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Abstract: Dragon fruit peel, often discarded, is a valuable source of commercial pectin. This study
investigates different extraction methods, including cold-water (CW), hot-water (HW), ultrasound
(US), and novel enzyme extraction (xylanase: EZX), to extract pectins from dragon fruit peel and
compare their characteristics. The pectin yield ranged from 10.93% to 20.22%, with significant varia-
tions in physicochemical properties across methods (p < 0.05). FTIR analysis revealed that extraction
methods did not alter the primary structural configuration of the pectins. However, molecular
weights (Mws) varied significantly, from 0.84 to 1.21 × 103 kDa, and the degree of esterification
varied from 46.82% to 51.79% (p < 0.05). Monosaccharide analysis identified both homogalactur-
onan (HG) and rhamnogalacturonan-I (RG-I) pectic configurations in all pectins, predominantly
comprising galacturonic acid (77.21–83.12 %mol) and rhamnose (8.11–9.51 %mol), alongside minor
side-chain sugars. These properties significantly influenced pectin functionalities. In the aqueous
state, a higher Mw impacted viscosity and emulsification performance, while a lower Mw enhanced
antioxidant activities and promoted the prebiotic function of pectin (Lactis brevies growth). This
study highlights the impact of extraction methods on dragon fruit peel pectin functionalities and
their structure–function relationship, providing valuable insights into predicting dragon fruit peel’s
potential as a food-grade ingredient in various products.

Keywords: dragon fruit peel; waste utilization; pectin; extraction method; structure–function

1. Introduction

Dragon fruit, a member of the cactus family, is extensively cultivated and consumed
in subtropical regions of South America, Southeast Asia, and China. In recent times,
temperate countries, including South Korea, have significantly increased their efforts to
cultivate subtropical fruits, resulting in successful dragon fruit cultivation in areas such
as Jeju and Tongyeong [1]. The peel of dragon fruit, which constitutes 30% of the fruit, is
often discarded as waste in the food-processing industry, leading to unexplored potential
value, economic inefficiencies, and environmental challenges [2]. As a result, significant
research efforts have been directed at repurposing these by-products, with recent studies
predominantly concentrating on the extraction of pectin from dragon fruit peels [3–7]. The
dragon fruit peel, characterized by a high moisture content exceeding 90%, constitutes a
significant source of pectin [8,9]. The proximate composition of the peel of dragon fruit
comprises 64.14% to 72.72% carbohydrates, 15.05% to 21.66% ash, 3.44% to 9.27% protein,
and 0.40% to 1.66% fat [10]. Its distinctive purplish-red hue is attributed to betacyanin, a
natural water-soluble nitrogen-containing pigment originating from tyrosine in fruits and
vegetables, renowned for its noteworthy anti-inflammatory and antioxidant properties [11].
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Furthermore, owing to its vibrant coloration, betacyanin serves as an important natural
food colorant widely employed in food-processing applications [12].

Pectin obtained from dragon fruit peel is regarded as a versatile ingredient with
various applications in the food industry, functioning as a thickener, stabilizer, and emul-
sifier and a food fortificant in various food products such as jam, jelly, sauces, and ice
cream [13,14]. Moreover, dragon fruit peel pectin has been used to develop biodegradable
films as potential food-packaging materials [15]. In terms of health benefits, it has been
documented to exhibit biological activities such as anti-inflammatory, antioxidant, and
prebiotic properties [16]. However, the functionalities of pectin have been linked to its
structural and physicochemical composition, which are determined by factors including
their sources and especially the extraction methods employed [17–20]. Furthermore, the
choice of extraction method is important for achieving high pectin yield and quality [21].
Thus, it is believed that different extraction methods could significantly impact desirable
functionalities in dragon fruit peel pectin. In most studies, heat extraction methods with in-
organic chemical acid solvents are employed in pectin extraction from dragon fruit peel [21].
While this method results in high pectin yield (14.11–19.48%) [22,23], the use of chemical
solvents like sulfuric and citric acid raises environmental concerns and may affect consumer
preference [24,25]. This has prompted the exploration of alternative extraction methods
that support the use of less toxic and hazardous chemicals.

In recent years, novel methods, such as enzyme-, microwave-, and ultrasonic-assisted
techniques, have been shown to improve pectin yield and quality [7,26]. Ultrasound-
assisted extraction utilizes ultrasonic waves to improve solvent–solute contact, thus enhanc-
ing extraction efficiency while reducing solvent use and allowing for extraction at lower
temperatures [2]. For instance, Wang et al. [9] observed a 16.34% increase in pectin yield
at a lower extraction temperature (13.3 ◦C) and a reduced extraction time (37.78%) com-
pared with conventional hot water extraction. Enzymatic extraction is another eco-friendly
approach involving using enzymes under specific conditions to selectively depolymerize
cell wall components (pectin, cellulose, and hemicelluloses) without harsh chemicals [27].
In the cell wall of dragon fruit peel, the pectin is strongly attached to hemicelluloses (xy-
loglucans and xylans) and cellulose, limiting its efficient extraction [28]. The xylanase
enzyme, which catalyzes xylan hydrolysis, can disrupt the cell wall integrity and offer the
targeted cleavage of these hemicelluloses into soluble fragments, thereby facilitating the
release of bound pectin substance [29,30]. However, there is limited information on the
characteristics and functionalities of pectin obtained from dragon fruit peel by enzymatic
extraction. Therefore, this study comparatively examines the impact of hot- and cold-water
extraction, ultrasonic-assisted extraction, and a novel enzymatic approach using xylanase
on the characteristics, functionalities, and potential applications of pectin from dragon
fruit peel.

2. Materials and Methods
2.1. Materials

Fresh dragon fruit (Hylocereus undatus) was obtained from a local farm in the Republic
of Korea. To obtain the dried peel powder, the peel was separated from the fruit pulp
manually with a knife, cut into small fragments, and then dried for 48 h at 45 ◦C in a hot
air dryer. Subsequently, the dried pieces were ground into a powder using a grinder and
stored in a tightly sealable bag at −18 ◦C until further use. All chemical solvents used were
of analytical grade and obtained from Duksan Chemicals (Ansan, Republic of Korea). The
enzyme Shearzye® 500 L, which contains xylanase (endo-1,4-) with a declared activity of
500 FXU-S/g, was obtained from Novozymes, Bagsvaerd, Denmark.

2.2. Pectin Extraction

Four different extraction methods were used to extract pectin from the peel of dragon
fruit, namely, cold-water extraction (CW), hot-water extraction (HW), ultrasonic-assisted
extraction (US), and enzyme-assisted extraction using xylanase (EZX), as described below.
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After the completion of extraction across all five methods, the resultant supernatants
were centrifuged at 4000 rpm for 10 min using a SUPRA-22K centrifuge, Hanil Science
Industrial, Incheon, Republic of Korea). To precipitate the pectin, the supernatants were
mixed with 95% ethanol (1:2 v/v) and kept overnight at 5 ◦C. Then, the precipitated pectin
was separated by centrifuging the mixture for 10 min at 4000 rpm. This precipitate was
subjected to two rounds of washing using 95% ethanol, after which, freeze-drying was
performed. The obtained powder was stored in a sealable bag at −18 ◦C prior to analysis.
Protein analysis was performed using the Bradford assay method.

2.2.1. Cold-Water Extraction (CW)

The pectin extraction was prepared by mixing 10 g (w/v) of dried dragon fruit
peel powder with 300 mL of distilled water and subjecting it to a temperature of 5 ◦C
for 48 h [31].

2.2.2. Hot-Water Extraction (HW)

The pectin extraction was prepared by mixing 10 g (w/v) of dried dragon fruit peel
powder mixed with 300 mL of distilled water in a glass flask. The mixture was placed in a
heating water bath at an elevated temperature of 50 ◦C for 2 h.

2.2.3. Ultrasonic-Assisted Extraction (US)

For US extraction, 10 g (w/v) of dried dragon fruit peel powder was mixed with 300 mL
in a glass flask and placed in an ultrasonic machine (KHC-1SUMP, Kyung il Ultrasonic,
Ansan, Republic of Korea), with working conditions of 600 W and 100 kHz at 50 ◦C for
30 min [32].

2.2.4. Enzyme-Assisted Extraction (EZX)

For EZX, 10 g of dried dragon fruit peel powder was dissolved in 300 mL of 0.1 M
sodium acetate buffer (pH 4.5) containing 1 mL of xylanase enzyme. The mixture was then
placed in a shaking incubator at 50 ◦C for 2 h. The enzyme was deactivated by heating
the mixture at 100 ◦C for 5 min, and pectin was precipitated as described in Section 2.2.
The buffer and pH used were specified as the optimal conditions for the enzyme by
the manufacturer.

2.3. Color Analysis

The L*, a*, and b* values of the pectin samples were measured using a Chroma
Meter colorimeter (CR-300, Minolta Co., Osaka, Japan) in accordance with the CIE color
measurement system [33].

2.4. Monosaccharide Composition of Pectins

High-performance liquid chromatography (HPLC) (JASCO International Co., Ltd.,
Tokyo, Japan) coupled with an Athena C18 reverse-phase column (250 mm × 4.6 mm; 5 µm)
was used to analyze the monosaccharide composition of the pectin as described by Olawuyi
and Lee [32]. Initially, 4 mL of 2 M trifluoroacetic acid (TFA) was used to dissolve 0.01 g
of each pectin sample in a glass vial. Afterward, the vial was sealed and autoclaved for
60 min at 121 ◦C. TFA was evaporated with the aid of methanol using a rotary evaporator,
and the concentrated sample was further dissolved in 4 mL of HPLC-grade water. An
aliquot (0.5 mL) of the hydrolysate was mixed with 0.5 mL of 0.3 M NaOH and 0.5 mL of
0.5 M PMP in methanol. The mixture underwent a reaction for 1 h at 70 ◦C, after which, it
was cooled to room temperature and neutralized with 0.5 mL of 0.3 M HCl. The resulting
solution was then extracted three times with chloroform. The derivatized hydrolysate was
filtered through a 0.45 µm membrane, and the monosaccharide composition was measured
and quantified using the respective standard calibration curves.
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2.5. Molecular Weight of Pectins

The determination of pectin molecular weight (Mw) and distribution followed the
procedure outlined in our prior studies [34,35]. Gel permeation chromatography, utiliz-
ing a refractive index detector (Thermo Dionex, HPLC Ultimate3000 RI System, JASCO
International Co., Ltd., Tokyo, Japan) equipped with Waters Ultrahydrogel columns (120,
500, and 1000), was employed. Pectin solutions (5 mg/mL) were prepared in 0.1% sodium
azide and filtered before injection into the system. Elution was conducted at 40 ◦C with
0.1 M sodium azide as the mobile phase at a flow rate of 1 mL/min. Data analysis utilized
the Chromeleon Version 6.8 Extension-pak software, with pullulan serving as a standard
for quantification.

2.6. FTIR Structural Analysis and DE Quantification

Dragon fruit peel pectin (2 mg) was mixed with 100 mg of KBr, and spectra were
measured from 4000 to 400 cm−1 at a resolution of 4 cm−1 using an FTIR spectrophotometer,
Frontier, Billerica, MA, USA [32]. The degree of esterification (DE) was calculated by
comparing the FTIR peak area values of the free carboxyl groups (1630 cm−1) and the
esterified groups (1740 cm−1) using the equation formulated by [36].

DE = 124.7 × R + 2.201 (1)

R = A1740/(A1740 + A1630)× 100 (2)

2.7. Viscosity of Pectin Solutions

A DV-II + PRO viscometer (Brookfield Engineering Laboratories, Inc., Middleboro,
MA, USA) with an attached spindle (No. 42) was used to measure apparent viscosity. The
flow behavior was measured using a 1% (w/v) pectin solution [32]. To demonstrate the
flow behavior, readings for apparent viscosity (η) were taken at different shear rates (γ) at
25 ◦C and plotted as a line graph. The flow behavior of pectin in aqueous solution was
predicted using the Power Law Model below:

η = Kγn−1 (3)

where η is the apparent viscosity, K is the flow consistency index, γ is the shear rate, and n
is the flow behavior index.

2.8. Emulsifying Properties of Pectin Solutions

Pectin powder was dissolved in 0.1 M sodium azide buffer to prepare a pectin solution
(1% w/v). In order to produce an oil-in-water emulsion, 10 mL of pectin solution and
10 mL of soybean oil were mixed and homogenized (PT-1200C, Kinematica AG, Littau,
Switzerland) for 1 min at 20,000 rpm [32]. To determine the emulsifying capacity (EC), the
prepared emulsions were centrifuged for 10 min at 4000 rpm. The emulsion stability (ES)
was assessed by placing the prepared emulsions in a hot water bath for 30 min at 80 ◦C,
followed by centrifugation for 10 min at 4000 rpm. The percentages of EC and ES were
calculated using the following equation:

EC (%) = (Ev/Tv)× 100 (4)

where Ev is the volume of the emulsified layer, and Tv is the total volume of the
emulsion phase.

ES (%) = (Fev/Iev)× 100 (5)

where Fev is the final emulsion phase volume following treatment in a water bath, and Iev
is the initial emulsion layer [37].
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2.9. Betacyanin Content of Pectins

Betacyanin extraction was carried out by mixing 0.05 g of pectin powder into 2 mL of
80% aqueous MeOH acidified with 5% formic acid (v/v) under stirring for 2 h at 200 rpm [38].
Thereafter, a clear supernatant was obtained by centrifugation (10 min at 4000 rpm), and the
absorbance was measured at 536 nm using a UV spectrophotometer (UV-2500, Shimadzu
Corporation, Kyoto, Japan). The betacyanin concentration (BC) (mg/L) in the pectin extracts
was quantified by the following Equation (6) [39]

BC = (A × Df × Mw × 1000)/(E% × L) (6)

where E% is the betalain’s extinction coefficient, A is the absorbance at 536 nm, Df is the
dilution factor, Mw is the molecular weights of betacyanin, and L is the pathlength of the
(1 cm) cuvette.

2.10. Antioxidant Activity of Pectins

The antioxidant activity of pectin was determined using ABTS radical scavenging
assays, and ABTS reagent preparation and reaction followed the method described by
Zhang et al. [40]. Briefly, 50 µL of pectin solution at 4 different concentrations (5 to
20 mg/mL) were added to 950 µL of ABTS solution. After reacting in the dark for 30 min,
the absorbance was measured at 734 nm using ethanol as the blank. The ABTS radical
scavenging activity (%) was calculated using Equation (7).

ABTS (%) = (1 − A1/A0)× 100 (7)

where A1 and A0 are the absorbances of the sample and blank, respectively.

2.11. Prebiotic Property of Pectins

The prebiotic properties of the pectin samples were examined using B. animalis subsp.
Lactis brevis. For this experiment, pectin (1%) was dissolved in a sterile 0.1% saline solution,
and MRS broth was used as a culture liquid medium. In total, 1 mL of pectin solution was
mixed with 8.9 mL of MRS broth and 0.1 mL of pre-cultured Lactis brevis (104 CFU/mL) and
then placed in a shaking incubator at 37 ◦C for 12 h. Saline solution was used in place of
pectin solution, serving as a control to compare the growth of the culture. After incubation,
cells were harvested by centrifugation, washed with saline solution, redissolved in 10 mL
of saline solution, and serially diluted for colony count using the plate assay method with
MRS agar plates. The colony count on the plates was recorded and denoted as CFU/mL
after 24 h at 37 ◦C in an anaerobic incubator [41].

2.12. Statistical Analysis

The results are presented as mean ± standard deviation, and statistical analyses were
performed using SPSS software v.20 (SPSS Inc., Chicago, IL, USA). One-way analysis of
variance (ANOVA) followed by Tukey’s post hoc tests were employed to compare the mean
values, with a significance level set at p < 0.05.

3. Results and Discussion
3.1. Yield and Composition of Pectins

The yields and compositions of the pectin extracted using the four different extraction
methods are demonstrated in Table 1. The pectin extraction yield was observed to signifi-
cantly differ (p < 0.05) according to extraction methods, with enzyme-assisted extraction
having the highest value (EZX: 20.22%), followed by US (15.17%), HW (15.03%), and CW
(10.93%). The xylanase enzyme’s ability to cleave xylan and glucoxylans in the plant tissue
could have increased the likelihood of the selective release of pectin from residual cell
wall polymers, leading to a higher yield [42]. The reduced solubility of pectin at lower
temperatures in cold-water extraction (CW) can limit its extraction efficiency [43], whereas
higher temperatures facilitate both cell wall disruption and enhanced pectin release [44],
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thereby increasing the extraction yield. Moreover, higher yields were observed for both the
hot-water (HW) and ultrasonic (US) methods compared with CW. This may be attributed to
the high-temperature treatment involved in both HW and US methods, playing a significant
role in the extraction, dissolution, and degradation of pectin [45]. The elevated temperature,
combined with ultrasonic cavitation, effectively disrupts intermolecular and intramolecular
covalent crosslinking in the cell wall matrix, easing the release of water-soluble pectin com-
ponents into the plant matrix [46]. Thus, the US method achieved higher yields compared
with those of HW in a shorter extraction time.

Table 1. Physicochemical properties of pectin.

CW HW US EZX

Yield (%) 10.93 ± 1.21 c 15.03 ± 1.44 b 15.17 ± 0.75 b 20.22 ± 1.75 a

Protein (%) 3.97 ± 0.05 c 4.17 ± 0.03 b 4.56 ± 0.09 a 3.37 ± 0.06 d

DE (%) 50.88 ± 0.27 a 46.82 ± 0.61 b 51.79 ± 0.13 a 47.74 ± 0.70 b

Mw (×103 kDa) 1.21 ± 0.12 a 1.01 ± 0.10 a 0.97 ± 0.09 a 0.84 ± 0.03 b

Mw/Mn 4.81 4.19 4.22 13.04
L* 65.00 ± 0.10 b 64.10 ± 0.80 bc 63.00 ± 0.45 c 69.08 ± 0.88 a

a* 20.06 ± 0.24 a 17.01 ± 0.77 b 19.90 ± 0.08 a 9.13 ± 0.10 c

b* 7.73 ± 0.04 b 7.23 ± 0.32 b 4.81 ± 0.22 c 10.06 ± 0.16 a

Betacyanin (mg/L) 50.65 ± 1.56 a 31.01 ± 0.26 c 43.49 ± 0.78 b 20.74 ± 0.26 d

DE = degree of esterification; Mw = molecular weight; L* = lightness; a* = green to red; b* = blue to yellow;
CW = cold-water extraction; HW = hot-water extraction; US = ultrasound-assisted extraction; EZX = enzyme-
assisted extraction (xylanase). Superscripts (a–d) indicate significant difference (p < 0.05).

All pectin samples contained low protein content (3.37–4.56%) and can be considered
pure pectin ingredients for food products, in accordance with the protein threshold (15.6%)
recommended by the FAO [47].

The monosaccharide analysis and sugar molar ratios presented in Table 2 reveal
that the extracted pectin is a polysaccharide complex with a main chain consisting of
galacturonic acid (GalA) and rhamnose and minor sugars such as mannose, glucose (Glu),
galactose (Gal), and arabinose (Ara). The pectin extracted by US showed the highest
GalA content (83.12%) compared with the 77%–78% observed for samples from other
extraction methods (p < 0.05). This study observed higher GalA content than those in other
reported studies for dragon fruit pectin extraction, such as 30.58–56.18% [3], 39.11% [48],
and 59.73–69.68% [49]. The GalA content in all samples exceeded 65%, indicating that these
extracted pectins could be commercialized in the market, aligning with the commercial
pectin benchmark recommended by Guandalini et al. [50]. Rha, Gal, and Glu had sugar
compositions of 8.76–9.51%, 3.68–4.71%, and 2.70–5.51%, respectively. However, Man and
Ara showed lower concentrations of dragon fruit pectin (0.59–1.63%; 0.93–3.86%) compared
with other sugar compositions. Table 1 illustrates that all the extracted pectins exhibited a
Rha/GalA ratio within a range of 0.10–0.12, classifying them as RG-I pectins. This aligns
with the established threshold (0.05–1.00) associated with RG-I pectin classification [51]. The
pectin obtained from different sources varies based on major domains (homogalacturonan,
HG; rhamnogalacturonan-I, RG-I), and the extent of esterification determines key functional
properties such as gelling, viscosity induction, and stabilizing [52]. Hence, based on these
findings, it can be inferred that the monomeric composition of pectin can be tailored by
extraction with different methods to achieve different functionalities.
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Table 2. Monosaccharide composition and molar ratios of pectin.

Mol% CW HW US EZX

Man 1.21 ± 0.18 b 1.27 ± 0.01 b 0.59 ± 0.08 c 1.63 ± 0.23 a

Rha 8.76 ± 0.17 ab 9.36 ± 0.15 a 8.11 ± 0.07 b 9.51 ± 0.47 a

GalA 77.21 ± 0.42 c 78.51 ± 0.35 b 83.12 ± 0.31 a 78.25 ± 2.26 bc

Glu 5.51 ± 0.01 a 3.62 ± 0.15 bc 2.70 ± 0.06 c 4.03 ± 0.60 b

Gal 3.68 ± 0.10 b 4.51 ± 0.07 a 4.56 ± 0.09 a 4.71 ± 0.42 a

Ara 3.86 ± 0.06 a 2.73 ± 0.02 b 0.93 ± 0.02 d 1.87 ± 0.54 c

HG 68.45 ± 0.59 b 69.15 ± 0.50 b 75.02 ± 0.38 a 68.73 ± 2.73 b

RG-I 25.05 ± 0.37 a 25.95 ± 0.35 a 21.70 ± 0.25 b 25.61 ± 1.90 a

HG/RG 2.73 ± 0.06 b 2.66 ± 0.05 b 3.46 ± 0.06 a 2.69 ± 0.31 b

Rha/GalA 0.11 ± 0.00 a 0.12 ± 0.00 a 0.10 ± 0.00 b 0.12 ± 0.01 a

Man = mannose; Rha = rhamnose; GalA = galacturonic acid; Glu = glucose; Gal = galactose; Ara = arabinose;
HG = homogalacturonan; RG-I = rhamnogalacturonan-I; CW = cold-water extraction; HW = hot-water extraction;
US = ultrasound-assisted extraction; EZX = enzyme-assisted extraction (Xylanase). Superscripts (a–d) indicate
significant difference (p < 0.05).

3.2. Color and Betacyanin Content of Pectins

The color of extracted pectin was significantly influenced by different extraction
conditions, directly impacting the visual appearance of the final product. The color analysis,
represented by L*, a*, and b*, is presented in Table 1. EZX pectin exhibited the highest
L* value (69.08), indicating a brighter appearance. Conversely, the CW method, without
heat treatment, had the highest a* value, and US and HW resulted in progressively lower
a* values (CW > US > HW), indicating a decrease in red color intensity, attributed to
betacyanin breakdown or separation. Enzyme-assisted extraction showed a diminished
red hue compared with the non-enzymatic treatment, suggesting enzymatic treatment may
have degraded or altered the betacyanin during the extraction process [53]. Moreover, the
b* value reflecting yellowness was higher in EZX compared with other pectins.

The betacyanin contents of all samples are presented in Table 1, as calculated using
Equation (6). Betacyanin, a natural pigment imparting a purplish-red color, serves as the
primary pigment component in dragon fruit peel. However, this pigment is inherently
unstable and susceptible to degradation from factors such as heat, oxygen, light, pH, and
moisture [54]. The results denote the betacyanin contents, corresponding to the a* value in
color analysis (Table 1). CW exhibited the highest betacyanin content (50.65 mg/L) and
exhibited the highest a* value. This can likely be attributed to the enhanced stability of
betacyanin in low-temperature extraction [55]. The betacyanin contents of US (43.49 mg/L)
are higher than HW (31.01 mg/L). This difference may arise from the fact that, despite both
being extracted at 50 ◦C, the US sample had a shorter extraction time than HW, allowing it
to retain more betacyanin. On the other hand, pectins obtained through enzyme extraction
(EZX) exhibited the lowest betacyanin contents (20.74 mg/L; 7.89 mg/L). Enzymes release
betacyanin from cell walls by degrading the cell wall components [56]. During the pectin
precipitation by ethanol, the betacyanin released during the enzyme treatment might have
dissolved into the ethanol solvent, resulting in a higher loss of betacyanin in the EZX pectin.

3.3. Molecular Weight of Pectins

Molecular weight is one of the most important attributes determining the potential
applications of pectin in aqueous solutions [57]. CW pectin has a significantly higher
Mw (1.21 × 103 kDa) compared with HW, US, and EZX, with Mw values of 1.01 × 103

kDa, 0.97 × 103 kDa, and 0.84 × 103 kDa, respectively. The Mw of pectins in this study
falls within a similar range for pectins (0.09–1.18 × 103 kDa) extracted from dragon fruit
peel in previous studies [21,48]. Notably, the observed range in this study surpassed the
molecular weights of apple and citrus pectins recorded at lower values (0.144 × 103 kDa
and 0.138 × 103 kDa, respectively [48]. A higher Mw in CW pectin may imply lesser molec-
ular defragmentation at lower temperatures, whereas elevated temperatures used in HW
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and additional cavitational force in the US method can catalyze hydrolysis, leading to the
fragmentation of the pectin molecule and a subsequent decline in molecular weight [58]. In
addition, EZX, having the lowest molecular weight, could be attributed to the enzymatic
cleavage of the molecular chains at different sites caused by xylanase, resulting in a greater
reduction compared with other methods [37].

The molecular distribution result (Mw/Mn) indicates that EZX has a more widely
distributed molecular configuration (13.04) compared with other methods (4.19–4.81) [59].
The higher value observed can be attributed to enzymatic degradation resulting in frag-
ments with a broader range of molecular weights within the sample. In contrast, the lower
Mw/Mn value of pectins obtained from other methods suggests a more uniform molec-
ular distribution, and the values observed in this study align with the results (1.21–8.12)
reported for the molecular distribution of dragon fruit peel pectin [14,48].

3.4. Structural Analysis and DE Quantification of Pectins

FTIR spectra (Figure 1) revealed that all pectins had similar structural characteristics,
exhibiting the same FTIR peak pattern, indicating that the extraction method did not
influence the primary structural conformation [60]. The strong band detected around
the 3412 cm−1 region can be attributed to O–H stretching arising from intermolecular
and intramolecular hydrogen bonding of sugars present in pectin [34]. The region near
2936 cm−1 signifies double-stacked stretching bands caused by C–H absorption, including
pectin’s CH, CH2, and CH3 stretching and bending vibration of sugars and methyl ester of
GalA [35,61]. The absorption peak at around 1747 cm−1 corresponds to the C=O stretching
vibration of the methyl-esterified carbonyl group, and the strong peak around 1630 cm−1

signifies the COOH asymmetric bond [34].
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The degree of esterification (DE) of pectin was estimated based on the ratio of esterified
carboxylic groups to total carboxylic groups in the FTIR spectra, as calculated using Equa-
tions (1) and (2) [60,62]. Pectins are classified as high-methoxyl pectins (HMPs, DE ≥ 50%)
and low-methoxyl pectins (LMPs, DE < 50%) [63]. The extracted pectins exhibited varying
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DE values, with the highest DE found in the US pectin (51.79%), followed by CW (50.88%),
classifying them as high-methoxyl pectins (HMPs). Meanwhile, EZX (47.74%) and HW
(46.82%), with lower DE values, could be classified as LMPs. The variations in DE observed
here may be attributed to differences in the extraction process, that is, the heating time
in HW and the specificity of enzymatic action in EZX methods. These differences in DE
could equally translate to differences in the functional properties of the respective pectins,
such as their gelling properties. For instance, US and CW, which are HMPs, could form a
gel network in an acidic medium (below pH 3.6) in the presence of abundant sugar (more
than 55%). In contrast, LMPs (HW and EZX) can gel in the presence of cations, such as
calcium ions, under mild pH conditions (2.0 to 6.0), without the addition of sugar [63]. This
property is particularly relevant in products like jams, jellies, and fruit preserves, where the
desired texture and stability depend on the gelling capability of the pectin [64].

3.5. Viscosity of Pectin Solutions

The apparent viscosity of the extracted pectins (Figure 2) was observed to correlate
directly with their molecular weights (CW > HW > US > EZX). The rheological parameters,
including the flow consistency index (K), the flow behavior index (n), and the correlation
coefficients (r2) of the pectin solutions, are summarized in Table 3, as calculated using
Equation (3). High r2 values (>0.99) indicate a good model fit. The observed shear-thinning
behavior (n < 1.0) in the apparent viscosity with increasing shear rate confirms the pseudo-
plastic property of pectin in aqueous solution [35]. This behavior is consistent with the
decrease in flow resistance due to elevated shear rates [65], resulting from the reduction in
intermolecular entanglement between pectin chains [66]. The observed viscosity behavior
aligns with findings from a previous study on dragon fruit peel pectin [14] and pectins
from other fruit sources, such as apples [67]. The detected consistency index (K) follows
the order CW (2613.15), HW (1176.96), US (943.42), and EZX (400.41), aligning with their
respective viscosities and molecular weights (Table 1).
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Figure 2. Viscosity of pectin solutions. CW = cold-water extraction; HW = hot-water extraction;
US = ultrasound-assisted extraction; EZX = enzyme-assisted extraction (xylanase).

Table 3. Rheological behavior of pectin solutions.

Model Parameter
Pectin Samples

CW HW US EZX

η = Kγ(n−1)
K 2613.51 1176.96 943.42 400.41
n 0.37 0.53 0.53 0.5
r2 1.00 1.00 0.99 0.99

K = flow consistency index; n = flow behavior index; CW = cold-water extraction; HW = hot-water extraction;
US = ultrasound-assisted extraction; EZX = enzyme-assisted extraction (xylanase).
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The viscosity property of pectin solutions is essential in applications where controlling
viscosity is crucial for achieving the desired texture, stability, and consistency of the final
product. Consequently, pectins with higher molecular weights are often considered to be
more suitable for specific applications that require distinct viscosity characteristics.

3.6. Emulsifying Properties of Pectins

The emulsifying properties of pectins represented by EC and ES values are presented
in Figure 3, as calculated using Equations (4) and (5). CW pectin exhibited higher EC
(75%) and ES (71.71%) values compared with the other samples, while EZX showed lower
emulsifying properties (EC 57.13% and ES 51.47%) compared with the other pectin samples.
The EC and ES trend was directly proportional to the molecular weight of the pectins. This
aligns with research by Leroux et al. [68], emphasizing the significant impact of molecular
weight on viscosity properties and emulsion stabilization. Higher molecular weights
alongside longer chains in pectin have been reported to improve emulsion stabilization by
better encapsulating and suspending oil droplets in the water phase, preventing coalescence
and separation [68]. Also, the higher viscosity of the continuous phase in the emulsion
system can slow down the movement of oil droplets, preventing the aggregation and
coalescence of oil droplets [69]. In conclusion, pectins from CW, HW, and US showed better
emulsifying capacities and stabilities, making them promising candidates for use as natural
food emulsifiers compared with enzymatically extracted pectin. Additionally, similar to
another study, no clear relationships were observed between the protein and DE and the
emulsifying performance of pectin seen in some studies [34].
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Figure 3. Emulsifying capacity (EC) and stability (ES) of pectin solutions in oil-in-water emulsion
system (1:1). CW = cold-water extraction; HW = hot-water extraction; US = ultrasound-assisted
extraction; EZX = enzyme-assisted extraction (Xylanase). Superscripts (a–c) indicate significant
difference (p < 0.05).

3.7. Antioxidant Activity of Pectins

The antioxidant activities of pectins were assessed using the ABTS radical scavenging
assay, a widely utilized method for evaluating the total antioxidant activities of natural
compounds [70]. This mechanism relies on the compound’s ability to scavenge free radicals
in the ABTS reagents by donating hydrogen atoms, thus converting them into non-radical
forms [51]. The antioxidant activity results are presented in Figure 4 as calculated us-
ing Equation (7). Among all the pectins, EZX pectin exhibited the highest ABTS radical
scavenging activity (27.05–74.29%), followed by pectins from US (21.54–61.11%), HW
(20.94–53.11%), and CW (15.93–40.58%). Correlation analysis revealed a positive relation-
ship between the molecular weight (Mw) of the samples and the •OH radical scavenging
activity. Both the ultrasound and enzymatic treatments resulted in pectins with lower Mws
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compared with other pectin samples. The decrease in pectin molecular weight exposes
more hydroxyl groups to the solution, leading to a gradual increase in the scavenging
rate of •OH radicals [71]. This aligns with prior research, suggesting that the reduction
in pectin molecular weight due to ultrasound and enzymatic treatment [40,72] during the
extraction process, combined with an increased number of –OH groups from degrada-
tion, significantly contributes to the enhancement of •OH radical scavenging activity [71].
Additionally, some factors, such as monosaccharides, and chemical properties, such as
betacyanin contents [73], have been reported to impact the antioxidant activity of pectin,
although no consistent trend was observed in this study.
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3.8. Prebiotic Function of Pectin Solutions

Figure 5 illustrates the prebiotic properties of the pectin samples, indicating their
positive impact on the proliferation of Lactis brevis. The probiotic potential of pectin may
stem from the RG-I pattern of its structure [74]. Previous studies by Gamonpilas et al. [74]
and Yeung et al. [75] have suggested that pectin with a higher RG-I region is more readily
utilized by bacteria. According to the results, Lactis brevis exhibited higher growth after
incubation in a liquid medium and the use of the plate count method in the order of US
≥ EZX > HW > CW > B (Figure 5). The molecular weight (Mw) of pectin plays a crucial
role in determining its prebiotic activities [76]. Consistent with this, the US and EX pectins
with lower Mws compared with CW and HW (Table 1) resulted in higher viable colonies
of Lactis brevis. Mechanical and enzymatic actions can modify pectin structure, creating
substrates favorable for the growth of probiotic microorganisms by breaking down larger
pectin molecules into smaller, more soluble fragments [61]. This corresponds with findings
indicating that ultrasound- and enzyme-modified low-molecular-weight pectin stimulates
the growth of lactic acid bacteria and bifidobacteria, which exhibit better prebiotic activity
than unmodified pectin [77,78]. This study highlights the potential of dragon fruit peel
pectins, particularly those from the US and EZX extraction methods, in promoting Lactis
brevis proliferation, suggesting their promising candidacy for use as natural food prebiotics.
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4. Conclusions

This study investigated various extraction methods for obtaining pectin from dragon
fruit peel and presented a structure–function relationship to provide insights into obtaining
customized pectin for specific food applications. The extraction methods significantly influ-
enced pectin yield, molecular weight, and functional properties. Cold-water and hot-water
extraction yielded pectins with higher molecular weights (1.01–1.21 × 103 kDa), viscosity,
and enhanced emulsifying properties (>70%), making them suitable for thickening and
emulsifying applications in the food industry. In contrast, the ultrasound- and enzyme-
assisted methods produced pectins with reduced molecular weights (US: 0.97 × 103 kDa;
EZX: 0.84 × 103 kDa), correlating with improved functional properties such as enhanced
antioxidant (21.54–61.11%; 27.05–74.29%) and prebiotic functions. Moreover, the higher
pectin yield of EZX (20.22%) corresponded to its reduced molecular weight. Structural
analysis confirmed that the pectin structure remained unchanged across extraction methods.
However, different extraction methods could be employed to achieve customizable func-
tional properties based on intended food applications. For instance, cold-water-extracted
pectin has higher emulsifying properties and emulsion stability, which can be utilized as
a source of natural emulsifiers. EZX-extracted pectin exhibited substantial proliferation
effects on Lactobacillus brevis and has the potential to be used as a prebiotic source. Overall,
our findings provide fundamental insights into the impact of extraction methods on dragon
fruit peel pectin functionalities. Future studies could explore the optimization of the enzy-
matic extraction of dragon fruit peel pectin and its application as a functional ingredient in
commercial food matrices.
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Nomenclature

CW Cold-water extraction
HW Hot-water extraction
US Ultrasound-assisted extraction
EZX Enzyme-assisted extraction (Xylanase)
Man Mannose
Rha Rhamnose
GalA Galacturonic acid
Glu Glucose
Gal Galactose
Ara Arabinose
HG Homogalacturonan
RG-I Rhamnogalacturonan-I
DE Degree of esterification
Mw Molecular weight
EC Emulsifying capacity
ES Emulsifying stability

References
1. Jeong, U.S.; Kim, S.; Chae, Y.-W. Analysis on the cultivation trends and main producing areas of subtropical crops in Korea. J.

Korea Acad.-Ind. Coop. Soc. 2020, 21, 524–535.
2. Chua, B.L.; Tang, S.F.; Ali, A.; Chow, Y.H. Optimisation of pectin production from dragon fruit peels waste: Drying, extraction

and characterisation studies. SN Appl. Sci. 2020, 2, 621. [CrossRef]
3. Zhang, M.-y.; Cai, J. Preparation of branched RG-I-rich pectin from red dragon fruit peel and the characterization of its probiotic

properties. Carbohydr. Polym. 2023, 299, 120144. [CrossRef] [PubMed]
4. Lucarini, M.; Durazzo, A.; Bernini, R.; Campo, M.; Vita, C.; Souto, E.B.; Lombardi-Boccia, G.; Ramadan, M.F.; Santini, A.; Romani,

A. Fruit wastes as a valuable source of value-added compounds: A collaborative perspective. Molecules 2021, 26, 6338. [CrossRef]
[PubMed]

5. de la Luz Cadiz-Gurrea, M.; del Carmen Villegas-Aguilar, M.; Leyva-Jiménez, F.J.; Pimentel-Moral, S.; Fernandez-Ochoa, A.;
Alañón, M.E.; Segura-Carretero, A. Revalorization of bioactive compounds from tropical fruit by-products and industrial
applications by means of sustainable approaches. Food Res. Int. 2020, 138, 109786. [CrossRef]

6. Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of fruit industrial by-products—
A case study on circular economy approach. Molecules 2020, 25, 320. [CrossRef]

7. del Amo-Mateos, E.; Cáceres, B.; Coca, M.; García-Cubero, M.T.; Lucas, S. Recovering rhamnogalacturonan-I pectin from sugar
beet pulp using a sequential ultrasound and microwave-assisted extraction: Study on extraction optimization and membrane
purification. Bioresour. Technol. 2024, 394, 130263. [CrossRef]

8. Jamilah, B.; Shu, C.; Kharidah, M.; Dzulkily, M.; Noranizan, A. Physico-chemical characteristics of red pitaya (Hylocereus polyrhizus)
peel. Int. Food Res. J. 2011, 18, 282.

9. Taharuddin, N.; Jumaidin, R.; Mansor, M.; Hazrati, K.; Tarique, J.; Asyraf, M.; Razman, M. Unlocking the Potential of Lignocellu-
losic Biomass Dragon Fruit (Hylocereus polyrhizus) in Bioplastics, Biocomposites and Various Commercial Applications. Polymers
2023, 15, 2654. [CrossRef]

10. Hotmaida, Y. Non-destructive determination of the main chemical components of red dragon fruit peel flour by using Near-
Infrared Reflectance Spectroscopy (NIRS). In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP
Publishing: Bristol, UK, 2020; p. 012007.

11. Yong, Y.Y.; Dykes, G.; Lee, S.M.; Choo, W.S. Effect of refrigerated storage on betacyanin composition, antibacterial activity of red
pitahaya (Hylocereus polyrhizus) and cytotoxicity evaluation of betacyanin rich extract on normal human cell lines. LWT 2018, 91,
491–497. [CrossRef]

12. Huang, Y.; Brennan, M.A.; Kasapis, S.; Richardson, S.J.; Brennan, C.S. Maturation process, nutritional profile, bioactivities and
utilisation in food products of red pitaya fruits: A Review. Foods 2021, 10, 2862. [CrossRef] [PubMed]

13. Tripathi, M.; Diwan, D.; Shukla, A.C.; Gaffey, J.; Pathak, N.; Dashora, K.; Pandey, A.; Sharma, M.; Guleria, S.; Varjani, S.
Valorization of dragon fruit waste to value-added bioproducts and formulations: A review. Crit. Rev. Biotechnol. 2023, 1–19.
[CrossRef] [PubMed]

14. Liu, Y.; Chen, H.; Chen, S.; Zhang, Y.; Zhang, J.; Zhu, X.; Li, W.; Liu, J.; Jiang, Y.; Li, D. Pectin-rich dragon fruit peel extracts: An
environmentally friendly emulsifier of natural origin. Food Chem. 2023, 429, 136955. [CrossRef] [PubMed]

https://doi.org/10.1007/s42452-020-2415-y
https://doi.org/10.1016/j.carbpol.2022.120144
https://www.ncbi.nlm.nih.gov/pubmed/36876774
https://doi.org/10.3390/molecules26216338
https://www.ncbi.nlm.nih.gov/pubmed/34770747
https://doi.org/10.1016/j.foodres.2020.109786
https://doi.org/10.3390/molecules25020320
https://doi.org/10.1016/j.biortech.2023.130263
https://doi.org/10.3390/polym15122654
https://doi.org/10.1016/j.lwt.2018.01.078
https://doi.org/10.3390/foods10112862
https://www.ncbi.nlm.nih.gov/pubmed/34829143
https://doi.org/10.1080/07388551.2023.2254930
https://www.ncbi.nlm.nih.gov/pubmed/37743323
https://doi.org/10.1016/j.foodchem.2023.136955
https://www.ncbi.nlm.nih.gov/pubmed/37490817


Polymers 2024, 16, 1097 14 of 16

15. Tien, N.N.T.; Nguyen, H.T.; Le, N.L.; Khoi, T.T.; Richel, A. Biodegradable films from dragon fruit (Hylocereus polyrhizus) peel
pectin and potato starches crosslinked with glutaraldehyde. Food Packag. Shelf Life 2023, 37, 101084. [CrossRef]

16. Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological
activity and pharmacological application of pectic polysaccharides: A review. Polymers 2018, 10, 1407. [CrossRef]

17. Cui, J.; Zhao, C.; Feng, L.; Han, Y.; Du, H.; Xiao, H.; Zheng, J. Pectins from fruits: Relationships between extraction methods,
structural characteristics, and functional properties. Trends Food Sci. Technol. 2021, 110, 39–54. [CrossRef]

18. Belkheiri, A.; Forouhar, A.; Ursu, A.V.; Dubessay, P.; Pierre, G.; Delattre, C.; Djelveh, G.; Abdelkafi, S.; Hamdami, N.; Michaud, P.
Extraction, characterization, and applications of pectins from plant by-products. Appl. Sci. 2021, 11, 6596. [CrossRef]

19. Yu, M.; Xia, Y.; Zhou, M.; Guo, Y.; Zheng, J.; Zhang, Y. Effects of different extraction methods on structural and physicochemical
properties of pectins from finger citron pomace. Carbohydr. Polym. 2021, 258, 117662. [CrossRef] [PubMed]

20. Zhao, W.; Xu, Y.; Dorado, C.; Chau, H.K.; Hotchkiss, A.T.; Cameron, R.G. Modification of pectin with high-pressure processing
treatment of fresh orange peel before pectin extraction: Part I. The effects on pectin extraction and structural properties. Food
Hydrocoll. 2024, 149, 109516. [CrossRef]

21. Chen, H.; Liu, Y.; Zhang, J.; Jiang, Y.; Li, D. Pectin extracted from dragon fruit Peel: An exploration as a natural emulsifier. Int. J.
Biol. Macromol. 2022, 221, 976–985. [CrossRef]

22. Dao, T.A.T.; Webb, H.K.; Malherbe, F. Optimization of pectin extraction from fruit peels by response surface method: Conventional
versus microwave-assisted heating. Food Hydrocoll. 2021, 113, 106475.

23. Nguyen, B.M.N.; Pirak, T. Physicochemical properties and antioxidant activities of white dragon fruit peel pectin extracted with
conventional and ultrasound-assisted extraction. Cogent Food Agric. 2019, 5, 1633076. [CrossRef]

24. Lim, J.; Yoo, J.; Ko, S.; Lee, S. Extraction and characterization of pectin from Yuza (Citrus junos) pomace: A comparison of
conventional-chemical and combined physical–enzymatic extractions. Food Hydrocoll. 2012, 29, 160–165. [CrossRef]

25. Zhang, C.; Zhu, X.; Zhang, F.; Yang, X.; Ni, L.; Zhang, W.; Liu, Z.; Zhang, Y. Improving viscosity and gelling properties of leaf
pectin by comparing five pectin extraction methods using green tea leaf as a model material. Food Hydrocoll. 2020, 98, 105246.
[CrossRef]

26. Ripoll, C.S.S.; Hincapié-Llanos, G.A. Evaluation of sources and methods of pectin extraction from fruit and Vegetable wastes: A
Systematic Literature Review (SLR). Food Biosci. 2023, 51, 102278.

27. Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current advancements in pectin: Extraction, properties and
multifunctional applications. Foods 2022, 11, 2683. [CrossRef]

28. Liaotrakoon, W.; Van Buggenhout, S.; Christiaens, S.; Houben, K.; De Clercq, N.; Dewettinck, K.; Hendrickx, M.E. An explorative
study on the cell wall polysaccharides in the pulp and peel of dragon fruits (Hylocereus spp.). Eur. Food Res. Technol. 2013, 237,
341–351. [CrossRef]
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