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Abstract: Spruce wood is widely used in outdoor applications, but its susceptibility to degradation
under exposure to sunlight and moisture is a major concern. This study investigates the impact of
accelerated aging on spruce wood’s surface chemistry, microstructure, geometry, and discoloration.
The study was performed in two outdoor aging modes: dry and wet. The accelerated aging effects
were evident in the changes in spruce wood structure, as well as in the other studied properties.
During aging, it developed significant discoloration. Under simulated rainless outdoor conditions
(dry mode), spruce wood gradually became dark brown. Under conditions involving rain (wet
mode), the discoloration was qualitatively different from the dry mode. FTIR spectroscopy showed
that during the accelerated aging of wood, lignin was mainly degraded, especially in the early stages
of the process. A linear correlation was found between the changes in lignin and the color changes in
the wood. There was an increase in carbonyl groups in the dry mode, which contributed to the color
change and was also influenced by changes in extractives. The wet mode caused the leaching out
of carbonyl groups. The observed decrease in cellulose crystallinity, together with the degradation
of hydrophobic lignin, may result in the increased hydrophilicity of photodegraded wood. For
both modes, there were different changes in the wood micro- and macrostructure, reflected in the
surface morphology. The roughness increased during the aging process in both modes. The slightest
changes in the roughness parameters were identified in the grain direction in the dry mode; the most
evident was that the roughness parameters increased perpendicular to the grain in the wet mode. The
demonstrated mechanism backing up the aging-related changes to the spruce wood structure and the
relations unveiled between these changes and the changes in the spruce wood surface properties can
provide an issue point for seeking ways how to mitigate the negative effects of the environmental
factors the wood is exposed to.

Keywords: accelerated aging; spruce wood; FTIR analysis; color; surface morphology; roughness
and waviness

1. Introduction

In outdoor environments, the surfaces of almost all materials are affected by various
radiation types, moisture, temperature, and emissions, which act in interactions. This
induces the gradual degradation of the exposed surfaces. Wood is not an exception.
Wood, a natural composite material, exhibits unique aging behavior compared with other
materials [1–4]. Wood has a characteristically complex surface morphology, backed up
by its heterogeneous anatomical structure at the macro-, micro-, submicro-, and nano-
levels [5,6]. In addition, wood material is hygrophilous, porous, and anisotropic, which is
important for its degradation during the aging process. Diversely shaped and assembled
anatomical elements of wood represent a heterogeneous porous system. Besides this,
species-dependent differences in pore shape, size, mutual linking, and arrangement are
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obvious [5,7]. The porous nature of wood results in a large interior area and high surface
roughness—mostly negative in the context of aging.

Wood degradation caused by the effects of various environmental factors is a very
intricate and effort-demanding issue that needs a comprehensive approach. For a long
time, the research on wood resistance against aging has been oriented on the variability of
wood surface structure and properties, on degradation causal agents, on possibilities of
how to avoid the degradation, and on the study of a range of factors supposed to influence
the aging of wood surfaces [7–15]. The results of several works dealing with this problem
have been summarized in [1,2].

Abiotic agents affecting a wood surface layer induce changes to its chemical structure
and the associated changes in its properties [16,17]. Mi et al. [18] investigated the effects of
natural weathering on aged wood from historic wooden buildings. They reported that all
aged samples showed varying degrees of deterioration and that some aged samples showed
a decrease in lignin content while cellulose content remained constant or increased. The
decrease in lignin and hemicelluloses and the increase in cellulose content near the surface
have been observed by several authors ([2] and references cited therein). Lignin strongly
absorbs UV light and is photodegraded during both natural and accelerated aging. Lignin
degradation during accelerated aging proceeds with the formation of o- and p-quinones,
carbonyl groups and certain types of C=C bonds, such as stilbene derivatives. By comparing
both the dry and wet processes, it was found that aging in the presence of water significantly
enhanced the degradation of lignin. The degree of lignin degradation by dry exposure
is depth-dependent. However, in the case of wet exposure, lignin degradation in the
outermost cell walls proceeds from both the exposed surface side and the lumen side of the
cell walls [19,20]. Lignin is most susceptible to UV light, but polysaccharides, especially
hemicelluloses, can also be degraded via hydrolysis reactions to reduce the degree of
polymerization, leading to chain shortening and even to the formation of oligosaccharides
and monosaccharides [21]. Photodegradation forms new lignin chromophores, which cause
discoloration and consist mainly of quinone-type structures [19].

The first degradation symptoms manifest in visual properties, and the first is discol-
oration due to photo-oxidation of polymers contained in wood, mainly lignin [9,10,13,22].
This is important evidence, especially from the viewpoint of targeted wood surface mod-
ification and treatment with transparent coating materials. The color change can also
effectively indicate specific changes in wood chemistry [16]. The color spaces of the individ-
ual wood species have been recognized as virtually separated [23,24], and the supposition
that the separations will be preserved after aging seems well-reasoned. It follows that
the wood color variance during the aging process needs to be studied separately for each
wood species.

During aging, the wood structure degradation is aggravated progressively, proceeding
from the external wood surface down to a depth of several millimeters [11,25]. First, the
middle lamella, consisting mostly of lignin, is degraded, and the delamination of wood cell
elements takes place. The result is a plastic wood surface structure. This is mainly typical
for coniferous wood species displaying differences in density between their early wood
and late wood. Changes in wood structure are accompanied by changes in other surface
properties [11,15,26–28].

Wood surface degradation during natural aging is caused by several factors (radiation,
water, heat, wind, and pollutants) acting in interactions. Important is also the environment
in which the wood is exposed to these factors. Thus, in the case of natural aging, it is not
possible to examine the effects of the individual factors separately. Contrarily, accelerated
aging simulated in a xenotest provides such a possibility. Under precisely fixed conditions,
the influence of the radiation alone or the coupled influence of radiation and rain can be
studied. This has been confirmed by Froidevaux and Navi [29].

This work aimed to disclose the chemical and physical background of aging-related
degradation effects in native spruce wood. This wood is the most common material used
in making constructions intended for outdoor conditions, and, as such, it is exposed to the
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negative effects of environmental agents. This study observed and evaluated the influence
of radiation on the accelerated aging process and the coupled influence of radiation in
the interaction with water on changes in spruce wood surface’s chemical composition,
structure, geometry, and discoloration.

2. Materials and Methods
2.1. Experimental Material

The degradation phenomena generated during the accelerated aging process were
studied on radial and tangential surfaces of spruce wood specimens, each 100 mm ×
50 mm × 15 mm (length × width × thickness) in size—see Figure 1. All the specimens were
exposed to a relative air humidity of 65% and a temperature of 20 ◦C for one month to attain
a wood moisture content of 12%. Before placing the specimens into the xenotest chamber,
their relevant surface properties and body parameters (roughness and waviness profiles,
chemical properties, and color) were measured. These values served as comparative
standards for evaluating the changes in the studied properties measured during aging.
Changes in wood surface structure and properties associated with accelerated aging were
observed at intervals after 100, 200, 400, and 600 aging hours. For each aging mode, 15 radial
and 15 tangential specimens were used.
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Figure 1. Prepared test specimens of spruce wood.

2.2. Accelerated Aging

The accelerated wood aging was simulated in a xenotest chamber Q-SUN Xe-3-HS (Q-
Lab Europe, Ltd., Bolton, UK). The experimental material was arranged equidistantly across
the xenotest chamber. To ensure equal radiation intensity and heat for all the specimens,
the specimens were regularly shifted according to the recommended schedule.

The aging conditions in the xenotest chamber followed the standard ASTM G 155 [30].
This standard is a fundamental one in determining the conditions for accelerated aging
for non-metallic materials with the aid of a xenon discharge tube. Two modes for outdoor
conditions were chosen: “dry mode” and “wet mode”. The first mode simulated outdoor
conditions in the case of when wood is exposed to UV radiation but protected from
rainwater; the second simulated the conditions when wood is exposed to both factors, UV
and rain.

The radiation intensity was 0.35 W·m–2, with a radiation wavelength of 340 nm, follow-
ing the standard. This value corresponds to the mean annual value for the temperate zone.
The temperature, controlled on a black panel, corresponded to the maximum temperature
on the panel surface. In both modes, one accelerated aging cycle consisted of two steps,
covering 120 min altogether (Tables 1 and 2). For each mode, the total duration of the aging
process was 600 h, which was equivalent to 300 cycles.
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Table 1. The aging parameters set according to the Standard ASTM G 155 “dry mode”.

Step Mode Radiation Intensity
(W/m2)

Black Panel Temperature
(◦C) Air Temperature (◦C) Relative Air Humidity

(%) Time (min.)

1 Radiation 0.35 63 48 30 102

2 Radiation-free - - 38 – 18

Table 2. The aging parameters set according to the Standard ASTM G 155 “wet mode”.

Step Mode Radiation Intensity
(W/m2)

Black Panel Temperature
(◦C) Air Temperature (◦C) Relative Air Humidity

(%) Time (min.)

1 Radiation 0.35 63 48 30 102

2 Radiation +
water spraying 0.35 63 48 90 18

2.3. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra of the wood surface were recorded on a Nicolet iS10 FT-IR spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) equipped with Smart iTR using an Attenu-
ated Total Reflectance (ATR) sampling accessory with a diamond crystal (Thermo Fisher
Scientific). The spectra were recorded in an absorbance mode (A) from 4000 to 650 cm−1

with a spectral resolution of 4 cm−1, and 32 scans were used. Measurements were made on
four replicates per sample. The peak at 1030 cm−1 (assigned to CO stretching) was used to
normalize the obtained infrared spectra. This band shows little changes during wood pho-
todegradation in a xenotest chamber [17]. Calculations for changes due to aging were made
using the ratio of absorbances A0/At, where A0 is the absorbance of the corresponding
peak of the reference sample, and At is the absorbance of the peak at time t.

2.4. Color Measurement

The colorimetric values of the coordinates L*, a*, and b* on the referential and en-
graved specimens were measured with a spectrophotometer Spectro-guide 45/0 gloss
(BYK-GARDNER GmbH, Geretsried, Germany). The measurements were taken at ten spots
per specimen. The color differences ∆L*, ∆a*, and ∆b* under different irradiation conditions
and the total color difference ∆E were determined according to the following equations:

∆L* = L2 − L1, L3 − L1. . . , Ln − L1 (1)

∆a* = a2 − a1, a3 − a1, . . . , an − a1 (2)

∆b* = b2 − b1, b3 − b1, . . . , bn − b1 (3)

∆E =

√
∆L2 + ∆a2 + ∆b2 (4)

Note: the “2 − n” means the color value after wood surface irradiation, and the index
“1” denotes the referential value measured on the wood surface before the aging process.

For each mode, the color was measured at five spots on each specimen, so the total
number of measurements for each surface treatment mode was 75.

2.5. Evaluation of Wood Surface Morphology

The surface morphology of the wood irradiated at the xenotest was evaluated at
specified time intervals based on the roughness and waviness parameters: Ra (mean
arithmetic deviation) and Rz (the maximum peak height plus the maximum depression
depth within the cut-off, or a sampling length) and Wa (mean arithmetic deviation) and
Wt (the maximum peak height plus the maximum depression depth within the entire
evaluation length). The roughness and waviness profiles were recorded with the aid of a
profilometer, Surfcom 130A (Carl Zeiss, Oberkochen, Germany), consisting of a measuring
unit and an evaluation unit.
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Roughness was measured on radial and tangential surfaces, parallel to the grain
course and perpendicular to the grain course, at five different spots. The entire traversing
length consisted of a pre-length segment, five sample length segments lr (cut-off λc), and
a post-length segment lp. The basic lengths were chosen from the interval 0.025−8 mm
based on the preliminary measured values of the roughness parameters Ra and Rz.

The degradation of the wood surface structure after having finished the aging process
was studied with the aid of a SEM microscope.

2.6. Evaluation of the Results

The results were processed in the program STATISTICA version 10.0 (Dell Statistica,
Prague, Czech Republic). The basic statistical characteristics (arithmetical mean, standard
deviation) were determined using descriptive statistics. The impacts of the studied factors
on the given properties were evaluated with the multi-way variance analysis (MANOVA)
and Duncan’s test.

3. Results and Discussion
3.1. Wood Discoloration Induced by Accelerated Aging Process

The accelerated wood aging process induced considerable surface discoloration in
spruce test specimens. This was true for both the dry and the wet modes. The results
of the three-way variation analysis confirmed significant influences for all three factors
investigated (aging mode, aging time, and irradiated surface type) and their interactions
on spruce wood discoloration. The basic statistical characteristics for the individual color
coordination values are shown in Table 3.

Table 3. Basic statistical characteristics of color coordinate values L*, a*, and b* for spruce wood at
different phases of accelerated aging (number of measurements for each sample set n = 75).

Surface Color
Coordinates

Basic Statistical
Characteristics

Aging Time (Hours)

0 100 200 400 600

Dry Mode

Radial

L*
x 83.82 74.10 71.88 68.57 66.71
s 1.67 1.26 1.22 1.20 1.18

a*
x 3.82 7.46 8.92 10.74 11.55
s 0.70 0.35 0.36 0.34 0.31

b*
x 20.57 33.94 35.29 35.66 36.00
s 0.71 0.60 0.68 0.87 0.89

Tangential

L*
x 84.46 73.70 71.80 68.42 66.82
s 1.65 1.57 1.24 1.36 1.40

a*
x 3.34 7.73 8.96 10.91 11.46
s 0.72 0.62 0.57 0.58 0.60

b*
x 20.01 34.11 35.14 35.71 35.60
s 1.76 0.90 0.69 1.07 0.95

Wet mode

Radial

L*
x 87.19 76.44 78.52 81.72 83.30
s 0.61 1.28 1.40 1.52 1.63

a*
x 2.84 8.97 7.34 4.79 3.67
s 0.29 0.57 0.70 0.55 0.53

b*
x 18.04 24.31 17.32 10.77 9.10
s 0.69 1.69 1.96 2.04 1.95
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Table 3. Cont.

Surface Color
Coordinates

Basic Statistical
Characteristics

Aging Time (Hours)

0 100 200 400 600

Dry Mode

Wet mode

Tangential

L*
x 87.71 76.81 79.19 81.63 83.76
s 1.16 2.01 2.46 3.19 3.06

a*
x 2.42 8.63 6.35 4.09 3.09
s 0.45 0.86 1.04 0.81 0.66

b*
x 17.56 23.58 15.32 9.54 8.63
s 2.05 2.59 2.80 2.01 1.85

Before aging, the average values of lightness L* in the individual spruce sample sets
ranged from 84 to 88 (Table 3). These values were in good accordance with the values
reported for spruce wood in [31,32].

During the accelerated aging process simulating outdoor conditions without rain (dry
mode), lightness significantly decreased with extending irradiation time. During aging,
the values of the color coordinates a* and b* also varied (Table 3). In all cases, the a* and b*
values were positive, which means that the a* values fitted the red zone, and the b* values
ranged within the yellow zone, equally in good accordance with the above-cited authors.
With the progressing aging time, the coordinate a* was getting more and more saturated.
The coordinate b* exhibited significantly increasing saturation as far as 200 aging hours;
then, no significant variation could be observed.

The color variation generated by the effects of solar radiation simulated in the aging
process could be expressed through the color coordinate differences ∆L*, ∆a*, and ∆b*; see
Figure 2. The variations in color coordinates were also reflected in the total color difference
∆E*, with ∆E* > 12, which corresponds to the degree six of the six-degree discoloration
scale [33], thus representing a different color hue compared with the original one. With
further advances in aging time, the total color difference values increased, too, far beyond
the value of 12.
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The aging time-related color variations on the tangential and the radial surfaces
were very similar, both in terms of quality and quantity. Despite the fact that statistically
significant differences were confirmed between these two surface types, from a practical
standpoint, they are unimportant. We suppose that these different color patterns are mainly
due to the diverse heterogeneous structures across the radial and tangential surfaces.
Spruce surface color variation during accelerated aging simulating outdoor conditions is
also documented in Figure 3. Spruce wood belongs to light-colored wood species. In these
species, the photodegradation causes more intensive darkening [9,10,13].
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During the accelerated aging process simulating outdoor conditions in the presence
of rain (wet mode), the color variation was qualitatively different from the one associated
with the dry mode. The lightness exhibited a conspicuous reduction after the first aging
hours, with the coordinates a* and b* growing in saturation in the red and yellow areas,
respectively (Table 3). This resulted in coloring the spruce wood into darker brown. After
100 aging hours, the ∆E* values were >12 (Figure 4), corresponding again to the degree six
of the six-degree scale [33]. After this moment, the interaction between radiation and water
caused the wood surface color to fade step by step. After 600 aging hours, the lightness
values were close to the original ones. The values of a* and b* decreased, too, shifting
to achromatic colors. In this way, the wood obtained a brown-grey hue, the so-called
patina. As the total color difference values ∆E* were close to 10, the final discoloration
was found considerable thus far (degree five of a six-degree scale). Also, in this case, the
aging time-dependent differences between the radial and the tangential surfaces were very
similar in their quality and quantity and insignificant in terms of practical use. The color
variation is also documented in Figure 5.

At relevant time intervals in the accelerated aging process, average values of col-
or coordinates were measured experimentally on spruce wood surfaces. These values
were then used as the input data for Adobe Photoshop to perform color simulation
(Figures 3 and 5—model). The figures illustrate good accordance between the factual
specimens and the model obtained using the simulation.
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3.2. FTIR Spectroscopy

The color changes observed for the two accelerated aging modes were caused by
changes in the wood surface chemistry. FTIR spectra showed that UV radiation alone or in
combination with water leaching causes significant changes on the surface of spruce wood
(Figures 6–9). The fingerprint region (1180–1900 cm−1) is shown in this study for clarity.
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The most sensitive molecule is the lignin macromolecule because it is a good absorber
of ultraviolet light. The photons of UV radiation can break the aromatic bonds of lignin.
The produced free radicals react with oxygen to form carbonyl groups [34–36]. The charac-
teristic peak for guaiacyl lignin (1508 cm−1) [37] decreased by approximately 98% of the
original absorbance, with a greater decrease observed in the wet mode, where it completely
disappeared. A sharp decrease occurred during the first 100 h of irradiation, and further
accelerating aging had little effect on lignin changes. Similar results had been obtained
by [38], who found a decrease in the peak at 1510 cm−1 to 60% of the original absorbance
value when the spruce wood was irradiated with UV light. In addition to the decrease
in the peak at 1508 cm−1, reduced absorbance was also observed around 1470 cm−1 (aro-
matic deformation of the C-H) and at 1264 cm−1 (guaiacyl ring breathing), which agrees
with the results obtained with UV irradiation and the water leaching of Scots pine and
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spruce wood [39–41]. Several authors found a strong decrease in the absorbance of lignin
in wood during the photodegradation process associated with the formation of carbonyl
groups [38,41,42].

Changes in lignin were, therefore, accompanied by the formation of new carbonyl
groups (1653 cm−1 − C=O conjugated and 1730 cm−1 − C=O unconjugated), which
caused changes in the color of the wood. The formation of carbonyl groups indicates
photoinduced oxidation of the wood surface. The cleavage of β-O-4 bonds in lignin leads
to the formation of different types of chromophores, in particular quinones [38,43]. The
growth of non-conjugated carbonyl groups was more pronounced in the early stages of
irradiation. In contrast to the dry mode, where there was an increase in carbonyl groups
(1653 cm−1 − C=O conjugated and 1730 cm−1 − C=O non-conjugated), in the wet mode
of accelerated aging, we observed a decrease in both types of carbonyl groups due to
the extraction of the formed carbonyl compounds with water, which is in line with the
observation of [44,45].
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Color change follows a similar pattern to lignin degradation, with the greatest changes
occurring in the early stages of irradiation and being greater in the T direction than in the
R direction. We found a linear correlation between lignin content and color changes with
high correlation coefficients (from 0.9653 to 0.9893) (Figure 10) and a non-linear correlation
between carbonyl groups at 1735 cm−1, which was also observed by Müller et al. [38]. These
authors explain the linear dependence with the formation of quinones and the non-linear
dependence with the formation of aliphatic carbonyl bonds. The photo-oxidation and
oxidation of cellulose and hemicelluloses lead to the formation of the aldehyde and ketone
groups on carbon atoms C2 and C3, which may contribute to the increased absorbance
at wavelengths of 1653 and 1730 cm−1 [38], but the rate of change in cellulose is much
lower than in lignin [13]. However, apart from lignin, the largest color changes during
photodegradation can be caused by extractives. However, the content of extractives in wood
is so small that, according to some authors [14,46], it is not possible to monitor their chemical
changes using the FTIR method. On the other hand, Pandey [42], comparing unextracted
and extracted UV-irradiated Acacia auriculaeformis wood, found that the photodegradation
of polyphenolic extractives contributes to color changes. The different composition and
content of extractives in individual woody plants can, therefore, influence color changes
in the photodegradation process of the wood in different ways, which is consistent with
several works [9,10,42]. Correlations between color changes and changes in the mechanical
properties of wood have been found in several works. According to our research, this
correlation applies mainly to the woody plants of the temperate zone, and even then, only
if these woody plants do not have significant amounts and composition of extractives [47].
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The ratio of absorbances A1370/A1508 can be used to calculate the wood crystallinity
index (CI) [48]. The peak at 1370 cm−1 is characteristic of cellulose, and that at 1508 cm−1

is characteristic of lignin; in our experiments, a linear increase with high correlation coeffi-
cients (r = 0.92–0.98) occurred due to the faster degradation of amorphous lignin compared
with mostly crystalline cellulose, and greater changes occurred in the wet mode compared
with the dry mode (Tables 4 and 5). Similar changes were also observed during the natural
weathering of spruce wood [39] and the accelerated aging of pine wood [48].

Table 4. The values of TCI, LOI, HBI, and CI (dry mode).

Time (h)
Radial Surface Tangential Surface

TCI LOI HBI CI TCI LOI HBI CI

0 2.52 1.02 1.63 1.10 2.40 1.32 1.85 0.93
100 2.49 0.72 1.99 5.55 2.25 0.68 1.66 6.00
200 2.46 0.74 1.77 8.73 2.19 0.73 1.85 8.10
400 2.39 0.74 2.30 13.46 2.14 0.70 1.92 15.61
600 2.11 0.79 1.92 26.22 1.94 0.83 2.44 50.00

Table 5. The values of TCI, LOI, HBI, and CI (wet mode).

Time (h)
Radial Surface Tangential Surface

TCI LOI HBI CI TCI LOI HBI CI

0 2.24 1.24 1.95 1.22 2.64 1.73 1.79 1.05
100 2.00 0.86 1.78 313.33 2.02 0.88 1.46 44.23
200 2.11 0.85 1.75 384.09 2.02 1.06 1.46 93.00
400 2.11 0.90 1.69 493.75 2.08 1.12 1.60 120.88
600 2.18 1.16 1.54 555.00 2.13 1.31 1.27 170.00

FTIR spectroscopy can be used to study changes in cellulose, particularly changes
in its crystallinity. The absorbance at 1420–1430 cm−1 is caused by skeletal vibrations
associated with C-H planar deformations of cellulose and is attributed to its crystalline part.
Bands at 1372–1375 cm−1 (CH deformation vibrations in cellulose and hemicelluloses) and
1160–1165 cm−1 (C-O-C asymmetric valence vibrations in cellulose and hemicelluloses) are
characteristic of carbohydrates. The band at 898 cm−1 is caused by CH deformations in
cellulose and its amorphous part [49–52].

The A1420/A898 ratio was proposed by Nelson and O’Connor [53] as an empirical
crystallinity index (LOI—lateral order index), and the A1372/A2900 ratio as a total crys-
tallinity index (TCI). Regarding the mobility of cellulose chains, hydrogen bond intensity
(HBI) is closely related to the crystallinity of cellulose, as well as to the amount of bound
water [49]. The band at 3400 cm−1 is due to −OH valence vibrations and at 1320 cm−1 to
CH2 rocking vibrations in cellulose, and the A3400/A1320 ratio is used to study HBI in
different wood species [51,54,55].

Accelerated aging causes a similar progression of LOI values, namely a decrease in the
first stage of action, which is consistent with the results obtained in the photodegradation
of deciduous and coniferous trees [56,57]. The decrease in TCI values accelerates in the
later stages of photodegradation. The decrease in crystallinity increases the amount of
amorphous cellulose, which leads to an increase in the hydrophilicity of aged wood.
Changes in HBI values indicate the reorganization of hydrogen bonds or changes inbound
water in cellulose.

3.3. Spruce Wood Surface Geometry and Morphology

The four-way variance analysis processing confirmed significant impacts for all four
evaluated factors (aging mode, aging time, anatomical direction, and irradiated surface), as
well as their interactions on the roughness parameters discussed.
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The original spruce wood surface pre-treated with milling exhibited the lowest rough-
ness values. As the unevenness of these surfaces overpassed 500 nm, they were considered
surfaces with rough unevenness [58], and this is typical for wood. In most cases, significant
differences in roughness between the radial and the tangential surfaces were not identi-
fied. Occasionally, significant differences in roughness parameters were confirmed; these,
however, were not important from a practical viewpoint. Significantly lower roughness
values that were measured in the grain direction than perpendicular to the grain were due
to the orientation of the cell wall elements. The roughness data we obtained for the milled
surface were in good accordance with the results reported in [59–61].

The advancing aging process caused roughness to increase in both aging modes
(Figure 11). This figure demonstrates that the smallest changes in roughness parameters
were observed in the grain direction in the dry mode, and the highest increase in roughness
parameters was found perpendicular to the grain in the wet mode. In this case, 600 aging
hours resulted in more than a three-fold increase in the two roughness parameters. The
aging-related changes in the roughness parameters Ra and Rz were practically identical on
the radial and tangential surfaces.
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The solar radiation and heat simulated in the dry aging mode caused depolymeriza-
tion, primarily of lignin, and multiplication of carbonyl groups, but without their washing
out. Consequently, the wood morphology remained without substantial changes. On
the other hand, the wet mode, comprising radiation, oxidation, and heat in interactions
with water, caused a decline in the carbonyl groups because of their extraction with water.
Neither hydrolyzing reactions may be excluded. The hydrolysis mainly affects the acetyl
groups in hemicelluloses [25]. All these phenomena resulted in more conspicuous wood
surface degradation. Individual annual rings in spruce wood show characteristic differ-
ences in density between the early wood and the late wood, so the degradation primarily
concerned early wood [62,63]. Moliński et al. [64] reported that the average density value
for early spruce wood was about 300 kg·m−3, while for the late wood, it was 750 kg·m−3.
This difference in density resulted in more extensive early wood erosion in the wood aging
process and evident increases in roughness, measured mainly perpendicularly to the grain
course. These differences in erosion extent between the early and late wood caused the
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forming of the so-called “plastic texture“ (Figure 12). This is typical for coniferous wood
species [63,65].
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In the dry mode, the wood moisture content was kept constant (4.5 ± 0.3%); accord-
ingly, the dimensional changes were negligible. In the case of the wet mode, the average
moisture content in the specimens subject to aging was significantly higher, ranging from
11% to 16%. Due to the steeper moisture gradient, the surface layers revealed restricted
swelling or shrinkage. This probably enhanced the frequency occurrence of surface cracks
observed in the case of the wet mode equally on the radial and the tangential surfaces
(Figure 12).

Waviness was evaluated only perpendicularly to the grain. Also, for waviness, the
results of the three-way variance analysis confirmed the important effects of all three
studied factors (aging mode, aging time, and irradiated surface) and their interactions on
the waviness parameters Wa and Wt. The waviness parameters varied with the aging time
both in dry and wet modes (Figure 13). The two parameters significantly increased with
prolonged aging time. Evidently, bigger changes were observed for the wet mode. While in
the case of dry mode, the Wa values, after accomplishing the aging process, were found to
be 2.5 to 3 times bigger than the original ones, in the case of wet mode, the corresponding
increase was from 7.5- to 10-fold. Similar qualitative and quantitative changes during the
aging process were also observed for the parameter Wt. Higher waviness was observed on
radial surfaces.
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Figure 13. Parameters Wa and Wt varying during accelerated aging process (perpendicular to
the grain).

The changes in the chemistry and morphology of the spruce wood surface during the
aging process were also reflected through the changes in this microscopic wood structure.
Before the aging, the cell elements in the milled spruce wood surfaces created a compact
structure. The tracheids were cross-linked by means of undamaged middle lamellae. The
inner surfaces of cross-cut tracheids exhibited intact bordered pits pair (Figure 14a,b). In
the dry mode, after 600 aging hours, surficial cracks were observed; the bonds between
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the cell elements, however, were mostly preserved sufficiently compact (Figure 14c–f). The
inner surfaces of early tracheids exhibited cracks in cell walls and in neighborhoods of
bordered pits. These were, to a certain extent, distorted and lacking toruses. The character
of cell walls destruction indicates their fragility aggravated due to radiation effects. On the
other hand, the surfaces of intact, non-cut late wood tracheids manifested the occurrence
of melt mass, identified, based on our chemical analyses, as lignin and lignin derivatives
(Figure 14e,f). A similar phenomenon was observed by Ko et al. [66] during beech wood
pre-treatment with hot water.

More conspicuous changes in the structure were observed after having accomplished
the aging in the wet mode (Figure 15). After 600 aging hours, the surfaces exhibited
more abundant cracks (Figure 15a,b). From many spots, the compound middle lamellae
(Figure 15d), consisting mainly of lignin, were eroded. The removal of the middle lamellae
considerably debilitated the connections between the tracheids. The supplied liquid water
detached the tracheids from the surface step by step, and the surface roughness was
progressively pronounced. The bordered pits were degraded, too. The pores were extended,
and the toruses were eliminated totally or partially as the result of margin degradation
(Figure 15c). The surfaces did not exhibit melted lignin because, unlike in the dry mode,
this substance was also washed away with water. A similar form of surface degradation has
been documented for several tropical woods subject to natural and accelerated aging [67].
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4. Conclusions

The analysis of the experimental results has allowed us to draw the following conclusions.

• Sunlight exposure was a major factor in spruce wood discoloration. As early as after
100 irradiation hours, the total color difference values were ∆E* > 12, thus representing
a new wood color hue, different from the original one.

• The interaction of sunlight with water during aging resulted in qualitatively different
discoloration compared with the dry mode, leading to the formation of a patina on the
wood surface.

• Water leaching during UV photodegradation increased the hydrophilicity of spruce
wood by leaching out carbonyl groups. The accelerated aging of wood causes faster
degradation of lignin compared with cellulose, and greater changes occurred in the
wet mode compared with the dry mode.

• Spruce tracheids showed increased fragility with aging. Wet mode aging led to
irreversible hydrogen bonding (hornification), impacting microstructural damage
differently compared with dry mode aging.

• The compound middle lamella was eroded at many spots, which resulted in a signifi-
cant decline in the coherence of the tracheids.

• The direction of wood fibers influenced the extent to which the surface roughness
was affected by aging, with moisture exposure (wet mode) potentially amplifying
this effect.
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Process of Pinus Sylvestris L. Wood after Treatment with Acid and Alkaline Buffers and Light Irradiation. BioResources 2015, 10,
2057–2066. [CrossRef]

37. Hofmann, T.; Tolvaj, L.; Visi-Rajczi, E.; Varga, D. Chemical Changes of Steamed Timber during Short-Term Photodegradation
Monitored by FTIR Spectroscopy. Eur. J. Wood Wood Prod. 2022, 80, 841–849. [CrossRef]

38. Müller, U.; Rätzsch, M.; Schwanninger, M.; Steiner, M.; Zöbl, H. Yellowing and IR-Changes of Spruce Wood as Result of
UV-Irradiation. J. Photochem. Photobiol. B 2003, 69, 97–105. [CrossRef] [PubMed]

https://doi.org/10.1016/j.apsusc.2012.02.005
https://doi.org/10.3390/polym15071794
https://doi.org/10.1080/17480272.2021.1961858
https://doi.org/10.37045/aslh-2021-0001
https://doi.org/10.3390/coatings13081312
https://doi.org/10.1515/hf-2021-0102
https://doi.org/10.1016/S0141-3910(03)00051-X
https://doi.org/10.1186/s40494-023-00956-x
https://doi.org/10.1016/j.jphotobiol.2018.08.016
https://doi.org/10.1007/s00226-015-0766-0
https://doi.org/10.1186/s10086-020-01924-w
https://doi.org/10.1016/j.polymdegradstab.2014.09.017
https://doi.org/10.4028/www.scientific.net/MSF.818.177
https://doi.org/10.1007/s10973-023-12581-8
https://doi.org/10.1016/j.jphotobiol.2011.07.005
https://www.ncbi.nlm.nih.gov/pubmed/21820317
https://doi.org/10.1080/17480272.2012.725427
https://doi.org/10.1007/s10086-018-1721-0
https://doi.org/10.3390/coatings13122006
https://doi.org/10.1007/s10086-017-1615-6
https://doi.org/10.3390/coatings11020126
https://doi.org/10.15376/biores.10.2.2057-2066
https://doi.org/10.1007/s00107-022-01814-6
https://doi.org/10.1016/S1011-1344(02)00412-8
https://www.ncbi.nlm.nih.gov/pubmed/12633982


Polymers 2024, 16, 1191 18 of 19

39. Mastouri, A.; Azadfallah, M.; Kamboj, G.; Rezaei, F.; Tarmian, A.; Efhamisisi, D.; Mahmoudkia, M.; Corcione, C.E. Kinetic Studies
on Photo-Degradation of Thermally-Treated Spruce Wood during Natural Weathering: Surface Performance, Lignin and Cellulose
Crystallinity. Constr. Build. Mater. 2023, 392, 131923. [CrossRef]
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