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Abstract: Nano-hydroxyapatite (n-HA) is the main inorganic component of natural bone, which
has been widely used as a reinforcing filler for polymers in bone materials, and it can promote
cell adhesion, proliferation, and differentiation. It can also produce interactions between cells and
material surfaces through selective protein adsorption and has therefore always been a research
hotspot in orthopedic materials. However, n-HA nano-particles are inherently easy to agglomerate
and difficult to disperse evenly in the polymer. In addition, there are differences in trace elements
between n-HA nano-particles and biological apatite, so the biological activity needs to be improved,
and the slow degradation in vivo, which has seriously hindered the application of n-HA in bone fields,
is unacceptable. Therefore, the modification of n-HA has been extensively reported in the literature.
This article reviewed the physical modification and various chemical modification methods of n-HA
in recent years, as well as their modification effects. In particular, various chemical modification
methods and their modification effects were reviewed in detail. Finally, a summary and suggestions
for the modification of n-HA were proposed, which would provide significant reference for achieving
high-performance n-HA in biomedical applications.

Keywords: nano-hydroxyapatite; surface modification; polymers; bone repair

1. Introduction

Bone defects caused by trauma, infections, and bone tumors are very common. Con-
ventional autologous or allogeneic bone grafting has its own limitations, while artificial
bone grafting is currently the most popular treatment for all types of bone defect repair,
including dental bone implantation and cranial defect repair in neurosurgery. As is known
to us, bone matrix is an extracellular matrix in bone tissue that has undergone calcifica-
tion, consisting of 65% inorganic phase and 35% organic phase [1]. Nano-hydroxyapatite
(Ca10(PO4)6(OH)2, n-HA) is the major inorganic constituent in human hard tissue, and
its chemical composition and structure are very similar to those of biological bones and
enamel, so n-HA is known as a highly biocompatible, bioactive, osteoconductive, non-toxic,
non-inflammatory, and non-immunogenic agent [2–4]. The preparation methods of n-HA
mainly include the hydrothermal method, chemical precipitation method, microwave solid
phase method, sol–gel method, spontaneous combustion method, and electrochemical
deposition method [5–7]. Among the preparation methods, the chemical precipitation
method is the most commonly used preparation method, which is a mild experimental
approach without expensive equipment. However, the synthesized n-HA is used alone
in orthopedic materials; it exhibits some inherent defects in clinical applications, such as
high brittleness and in vivo difficulty in degradation, and its biological activity needs to
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be improved. To compensate for these deficiencies, it is simple to combine n-HA with
degradable polymers so as to obtain high-performance bone materials [8]. However, it has
been shown that n-HA is difficult to disperse uniformly in the polymer due to its inherent
agglomeration of n-HA nano-particles, and there exists poor interfacial bonding between
nano-particles and polymers via physical blending, which could lead to poor mechanical
properties. In addition, the biological apatite usually contains a small amount of carbonate,
fluorine, silicon, magnesium, sodium, citric acid, etc., so there are some differences between
the synthesized n-HA and the biological apatite, resulting in its insufficient osteogenic
activity, so it is difficult to obtain the vascularized bone formation and achieve good bone
integration. Moreover, conventional n-HA is difficult to biodegrade in vivo due to its per-
fect crystal structure of n-HA. Therefore, it is very necessary to carry out the modification
of n-HA so as to obtain the n-HA/polymer nano-composite with the aim of expanding its
application in the biomedical field. To enable readers to have a clearer understanding of the
reasons and modification strategies for n-HA, the logic behind the surface modifications of
n-HA is summarized (shown in Figure 1).
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2. Physical Modification

The methods of physical modification include physical adsorption, electron induction,
and laser irradiation, and the main purpose is to improve the stability and dispersion
of nano-particles. Aronov D et al. [9] reported on surface free energy modulation of a
hydroxyapatite-coated titanium femoral implant via low-energy electron irradiation. The
selective bacterial adhesion in combination with the ability to define the surface energy
properties suggests that this method opened an avenue for the protection of implants from
bacterial infections. Queiroz AZ et al. [10] used a KrF excimer laser with a wavelength
of 248 nm and a pulse duration of 30 ns to modify the surface of n-HA, and a series of
characterizations showed that the surface modification with the laser could increase the
surface area of n-HA, making it a promising technology with for improving reactivity and
drug-delivery ability. Physical modification had been favored by researchers due to its
advantages such as easy handling, low production cost, and no pollution. However, the
organic molecules were bound to the surface of n-HA particles by a non-covalent bond, so
the physically adsorbed organic molecules could be easily washed out with the body fluid.
While the chemical modifier is bound to the surface of the HA particles via a chemical
bond, it is more stable than physical modification, so the chemical modifier is used more
frequently.

3. Chemical Modification

Chemical modification is preferred for the improvement of the morphology, crystal
structure, and surface properties of n-HA via a chemical reaction. According to the different
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reaction mechanisms, it can be divided into several types: template method, doping method,
surface grafting of small molecules or polymers, and hybrid macromolecules.

The modification methods of n-HA was shown in Table 1, and the comparison of the
different chemical modification methods was given in Table 2.

Table 1. Modification methods of n-HA.

Modification of n-HA

Physical Modification Chemical Modification

Physical adsorption Template method

Electron induction Ion doped (Single ion doped, Multiple ions co-doped)

Laser irradiation Adding surfactants for modification

Surface modification by grafting polymer

Preparation of hybrid nano-apatite by introducing macromolecule

Table 2. Comparison of the different chemical modification methods.

Methods Modification Effect References

Physical modification Physical adsorption, electron
induction, and laser irradiation

Improve the stability and dispersion of
nano-particles [9,10]

Chemical modification

Template method The modified n-HA with different morphologies or
structures is obtained by removing the template [11–14]

Ion doped Adding corresponding ions to the reactants to alter
the surface characteristics of n-HA [15–21]

Adding surfactants for
modification

Adsorption of their groups of surfactants on the
n-HA particle surface [22–42]

Surface modification by grafting
polymer

Some polymers were grafted onto n-HA to improve
the interface adhesion between n-HA and polymers [43–79]

Preparation of hybrid
nano-apatite by introducing

macromolecule

Some amphiphilic macromolecules were introduced
to obtain hybrid nano-apatite, which displayed

better reinforce effect for polymers
[80–94]

3.1. Template Method

The template method involves the interaction between the precursor of the synthesized
n-HA particles and an organic substance (template) with a certain morphology or structure,
so that the generated n-HA is covered on the surface of the template or embedded inside it
to form a composite, and the modified n-HA with different morphologies or structures is
obtained by removing the template. Zhou H et al. [11] reported a one-step hydrothermal
method to synthesize mesoporous HA with the assistance of a cost-effective template vita-
min C. The mesoporous HA exhibited enhanced adsorption of the model drug doxorubicin
compared to conventionally synthesized HA. Aguilar AEM et al. [12] synthesized n-HA
via chemical precipitation using Euclea Natalensis root extract as a template. The results
showed that n-HA from the green route presented a spherical-like shape with a smooth sur-
face, and the surface of n-HA without the green template was covered with nanogrooves.
Utara S et al. [13] successfully synthesized HA by means of the sol–gel method in the
presence of ozonolyzed natural rubber latex templates of various molecular weights, and
the formation mechanism of synthesized HA templated by ozonolyzed natural rubber
latex is shown in Figure 2. The results showed that the molecular weight, as well as the
functionality of the biomacromolecule template, influenced the phase crystallinity and
morphology of synthesized HA. From the literature review, it can be concluded that the
template had a great effect on the morphology of HA, which is suitable for obtaining HA
nano-particles with various morphologies.
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3.2. Ion Doped
3.2.1. Single Ion Doped

Doping HA with foreign ions is becoming more and more popular as a chemical
method to enhance its performance and endow it with new characteristics [14]. Some
cations, such as M2+, can be easily exchanged with Ca2+ in HA to form an apatite-based
solid solution. Some anions, such as Cl− and F−, can be easily replaced with OH− in HA
to form a solid solution of chlorapatite or fluorapatite with HA, which can change the
surface properties of n-HA. Therefore, ion doping is achieved in the preparation of n-HA by
adding corresponding ions to the reactants, which improves the surface properties of n-HA.
Ma P et al. [15] applied strontium-substituted hydroxyapatite (Sr-HA) nano-particles on
the surface of polyethylene terephthalate (PET) artificial ligament, and the results showed
that the prepared coating significantly improved surface hydrophilicity and promoted
osteogenic differentiation and bone integration to repair ligament damage in rabbits, thus
providing a potential method for the use of PET artificial ligaments modified with Sr
biomaterials to reconstruct ACL. Besides strontium doping, magnesium doping also has
similar effects because they belong to the same main group of elements. Zhao SF et al. [16]
also confirmed that Mg-n-HA surface coating could better promote the differentiation of
somatic cells before osteogenesis compared to n-HA coating in vitro, and it improved the
osseointegration of implants more outstandingly at the early stage of bone healing in vivo.
Garbo C et al. [17] synthesized a new porous HA (HAP-Zn) with zinc content ranging from
0.2 to 10 wt% by coprecipitation in the presence of the surfactant L-asparagine and found
that its pore size distribution and morphology were controllable, which could be used in
orthopedic surgery, especially in the treatment of osteoporosis and as a bone substitute, as
well as in dentistry for the remineralization of tooth enamel.

3.2.2. Multiple Ions Co-Doped

To obtain better surface properties of n-HA, a multiple-ion co-doping method has
been proposed. Yilmaz B et al. [18] investigated the co-doping of different ions and
concluded that when two or more of these ions were doped together, the multiple effects
would not be a simple combination of individual contributions as the doping elements
directly changed the atomic structure of the doped HA. Predoi D et al. [19] doped a
silver and zinc HA coating into a chitosan matrix composite (Ag-Zn-HAp/CS) via the
dip-coating method, and the results demonstrated that the presence of Ag-Zn-HAp/CS
composite suspension and coating did not affect the morphology of cells and showed good
antibacterial performance. Lavanya P et al. [20] prepared copper and manganese mineral-
substituted HA (Cu-Mn-HA) and Cu-Mn-HA/chitosan (CTS)-polyvinylpyrrolidone (PVD)
via sol–gel and solvent casting techniques, respectively. The results showed that 30%
Cu-Mn-HA in CTS-PVD had superior mechanical, physical, and chemical properties,
and promoted the deposition of bone-like apatite faster than the biological composites
with 0, 10 and 20 wt% Cu-Mn-HA/CTS-PVD, so 30 wt% Cu-Mn-HA/CTS-PVD could
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be used for bone regeneration. Dittler ML et al. [21] have investigated bioactive glass
(BG)-based scaffolds of 45S5 composition covered with hydroxyapatite nano-particles
loaded with Mg2+, Zn2+ and both Mg2+ and Zn2+ ions (noted as HA-BG, Zn-HA-BG,
Mg-HA-BG, and Mg-Zn-HA-BG scaffolds). The results showed that nano-crystalline Mg-
Zn-HA coatings enhanced the biological performance of standard scaffolds of 45S5 BG
composition, suggesting that Mg-Zn-HA-coated scaffolds were attractive systems for bone
tissue engineering.

Based on the analysis of the results, we conclude that it would be a better strategy to
incorporate multiple ions into n-HA, which would be more beneficial in improving the
biological properties of bone materials.

3.3. Adding Surfactants for Modification

The molecules of surfactants have two functional groups with different solubilities
or polarities, namely, lipophilic groups (non-polar groups) and hydrophilic groups (polar
groups). The surfactants ensure that the nano-particles remain in a stable monodisperse
state in the dispersion medium through the adsorption of their groups on the particle
surface and changes the surface state of the nano-particles. The surface polarity of n-HA
particles is of great importance. When they are modified with surfactant, the polar groups
are prone to form strong bonds on their surface. Pang GH et al. [22] explored the surface
of n-HA coated with polyethylene glycol, polyvinyl alcohol, and stearic acid and found
that the type of surface modifier and the concentration of the active ingredient had a
significant effect and a certain selectivity on the particle size, and polyethylene glycol
with a concentration of 5% was the best modifier for HA, exhibiting the best dispersibility.
Wang SH et al. [16] used stearic acid to coat the surface of HAp through a high-pressure
reactor. After modification, the diameter of HAp particles increased and the interfacial
compatibility between PLA and HAp was improved; it promoted crystallization, refined
the particle size, and led to the evolution of PLA composite from brittle fracture to duc-
tile fracture such that the thermal deformation temperature, tensile strength, and impact
strength were significantly increased. Ma TY et al. [24] adopted the hydrothermal method
to synthesize well-dispersed HA nano-rods with different morphologies in the reaction
system of oleic acid, ethanol, and water and conducted a comparative study on the aux-
iliary modification effect of surfactants. It was found that the selected surfactants, such
as cetyltriethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), played an
important role in the formation of uniform HA nano-rods. Wang WY et al. [25] prepared
high-purity glycine-modified n-HA (HAP-Gly) powder via co-titration with calcium hy-
droxide, phosphoric acid, and Gly as raw materials because Gly had a certain influence on
the crystallization performance of HAP, and the diffraction peak of the modified HAP was
significantly broadened. HAP-Gly was a crystal cluster–rod structure with a length of about
50–130 nm and a diameter of about 5–15 nm. Cytotoxicity analysis revealed that it had no
cytotoxicity. Yin YJ et al. [26] also compared the changes in the adsorption performance
of n-HA after modification with surfactants. Anionic surfactant sodium dodecyl benzene
sulfonate (SDBS) was selected for the modification of n-HAP, and it was found that the
adsorption capacity of Cd2+ after modification was significantly higher than before due to
the inhibition of aggregation, which increased the specific surface area, and the introduction
of new functional groups provided more sites for the adsorption of Cd2+. Lin DJ et al. [27]
synthesized HA with the assistance of cationic, anionic, non-ionic, and zwitterion templates.
It was found that the uncalcined rod-shaped HA synthesized with non-ionic templates
at pH 4 showed excellent cell viability, while anionic, cationic, and non-ionic surfactants
showed biocompatibility only after calcination. At pH 9, the non-ionic and un-calcined
zwitterion-assisted rod HA showed excellent biocompatibility. Chen RG et al. [28] prepared
HA crystals with an arambola-like structure via supersaturated urea-assisted solvothermal
synthesis using a dual surfactant. By adjusting the dual surfactant of Na2EDTA and stearic
acid and the reaction time, the product morphology could be well customized, including
microhexagonal prisms, carambola-like structures, and microspheres. Na2EDTA had a
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slight inhibitory effect on the formation of HA, and stearic acid adsorbed onto the surface
of HA to form a long chain layer and act as a mechanical barrier, indicating its excellent dis-
persibility. Zhang SH et al. [29] proposed a method to synthesize dandelion-like HAP cells
using an environmentally friendly rosin-based phosphate diester surfactant DDPD as a new
phosphorus source, template, and crystal growth control agent. The results showed that
the prepared samples exhibited good cell compatibility. Ashraf FA et al. [30] synthesized
hexagonal HAp nano-rods in the presence of licorice root extract (LE) via a microwave
hydrothermal synthesis route at 125 ◦C, where LE was used as a green organic template (or
biological template), and the crystals displayed uniform morphology and high crystallinity
without containing carbonates, whose Ca/P atomic ratio was close to stoichiometric values,
confirming that it was a new environmentally friendly green synthesis route (as shown in
Figure 3). These HAp nano-rod products using licorice and LE as templates could be widely
used in many biomedical fields, such as bone repair, drug delivery, and dental repair.
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Sezer D et al. [31] synthesized HAP using templates such as the modification of
bromide CTAB, Pluronic hexadecyltrimethylammonium®P-123 (P123), and Pluronic™ F-
127 (F127) via the chemical precipitation method. The results showed that the surfactant
modified with CTAB-HAP had the highest adsorption performance, which was suitable as
an alternative carrier for ASA adsorption and controlled release. For this, it can be seen
that the design of surfactant components should initially be based on the following two
principles: firstly, the anchoring group with anchoring adsorption has an effect on the
surface of HAP particles; second, a solvation chain with sufficient length could form stable
n-HA particles through three-dimensional obstacles and form an affinity with the solvent.
Based on the above design principles, it was important to select appropriate surfactants for
the surface modification of n-HA particles.

However, research has shown that the addition of surfactants, such as polyvinylpyrroli-
done (PVP), chondroitin sulfate (ChS), aspartic acid (Asp), CTAB, SDS, and polyvinyl
alcohol (PVA) as a binary system of surfactants, was usually only a stencil effect [32–35],
which played a certain role in regulating the morphology and size of n-HA crystal growth.
The effect on improving dispersion was poor, and the residues in the product were difficult
to remove. Langroudi MM et al. [36] used PVP as a template and SDS as a surfactant to
synthesize bone-like n-HA via the bionic method. The results demonstrated that polymers
and surfactants as polymer capsules could appropriately control the size, shape, morphol-
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ogy, and dispersion of HA crystals. All samples displayed biological activity because they
could form carbonate apatite and grow HA on its surface, and the 3-(4,5)-dimethylthiahiazo
(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) test showed that the samples had good
biocompatibility. Shanthi PMSL et al. [37] utilized the electrostatic interaction between
surfactants to categorize them into two types: double anions (cetrimide and SDS) and
double cations (cetrimide and CTAB), with a weight ratio of 1:1 and a total concentration
of 0.28 g/100 mL. An effective morphological adjustment was performed on the samples.
FTIR, XRD, FESEM, HRTEM, TGA/DTA, and BET analyses showed that the samples
exhibited HAp phase with nano-scale and mesoporous properties. Anionic surfactants
promoted the growth of the particles from spherical to hexagonal rods, while a mixture
of double cations inhibited growth and led to disc-shaped HAp. The Ca2+ ion release
assay of the sample showed that the biological activity of disc-shaped HAp was better
than that of commercial HAp. Tari NE et al. [38] used the mixture of CaCl2 and H3PO4
(aqueous phase), the cationic surfactant CTAB, and the anionic sodium dodecyl to prepare
n-HA particles with various shapes via the precipitation method. These surfactants formed
various aggregates as templates in a mixture of rich cation and anionic regions. The results
indicated that the morphology of HAP nano-particles could be controlled by changing the
ratio of cationic and anionic surfactants in the mixture to synthesize HA nano-particles
with high crystallinity and minimal agglomeration. Shanthi PMSL et al. [39] reported a suc-
cessful preparation of shell-shaped nano-HAp spheres with a well-defined morphology, a
uniform size of approximately 200 nm, and a stoichiometric ratio of 1.7 using the surfactant
tetradecyltrimethylammonium bromide (cetrometin). Ma XY et al. [40] accomplished the
synthesis of spherical n-HA with outstanding uniformity and regularity via the water-in-oil-
microemulsion method at room temperature in a short duration, and span-80, cyclohexane,
and Ca(NO3)2·4H2O and (NH4)2HPO4 solution were used as surfactants, oil phase, and
water phase, respectively. The effects of the water–oil ratio and water–surfactant ratio on
the stability of the micro-lotion system were studied, and a stable reaction system was
established with proposed growth mechanisms. Yang L et al. [41] proposed a simple and
mass synthesis route of HA nano-crystals with no agglomeration, excellent crystallization,
and low aspect ratio. An improved co-precipitation process was utilized, and non-toxic
gelatinized starch was used as the matrix without any other surfactant. This synthetic
pathway had the potential to expand production scale, and the product had the same
biocompatibility and biological activity as conventional n-HA. It also had the capability
to produce other precipitated ceramic nano-particles with significantly reduced agglom-
eration and aspect ratio. Suslu A et al. [42] investigated the effect of surfactant types on
the biocompatibility of electrospun HAp/poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) composite nano-fibers, and non-ionic Tween 20 and 12-hydroxysteric acid (HSA),
cationic dodecyl trimethyl ammonium bromide (DTAB), and anionic sodium deoxycholate
and SDS surfactants were used for comparison. The results indicated that the incorporation
of HAp and any of the surfactant types strongly activated the precipitation rate of the
apatite-like particles and decreased the percentage crystallinity of the HAp/PHBV mats.

According to the above-mentioned literature, it is evident that the introduction of
surfactant into the preparation process of n-HA would improve the dispersion of n-HA.

3.4. Surface Modification by Grafting Polymer

In order to improve the interfacial adhesion between n-HA and polymers, researchers
have used various organic small molecules to coat them to reduce the surface energy of
n-HA, such as silane coupling agents, isocyanates, fatty acids, tartaric acid, etidronic acid,
polyhedral oligomeric silsesquioxanes, etc. [43–50]. Even various means of direct and
indirect surface grafting or atom transfer radical polymerization grafting of polylactic acid
were used to improve their interfacial adhesion [51], but the coating rate or grafting rate was
relatively low, the modification effect was minimal when high-content n-HA was added,
and the grafting process was cumbersome, toxic, and costly. In our previous studies [52–55],
our research group also investigated various new methods for the combined grafting of
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lactide with some small organic molecules, such as stearic acid, citric acid, lysine, 3-amino
propyltriethoxy silane (KH550), etc. The aforesaid modification methods had certain effects,
which could improve the dispersion according to the TEM photographs of the before and
after modification of n-HA, but the bending strength of the composite was significantly
reduced compared to pure Poly(lactic-co-glycolic acid) (PLGA) when modified n-HA was
added at the amount of over 15 wt% (as shown in Figure 4) because of the low grafting
amount. Therefore, other modification methods need to be explored to solve the problem
of n-HA/hydrophobic polymer composites.
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Tang M et al. [56] used citric-acid-grafted surface-modified hydroxyapatite (SHA) to
prepare SHA/GO composite materials via solution mixing and hydrothermal methods
assisted by ultrasound. Before and after immersion in simulated body fluid (SBF) solution,
the composite could effectively promote the mineralization of bone-like apatite. In vitro
drug release tests showed that the change of GO content had a great influence on the
adsorption performance of aspirin. It was expected that these SHA/GO composites could
be used for biopharmaceutical loading. Polymer additives have recently been successfully
applied to the surface modification and effective regulation of the morphology of various
inorganic minerals. By encapsulating organic molecules to improve interfacial compatibil-
ity with polymers, one representative polymer type was an amphiphilic block copolymer,
which was composed of two different hydrophilic segments. One segment exhibited strong
interaction with inorganic ions or solids, whereas the other segments only played a dispers-
ing or solubilizing role. The co-polymers could form a firm anchor on the surface of the
inorganic compound, and the extended chain segments were stretched into the solvent.
Liao L et al. [57] used surface grafting polymerization (γ-Benzyl-L-glutamic acid) on n-HA
(PBLG-g-HA), and a novel PBLG-g-HA/Poly-L-lactic acid (PLLA) nano-composite was
obtained. By chemically modifying the surface of HA, the uniform dispersion of n-HA in
chloroform solution was effectively improved, achieving a transition from hydrophilicity
to hydrophobicity on the surface of HA, thereby enhancing the interaction between HA
and the PLLA matrix. Pei F et al. [58] prepared modified n-HA by grafting polydopamine
(PDA), which was added to the polycaprolactone (PCL) matrix to enhance their interface
bonding in the bone scaffold via selective laser sintering (SLS). The tensile strength and
compressive strength of the scaffold were increased by 10% and 16%, respectively. Addi-
tionally, the scaffold exhibited favorable biological activity and cell compatibility, which
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could accelerate the formation of the apatite layer and promote cell adhesion, proliferation,
and differentiation.

Park SJ et al. [59] synthesized n-HA grafted with L-glutamic acid and fixed it on
Ti disc implants modified by albumin. Compared with the original titanium implant,
the modified titanium implant enhanced the adhesion, proliferation, and cell viability of
MC3T3-E1 cells, and the enhancement would facilitate the bone integration between the Ti
implant and the dental bone. Mehri A et al. [60] prepared tyramine-grafted hydroxyapatite
through the hydrothermal reaction. Tyramine was in situ grafted onto the surface of HAp
to inhibit crystal growth by forming organic–inorganic hybrid nano-particles, thereby
developing a multi-functional surface to ensure good compatibility with the surface of
cell-modified HAp. Timpu D et al. [61] used arginine (Arg) or polyethyleneimine (branched
BPEI, or linear LPEI) as a cationic modifier and dispersant to obtain functionalized nHAp
through wet chemical technology. The results demonstrated that the prepared nano-
particles had needle or plate shapes. Both Arg and PEI were successfully grafted onto
nHAp, and LPEI-functionalized nHAp displayed good similarity with biological apatite
and the best DNA binding capacity. When nHAp/LPEI nano-particles were incorporated
into the porous matrix based on collagen/dimethylsilanediol hyaluronate, the compression
modulus of the biological composite material was six times higher than that of the pure
polymer matrix, and the composite sponge possessed high toughness in five consecutive
compression tests without any permanent deformation and cracks. The aforementioned
findings indicate that nHAp/LPEI nano-particles can be considered as promising materials
for biomedical applications, functioning as gene carriers or reinforcing fillers with strong
interfacial adhesion in bone engineering biological composites.

Mirhosseini MM et al. [62] synthesized functional HA nano-particles (HA-F127) by
fixing Planck F127 on HA nano-particles. The F127 graft chain on the surface of HA formed
a core–shell structure, which reduced the agglomeration of the modified nano-particles
and improved the dispersity. Due to the excellent chain entanglement and interfacial
crystallization of the modified HA in the polymer substrate, HA-F127 and unmodified HA
were introduced into the PCL/P123 electrospun substrate, resulting in a nano-composite
containing 4 wt% nano-fillers. Based on the strong interfacial adhesion between the fillers
and the matrix, the molecular dynamics simulations confirmed that the strong interfacial
interactions between HA-F127 and PCL/P123, HA-F127/PCL/P123 secured excellent
mechanical properties, crystallinity percentage, and thermal stability. Therefore, the HA-
F127/PCL/P123 nano-fiber scaffold was considered as a promising candidate for tissue
engineering applications. Ma R et al. [63] used the silane-coupling agent KH560 for the
grafting modification of bioactive HA particles and prepared an HA/polyether ether ketone
(PEEK) composite through hot pressing. The results indicated that KH-560 was successfully
modified HA(m-HA), and the tensile strength of the m-HA/PEEK composite reached its
maximum value when the HA content was 5 wt%, which was 23% higher than that of the
pure PEEK sample. In vivo biomechanical testing of m-HA/PEEK revealed that the growth
of bone tissue around the m-HA/PEEK composite with 5 wt% HA content was better than
that of specimens with different HA contents. The above results indicated that the bioactive
filler HA had a nano-scale effect in the PEEK matrix, which is clearly corroborated by the
growth of surrounding bone tissue in the body.

Kairalla EC et al. [64] modified the surface of hydroxyapatite nano-crystals (HAPN)
by grafting a three-arm star poly(ε-caprolactone) (SPCL). The results of albumin (HSA)
and fibrinogen (HFb) adsorption indicated that SPCL-g-HAPN exhibited resistance to HFb
adsorption compared with unmodified HAPN. ZP and CA measurements indicated that
the heterogeneous topological structure of SPCL-g-HAPN was caused by the presence
of hydrophobic and hydrophilic regions on the surface of the nano-composite. The en-
zymatic degradation of cholesterol esterase and lipase demonstrated that the hydrolysis
rate of SPCL-g-HAPN was very slow via comparison with the SPCL/HAPN mixture.
In vitro biological study indicated that human osteoblast-like cells (MG-63) possessed nor-
mal cell morphology and could adhere and spread across the surface of SPCL-g-HAPN.
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Compared with pure HAPN or SPCL materials, higher overall cell proliferation was ob-
served on the SPCL-g-HAPN scaffold. Kumar L et al. [65] developed a porous modified
n-HA/polyurethane (m-HA/PU) nano-composite scaffold for bone tissue engineering by
grafting etidronic acid (ETD, 0.1 M) onto the surface of n-HA particles and strengthening
it into polyurethane scaffolds prepared via the foaming method. As seen in Figure 5, it
can be observed that the surface of m-HA particles was completely transformed from a
granular structure to a sheet structure with a size of 40 nm. Furthermore, the compressive
strength of the obtained PU/m-HA nano-composites with 30% filler concentration was
22.4 MPa, with a required porosity of 80%, showing that the PU nano-composite scaffolds
were well suited for its bone healing application. In addition, the results of in vitro soaking
in SBF for 4 weeks showed partial surface hydrolysis, and the cell culture results show that
m-HA/PU nano-composite scaffolds were very suitable for bone tissue engineering.
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Yang WF et al. [66] modified HA nano-particles with dopamine and hexamethylene
diamine, and PLLA was connected to HA nano-particles through the ammonolysis reaction.
The PLLA-modified HA nano-particles were mixed with PLLA to form thermoplastic
composites for 3D printing. Due to the high compatibility between the PLLA matrix
and PLLA-modified HA nano-particles, 3D-printed PLLA/HA scaffolds displayed strong
mechanical properties and good biocompatibility, enabling flexible strategies for manufac-
turing scaffolds for customized treatment of bone defects. Wang Y et al. [67] successfully
used the surface-initiated reverse atom transfer radical polymerization (reverse ATRP)
technology to modify HAP nano-particles with polymethyl methacrylate (PMMA). The
peroxide initiator component was covalently linked to the surface of HAP through the
surface hydroxyl group. The reverse ATRP of methyl methacrylate (MMA) was carried out
from the initiator functionalized HAP. Subsequently, the end bromine group of the grafted
PMMA initiated the ATRP of MMA. The HAP nano-particles grafted with PMMA exhibited
excellent dispersion in MMA monomer, and the dispersibility of surface-grafted HAP and
the compressive strength of HAP/PMMA composites were improved with the increase
in the amount of grafted PMMA. Dai YF et al. [68] grafted poly (L-phenylalanine) onto
the surface of n-HA through the ring opening polymerization (ROP) of L-phenylalanine
N-carboxylic anhydride. By optimizing the reaction conditions, the grafting amount of poly
(L-phenylalanine) on the surface of HA could be increased to a range of 20.26% to 38.92%,
and the crystal structure of modified HA was almost the same as that of HA. MTT results
demonstrated that modified HA had good biocompatibility, indicating that the modified
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HA could have a potential application in bone tissue engineering, and that the ROP is an
effective surface modification method.

Ku KL et al. [69] studied the surface modification of n-HAP with ethylene glycol and
PCL sequentially via a two-step ring opening reaction, and the affinity was improved
between the polymer and ceramic interphases of PCL-grafted ethylene glycol-HAP (PCL-g-
HAP) in PMMA; that is, PCL-g-HAP/PMMA not only increased the interfacial adhesion
between the nano-particles and cement but also better promoted biological activity and
affinity between the osteoblast cells and PMMA composite cement. These results meant
that g-HAP and its use in a polymer/bioceramic composite had great potential to improve
the functionality of PMMA cement. Furthermore, the composite of PCL-g-HAP with
poly (1,6-bis-(p-carboxylphenoxyhexane) co-(sebacic anhydride)) (PANH) was studied.
The PCL-g-HAP/PANH composite exhibited excellent mechanical properties and a rapid
degradation rate. Preliminary in vivo studies for rat skull repair had affirmed the superior
performance of the PCL-g-HAP/PANH composite, which had great potential to be a novel
matrix for bone tissue engineering [70]. Zarif F et al. [71] synthesized citric acid and aspartic
acid grafted HA (g-HA) via the in situ co-precipitation method and explored its controlled
delivery of moxifloxacin. The results revealed that g-HA, characterized by high surface
area and surface charge and low crystallinity, strengthened its electrostatic interaction with
the antibiotic moxifloxacin and decreased the drug release in vitro compared with pure
HA. The in vitro antibacterial activity manifested that the drug release of HA and g-HA
was against Staphylococcus aureus and Enterobacteriaceae, and the MTT assay confirmed the
biocompatibility of HA and g-HA. Li HB et al. [72] utilized HA nano-particles to graft
onto the surface of polyethylenemethacrylate (PEGMA) and cross-link with polyethylene
methacrylate (PEGDMA) under ultraviolet light to form a composite. The dispersion of
HA g-PEGMA nano-particles in the poly (PEGDMA) matrix was better than that of n-HA.
With a load of 1 wt%, the strength and modulus of the composite were increased by 14%
and 9%, respectively.

Kumar L et al. [73] modified n-HA with triethanolamine (TEA-nHA), and the mor-
phology of TEA-nHA was successfully changed from particles to irregular sheets/plates.
Compared with pure (PU) composites, the PU/TEA-nHA nano-composite formed with
castor oil-based PU with a content of 40 wt% possessed open and interconnected pores with
a size range of 150–700 µm, and the compressive strength and porosity of the composites
were 20.7 MPa and the porosity was ≤82%, respectively. The cellular compatibility of these
new engineering surfaces could maintain exponential growth for up to 8 days and enhance
cell viability. Overall, the developed surfaces had improved cell growth, suggesting that
the PU/TEA-nHA nano-composite was capable of promoting bone tissue regeneration.
Mehmanchi M et al. [74] successfully grafted the arm with the functional group of uracil
pyrimidinone with a self-association ability through the tetrahydrogen bond onto the n-HA.
Compared with the original n-HA, the supermolecular modified nano-particles (n-HAP-
UPy) enhanced the colloidal stability, and they were uniformly dispersed in PCL with
different filler loads. Preliminary cell results clearly confirmed that the supramolecular
nano-composites were non-toxic and biocompatible. Pielichowska K et al. [75] studied a
functionalized n-HAP with PCL, using 1,6-hexamethylene diisocyanate (HDI) as a coupling
agent, and then incorporated it into the polyoxymethylene copolymer (POM) matrix using
the extrusion technique to obtain POM/HAP-g-PCL composites. It was found that the
introduction of HAP-g-PCL to the POM matrix had a limited effect on the phase transitions
of POM and its degree of crystallinity, and it caused a significant increase in the thermal
stability of the POM. In particular, the crucial parameter in biomedical applications, namely,
the in vitro bioactivity, was improved, albeit slightly decreasing the mechanical properties
of POM composites.

Zhang M et al. [76] used stearic acid to modify HAP in different solvents (water,
ethanol, or dichloromethane (CH2Cl2)) and studied the effects of different solvents on the
properties of HAP particles (activation rate, grafting rate, chemical properties), lotion prop-
erties (lotion stability, lotion type, droplet morphology), and cured materials (morphology,
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average pore size). The results confirmed that there was interaction between stearic acid
and HAP particles, and the hydrophobicity of HAP particles was enhanced after surface
modification. It was best to use ethanol as the solvent for stearic acid to modify HAP
particles so that the stability of Pickering lotion could be improved and the cured samples
with uniform pore size could be obtained. Song XF et al. [77] prepared PLLA-g-HA by
adding ethylene-glycol-tethered hexamethylene diisocyanate. The results showed that the
grafting ratio of HA was 25% higher than that obtained by unmodified HA or HA modified
with L-lactic acid, and it could be stably dispersed in chloroform for more than 2 days. The
tensile test after co-electrospinning fibers showed that the mechanical properties of the
PLLA-g-HA/PLGA composite fiber membrane were higher than those of the HA/PLGA
membrane. Jiang YR et al. [78] used a series of aminoalkyl phosphates (AAP-n, carbon
atom number n between 2 and 6) as surface modifiers to prepare HA hydrolytic colloid.
The obtained nano-particles (Cn-HA) had a core–shell structure, in which the ionized layer
of calcium (AAP-n) complex [+H3N-(CH2)n-OPO3 Ca] encapsulated each HA core. Due to
the electrostatic repulsion between suspended particles, long-term colloidal stability could
be achieved. The introduction of AAP-n led to a particle aspect ratio increase from C2-HA
to C6-HA along the c-axis of the crystal. Preliminary cell culture using osteoblast-like
MG-63 cells showed no cytotoxicity associated with the prepared Cn-HA particles. The
above results indicated that the functional amino groups around the nano-particles could
be used to graft various organic chains to prepare homogeneous HA/polymer composites
as bone-bonding materials. Wei JC et al. [79] proposed the surface modification of n-HA
via the ring opening polymerization (ROP) of γ-benzyl-L-glutamate N-carboxyanhydride
(BLG-NCA) to prepare PBLG-g-HA. The results showed that the PBLG-g-HA hybrid could
form an interpenetrating net structure during the self-assembly process. The PBLG-g-HA
hybrid could maintain higher colloid stability than the pure HA nano-particles, and the
in vitro cell cultures suggested that the cell adhesion ability of PBLG-g-HA was much better
than that of pure HA.

Makvandi P et al. [80] modified commercial HAP at the micron level with methacrylate
and quaternary ammonium salts, and different amounts (i.e., 2.5, 5, and 10 wt%) were
used as fillers for UV-cured custom resins in stereolithography (SLA). Compared with
pure resins, all modified HA particles (m-HAP)-filled composite had higher strength, and
the antibacterial activity of the composite increased with the increase in m-HAP content.
Compared to pure HAP, the complex of m-HAP (i.e., 2.5%) exhibited sufficient antibacterial
activity and reduced the growth of bacteria and fungi, even with low concentrations.
All results summarized that samples containing 5% m-HAP could be considered as the
best comprehensive solution for thermal, chemical physical, mechanical, and biological
properties, and the composite was selected by SLA to construct an open bite prototype.
Li K et al. [81] prepared HA nano-rods doped with Fe and Si on Ti, and the antibacterial
peptide HHC-36 was chemically bonded to the nano-rods with and without a polymer
brush as a gasket. The results showed that the grafting of polymer brushes onto HHC-36
did not substantially alter the microstructure of the nano-rods, but the brushes effectively
increased the loading and stability of HHC-36. Moreover, with the assistance of HHC-36,
the synergistic effect of adenosine monophosphate (AMP)-derived antimicrobial peptides
and the physical puncture of HA nano-rods could effectively kill Staphylococcus aureus.
Compared with Ti, the formation of biofilm was inhibited in phosphate buffer solution
and nutrient-rich medium. HA nano-rods with polymer-brushed HHC-36 killed 99.5% of
Staphylococcus aureus and 99.9% of Escherichia coli, and they exhibited cellular compatibility
in vitro, inhibiting bacterial infections and reducing inflammatory reactions in vivo, which
indicates that the polymer-brushed HHC-36 on HA nano-rods had enormous potential
application on the Ti surface.

Tham DQ et al. [82] successfully prepared vinyl trimethoxysilane-treated HA (vHAP)
and PMMA-grafted HAP (gHAP) using original HAP (oHAP) as the raw material. Three
groups of HAP-modified PMMA bone cement (oHAP-BC, vHAP-BC, and gHAP-BC) were
prepared using three HAPs (oHAP, vHAP, and gHAP) as additives. The results showed
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that the setting time of HAP-modified bone cement was longer, the maximum exothermic
temperature was lower, and the vHAP and gHAP nano-particles were better dispersed in
the polymerized PMMA matrix than oHAP nano-particles, thus meeting the requirement
of the mechanical properties, which proved the effectiveness of organic functionally grafted
HA in acrylic bone cement. Dorm BC et al. [83] studied two sources of L-alanine and three
grafting methods for the surface functionalization of HA. The results showed that 8–25 wt%
of organic matter was formed in HA. The viability of MG-63 human osteoblasts incubated
with alanine grafted HA samples for 24 h was well preserved, which was higher than that
of cells incubated with HA in all cases. Alanine-grafted HA prepared in situ and by simple
mixing showed higher protein adsorption and cell adhesion, respectively, indicating that it
was promising in regenerative medicine.

Elbasuney et al. [84] used poly (ethylene copolymerization AA) polymer surfactant
to modify the surfaces of HA nano-plates. The surface properties of organic modified
HA nano-plates changed from hydrophilicity to hydrophobicity. It demonstrated effective
phase transfer from the aqueous phase to the organic phase, reducing the size of the
nanoplate to 100 nm L and 50 nm W. By way of surface modification with dodecanedioic
acid, layered HA plates were further developed. This method could provide laminated
or peeled plates for effective integration into biocompatible polymers, giving hope for the
green synthesis of hyaluronic acid nano-particles with controllable morphology and surface
properties. Xu M et al. [85] obtained modified HA (HA-APS) with active amino groups on
the surface via reaction with silane coupling agent KH-550, and then initiated L-aspartic
acid-β-HA grafted with poly (benzyl aspartate) (PBLA) prepared via the ring opening
polymerization of benzyl ester N-carboxylic anhydride (BLA-NCA), which realized the
transition of the surface of HA from hydrophilicity to hydrophobicity. The dispersion
experiment confirmed that the surface-modified HA by PBLA could significantly increase
the hydrophobicity of the HA surface and prevent the aggregation of nano-HA particles.
Heng CN et al. [86] developed a simple surface-initiated polymerization strategy for n-HA
via combination of the surface ligand exchange and reversible addition fragmentation
chain transfer (RAFT) polymerization to improve the dispersibility in aqueous solution,
where HA nano-rods were first modified with riboflavin-5-phosphate sodium (RPSSD) via
ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then, the
hydroxyl group of nHAP-RPSSD was used to immobilize the chain transfer agent, which
was used as the initiator for surface-initiated RAFT polymerization. Results showed that
nHAP-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical
properties, good biocompatibility, and high drug loading capability, making it a promising
candidate for biological imaging and controlled drug delivery applications in bone repair
fields.

According to the results of the listed literature, we think that surface grafting polymers
onto n-HA is an effective method, which could improve not only the dispersion of n-
HA but also the interfacial adhesion between n-HA and polymers. Moreover, the higher
grafted amount would be more conducive to enhancing the mechanical properties of
nano-composite.

3.5. Preparation of Hybrid Nano-Apatite by Introducing Macromolecule

To obtain n-HA with excellent dispersion, Zhang P et al. [80] paid attention to the raw
materials of preparation n-HA, where polyethylene glycol monomethyl ether phosphate
(P-MPEG) was used as the auxiliary phosphorus source and steric hindrance, and the
hybrid nano-apatite that extended the MPEG chain beyond the n-HA crystal structure was
prepared via the co-precipitation method, which could not only be dispersed in water but
also in organic solvents such as methanol and dimethylformamide (DMF). Obviously, the
hybrid nano-apatite prepared from the raw materials could effectively raise its dispersion
and compound with water-insoluble polymers owing to the change in surface properties
via the introduction of the MPEG hydrophobic structure chain. However, the molecular
weight of P-MPEG, selected in this paper, was very small, and its steric hindrance and
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hydrophobicity improvement were very limited. It was still necessary to explore the
preparation of hybrid nano-apatite by introducing other amphiphilic macromolecules.
Cyclodextrin has a unique amphiphilic structure, which is hydrophobic in the cavity and
hydrophilic outside the cavity. Cyclodextrin macromolecules are functional materials in
bone materials. In the preparation of HA, it was reported that there was a certain chemical
bonding interaction between HA and cyclodextrin macromolecules [88,89]. Therefore,
in our research group [90,91], we explored the influence of cyclodextrin macromolecules
of different sorts, addition orders, reaction times, addition amounts, and other factors
on the preparation, structure, and dispersion of hybrid nano-apatite (shown in Figure 6).
According to Figure 6, it can be confirmed that the dispersion of carboxylated cyclodextrin
hybrid nano-apatite (CM-β-CD-HA(Co)) was significantly augmented, and the tensile
strength of the composite with the additional amount of 10 wt% CM-β-CD-HA(Co) was
the best, which was 14.84% higher than that of pure PLGA. The results confirmed that the
hybrid nano-apatite obtained through a new surface modification strategy has significant
potential as a reinforcement filler for PLGA used as bone materials in the future.
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In addition, as we know, with the increasing consumption of non-renewable resources
such as oil and coal and the rapid rise in raw material prices, the hybrid nano-apatite
has attracted widespread attention for the development and utilization of green and en-
vironmentally friendly natural resources. Lignin is the only plant resource containing a
benzene ring structure in nature, and it is non-toxic, biodegradable, biocompatible, and
possesses some special properties, such as antibacterial, antioxidant, and UV absorption
functions, so it is an ideal raw material for preparing functional materials. Ho YK et al. [92]
reported that lignin could act as a gene carrier by forming complexes with DNA after
co-polymerization with other polymers, and it displayed a high infection rate and low
cytotoxicity. Although the above literature indicated that lignin was an excellent green
and environmentally friendly chemical raw material, and it was non-toxic to organisms,
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there have been no reports on lignin being used for the modification of n-HA. Therefore,
in our recent research [93], we explored the preparation of hybrid nano-apatite by intro-
ducing lignin, adopting the co-precipitation method, and the obtained hybrid nano-apatite
displayed excellent dispersion and promoted crystallization effects, which could greatly
improve the mechanical strength of PLGA. In addition, in vitro cell culture experiment
results indicated that lignin surface hybridization of n-HA was beneficial for improving
the cell biocompatibility of PLGA, suggesting that the introduction of lignin was a novel
method for obtaining highly dispersed n-HA, and it would provide a new idea for the
future implementation of n-HA/PLGA nano-composites as bone materials and offer a new
means for application of lignin in the biomedical field. Subsequently, our research team [94]
also explored the preparation of a new hybrid nano-apatite via the co-hybrid of lignin and
cyclodextrin (g1-HA). The results showed that the hybrid of lignin and cyclodextrin for n-
HA had an excellent synergistic effect, which could improve the dispersion, and produced
good interface bonding between hybrid nano-apatite and PLGA matrix. When the amount
of hybrid nano-apatite was 15 wt%, the tensile strength of the composite was still 14.53%
higher than that of PLGA, which was significantly better than the hybrid nano-apatite with
lignin or cyclodextrin alone. In addition, the results of immersion in SBF and in vitro cell
experiments showed that the co-hybrid nano-apatite had good degradation performance,
apatite deposition, and excellent cell biocompatibility. This study could provide important
guidance for obtaining a highly dispersed n-HA as a PLGA-based reinforcing filler for bone
materials.

4. Conclusions

In summary, n-HA particles have great application in the bone materials field. The re-
search on the synthesis method and surface modification of n-HA has made some progress,
and its modification effect has its own emphasis; for example, ion doping usually improves
the biological activity significantly, while the template method can regulate its morphol-
ogy and adsorption performance. Grafting small molecules or polymers can optimize
surface characteristics and interface bonding with polymers, while hybrid nano-apatite,
by introducing amphiphilic macromolecules, can significantly improve dispersion, and
it has a great promoting effect for the application of n-HA. In future research, we think
the following aspects should be considered: (1) more transition metals and some rare
earth ions should be designed to substitute Ca2+ so as to endow n-HA with some new
properties, such as luminescence, magnetism, conductivity, etc., which would broaden
its application in biomedical fields beyond bone materials, including the diagnosis and
treatment of diseases, especially cancer; (2) it is necessary to combine the introduction
of ion doping with functional small molecules or polymers during the preparation of
n-HA so as to obtain multi-functional hybrid nano-apatite with high dispersion and good
biological activity; (3) some key technologies for controlling the size and morphology of
n-HA particles should be deeply studied so as to extend their applications in various fields;
(4) theoretical calculation by means of quantum chemistry for the structure of modified
n-HA should be emphasized so that some properties of the modified n-HA—for example,
the changes in surface properties, the dispersion improvement, and so on—can be further
explained. This could also help predict the effective modification methods so as to obtain a
more ideal surface state. To summarize, we believe that meaningful surface modifications
of n-HA will be developed in the future, which would expand the application of n-HA
particles in the biomedical field.
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BLA-NCA Benzyl ester n-carboxylic anhydride
BLG-NCA γ-benzyl-l-glutamate n-carboxyanhydride
ChS Chondroitin sulfate
DMF Dimethylformamide
ETD Etidronic acid
PCL-g-HAP PCL-grafted ethylene glycol-HAP
HAPN Hydroxyapatite nano-crystals
HDI 1,6-hexamethylene diisocyanate
HFb Fibrinogen
LE Licorice root extract
m-HA Modified HA particle
oHAP-BC Original HAP bone cement
vHAP-BC Vinyl trimethoxysilane treated HA bone cement
gHAP-BC HAP-modified PMMA bone cement
PANH Poly (1,6-bis-(p-carboxylphenoxyhexane) co-(sebacic anhydride))
PBLA Poly (benzyl aspartate)
PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
PBLG-g-HA Surface grafting polymerization (γ-benzyl-l-glutamic acid) on n-HA
PEEK Polyether ether ketone
PEGMA Poly ethylene methacrylate
PMMA Polymethyl methacrylate
P-MPEG Polyethylene glycol monomethyl ether phosphate
POM Polyoxymethylene copolymer
PVP Polyvinylpyrrolidone
RAFT Eversible addition fragmentation chain transfer
ROP Ring opening polymerization
RPSSD Riboflavin-5-phosphate sodium
DTAB Dodecyl trimethyl ammonium bromide
SDBS Sodium dodecyl benzene sulfonate
SDS Sodium dodecyl sulfate
SHA Surface-modified hydroxyapatite
SLS Selective laser sintering
SPCL Poly(ε-caprolactone)
AMP Adenosine monophosphate
Asp Aspartic acid
ATRP Atom transfer radical polymerization
CTAB Cetyltriethylammonium bromide
CTS Chitosan
Gly Glycine
GO Graphene oxide
HA, HAP Hydroxyapatite
HSA Albumin
KH550 3-aminopropyltriethoxysilane
MTT 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide
n-HA Nano-hydroxyapatite
PARP Poly (ADP-ribose) polymerase
PCL Polycaprolactone
PDA Polydopamine
PEI Polyethyleneimine
PET Polyethylene terephthalate
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PLGA Poly(lactic-co-glycolic acid)
PLLA Poly-L-lactic acid
PU Polyurethane
PVD Polyvinylpyrrolidone
SBF Simulated body fluid
Sr-HA Strontium substituted hydroxyapatite
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