamentals of edible
coatings and films by focusing on underexplored aspects that can drive future innovation
in the field. Particular emphasis is placed on the integration of new biopolymer sources and
nanostructured materials to enhance mechanical and barrier properties, the development
of controlled release systems for bioactive compounds as an emerging but often overlooked
functionality, and the application of edible coatings as carriers of nutrients and bioactives
to support the design of functional foods. By consolidating recent advances in these
areas and highlighting the existing knowledge gaps, this review provides a roadmap for
researchers, industry, and regulators to accelerate the transition of edible coatings and films
from experimental development to commercial reality, ultimately contributing to more
sustainable and health-oriented food systems.
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