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Abstract: Nanocellulose fiber materials were considered promising biomaterials due to their excellent
biodegradability, biocompatibility, high hydrophilicity, and cost-effectiveness. However, their low
proton conductivity significantly limited their application as proton exchange membranes. The meth-
ods previously reported to increase their proton conductivity often introduced non-biodegradable
groups and compounds, which resulted in the loss of the basic advantages of this natural polymer in
terms of biodegradability. In this work, a green and sustainable strategy was developed to prepare
cellulose-based proton exchange membranes that could simultaneously meet sustainability and
high-performance criteria. Adenine and thymine were introduced onto the surface of tempo-oxidized
nanocellulose fibers (TOCNF) to provide many transition sites for proton conduction. Once mod-
ified, the proton conductivity of the TOCNF membrane increased by 31.2 times compared to the
original membrane, with a specific surface area that had risen from 6.1 m²/g to 86.5 m²/g. The wet
strength also increased. This study paved a new path for the preparation of environmentally friendly
membrane materials that could replace the commonly used non-degradable ones, highlighting the
potential of nanocellulose fiber membrane materials in sustainable applications such as fuel cells,
supercapacitors, and solid-state batteries.

Keywords: tempo-oxidized cellulose nanofibers; proton exchange membrane; adenine; thymine

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) have been widely acknowledged
for their environmental friendliness and high power density, making them suitable for
various energy applications, including mobile, fixed, and portable uses [1–6]. As a crucial
component, the proton exchange membrane (PEM) plays a decisive role in the performance
and service life of fuel cells. Nafion membrane, being the most used proton exchange
membrane, exhibited good stability under moderate temperature conditions, high pro-
ton conductivity, and favorable processability [7–10]. It possessed approximately 4 nm
micro-water environment channels and abundant negatively charged sulfonic acid groups,
ensuring very high ion exchange capacity and proton conductivity [11–13]. However, its
larger pore structure led to slightly higher methanol permeability, potentially decreasing the
coulombic efficiency of the battery [14,15]. Moreover, the sensitivity of sulfonic acid groups
to pH necessitates an acidic operating environment [16]. To address these drawbacks, the
development of proton exchange membranes based on cationic functional group polymers
like amines, purines, imidazoles, and pyridines drew considerable research interest [17–20].
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With growing concerns over environmental and human health risks, alongside the
drive toward carbon neutrality, the design of proton exchange membranes from natural
polymers like cellulose and chitosan gained widespread attention [21–24]. Compared
to synthetic polymers, natural polymers offered advantages like abundant availability,
biodegradability, and biological compatibility. Our team had previously created proton
exchange membranes with low initiation temperatures, broad temperature ranges, low
methanol permeability, and high proton conductivity by modifying cellulose nanocrys-
tals (CNC) and chitosan with adenine, phosphate, and sulfonic acid groups [25–27]. This
demonstrated the viability of CNC and chitosan as substrates for proton exchange mem-
branes and elucidated the transfer and transition mechanisms of adenine groups in proton
conduction. However, prior studies had not explored the impact of the nanoporous struc-
ture of proton exchange membranes on proton conductivity. In fact, many researchers have
reported that by grafting DNA segments or base groups on the surface of nanoparticles or
nanofibers, they can be induced to aggregate according to certain rules [28–34]. Therefore,
we integrated adenine (A) and thymine (T) into nanocellulose fibers, manipulating pH to
induce aggregation, enhance membrane porosity, and enlarge pore sizes. This enhancement
of micro-water channels facilitated proton conduction and transition, thereby improving
the proton conductivity of the membranes. Adenine and thymine are easily solvated
under hot, acidic, or alkaline conditions and dispersed uniformly in water. However, at
neutral room temperature, they tended to aggregate. Under acidic conditions, these bases
were grafted onto the surface of tempo-oxidized nanocellulose fibers (TOCNF). Following
dialysis to neutrality and concentration by evaporation, the fiber surfaces modified with
adenine and thymine were preferentially aggregated compared to unmodified areas. This
aggregation effectively introduces paired bases into orderly pores, regulating pore size and
increasing pore volume.

In this work, we developed a simple and environmentally friendly method to prepare
TOCNF-based proton exchange membranes. The process involves two steps: first, ade-
nine and thymine are grafted onto the carboxyl groups on the surface of TOCNF through
1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI)-N-hydroxy succin-
imide (NHS) catalysis at room temperature. Subsequently, the adenine-modified TOCNF
and thymine-modified TOCNF are mixed evenly, dialyzed to neutrality, and slowly dried
in a constant temperature and humidity chamber at 60 ◦C to form a membrane, named
TOCNF-AT (Figure 1). The atomic force microscope (AFM) and scanning electron mi-
croscope (SEM) characterize the surface morphology of the proton exchange membrane,
indicating that the nanofibers in TOCNF-AT pre-aggregate before film formation. Com-
pared with the unmodified TOCNF membrane, the specific surface area of the modified
membrane significantly increases, with the main pore size expanding from 1.49 nm to
2.52 nm. The room-temperature proton conductivity increases from 0.0017 S cm−1 to
0.053 S cm−1. Although the dry strength decreases after modification, the wet strength
increases, which is beneficial for application in the humid environment of fuel cells. After
soaking for one week, the proton conductivity of the TOCNF membrane remains essen-
tially unchanged. Importantly, we introduced a new, green, simple technique to control
the aggregation behavior of nanofibers by adjusting hydrophilicity and hydrophobicity,
thereby preparing a high-conductivity proton exchange membrane, which reduces costs
and promotes the wide application of fuel cell technology.
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mined amount of adenine and NHS was added to the TOCNF dispersion and stirred for 
30 min. An equal molar amount of EDCI was then added to the reaction solution and 
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plied to the thymine group. The reaction products of the adenine group and the thymine 
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Da). The water solubility of adenine and thymine is sensitive to pH, and direct dialysis 
with deionized water could lead to the precipitation of unreacted adenine and thymine in 
the dialysis bag due to an increase in pH. Therefore, PBS buffer was needed to remove 
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ionized water to remove the PBS. During dialysis, the dialysis solution was measured by 
ultraviolet-visible light to ensure that free bases and other catalysts were completely re-
moved, resulting in a dispersion of TOCNF-AT. The TOCNF and TOCNF-AT dispersions 
were placed in polytetrafluoroethylene molds, respectively, and dried in a constant tem-
perature and humidity drying oven at 60 °C for 24 h. Then, they were dried in a vacuum 
drying oven at 50 °C for 24 h, resulting in two proton exchange membranes. 

  

Figure 1. Schematic diagram of cellulose nanofiber modification and proton conduction.

2. Materials and Methods
2.1. Experimental Materials

The 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO), cotton cellulose fiber,
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI), N-hydroxy succin-
imide (NHS), adenine (A), and thymine (T) were procured from Sigma-Aldrich (St. Louis,
MO, USA).

2.2. Preparation of TOCNF and TOCNF-AT Proton Exchange Membranes

Catalytic amounts of TEMPO and NaBr were dissolved in an aqueous solution of
sodium hydroxide with a pH value of 10–11. The degreasing cotton fiber with a cellulose
mass concentration of 1 wt.% was added, followed by the addition of NaClO as the main
oxidant to start oxidation. After 6 h of reaction at room temperature, the TEMPO-oxidized
cellulose nanofiber TOCNF was obtained by repeated dialysis with deionized water. The
carboxyl content of TOCNF was determined to be 1.3 mmol/g by titration.

In PBS buffer (pH = 5), TOCNF was added and stirred overnight. Then, a predeter-
mined amount of adenine and NHS was added to the TOCNF dispersion and stirred for
30 min. An equal molar amount of EDCI was then added to the reaction solution and
allowed to react for 24 h at room temperature. Due to the low water solubility of adenine at
room temperature, a small amount of it needed to be added repeatedly. The same applied
to the thymine group. The reaction products of the adenine group and the thymine group
were then mixed and stirred at room temperature for 24 h. Finally, the product was purified
using PBS buffer (pH = 5) and deionized water by dialysis (MWCO: 8000–14,000 Da). The
water solubility of adenine and thymine is sensitive to pH, and direct dialysis with deion-
ized water could lead to the precipitation of unreacted adenine and thymine in the dialysis
bag due to an increase in pH. Therefore, PBS buffer was needed to remove unreacted ade-
nine and thymine, as well as EDCI and NHS, followed by dialysis with deionized water to
remove the PBS. During dialysis, the dialysis solution was measured by ultraviolet-visible
light to ensure that free bases and other catalysts were completely removed, resulting in
a dispersion of TOCNF-AT. The TOCNF and TOCNF-AT dispersions were placed in poly-
tetrafluoroethylene molds, respectively, and dried in a constant temperature and humidity
drying oven at 60 ◦C for 24 h. Then, they were dried in a vacuum drying oven at 50 ◦C for
24 h, resulting in two proton exchange membranes.

2.3. Characterizations

To investigate the chemical reaction between TOCNF and adenine and thymine, the
samples were analyzed using Fourier transform infrared spectroscopy (FTIR) and attenu-



Polymers 2024, 16, 1060 4 of 11

ated total reflection (ATR) prestige-21 (Shimadzu, Kyoto, Japan). The FTIR-ATR spectrum
was taken from 600 to 4000 cm−1. The morphology of the samples was examined using
a scanning electron microscope (SEM) (SU8000, HITACHI, Ichihara, Japan) and an atomic
force microscope (AFM) (Dimension Icon, Bruker, Billerica, MA, USA). The acceleration en-
ergy of all samples was maintained at 5 kV. The crystal structures of cotton cellulose fibers,
TOCNF, and TOCNF-AT were observed by X-ray diffraction (XRD) spectroscopy. The XRD
pattern was taken at room temperature (25 ± 3 ◦C) using a Rotaflex RT300 mA, Shimadzu,
Osaka, Japan, with an angle (2θ) range of 5 ≤ 2θ ≤ 60◦. The mechanical properties of the
prepared TOCNF and TOCNF-AT films were evaluated using a universal testing machine
(UTM), Tensilon RTC 250A, A&D Company Ltd., Osaka, Japan. Surface area and pore size
distribution are tested by BET (ASAP, Micromeritics, Norcross, GA, USA).

2.4. Proton Conductivity (σ)

Electrochemical impedance was measured using a CHI 760D electrochemical worksta-
tion (SUIOU, Shanghai, China) at a frequency range of 0.001 Hz–105 Hz at an alternating
current amplitude of 0.5 V. The three electrodes used were the working electrode, the
reference electrode, and the counter electrode. The working electrodes were a customized
TOCNF membrane and a TOCNF-AT membrane held by a dedicated polytetrafluoroethy-
lene fixture. The reference electrode was a silver chloride reference electrode filled with
potassium chloride, and the platinum piece served as the counter electrode. All electrodes
were fixed with an orifice plate to ensure parallelism with the membrane. The proton
conductivity of the samples was calculated using the following equation:

σ =
L

RS

where σ is the proton conductivity (S cm−1), L is the length (cm) of the membrane, S is
the cross-sectional area of the membrane (cm2), and R is the resistance calculated from the
electrochemical impedance spectra (Ω).

3. Results and Discussion
3.1. Fourier Transform Infrared Absorption Spectroscopy Analysis

Cotton fibers underwent TEMPO oxidation to obtain TOCNF, wherein the hydroxyl
group at the C6 position was oxidized to a carboxyl group. The FTIR spectrum (Figure 2) of
the resultant TOCNF showcased a stretching vibration peak of the C=O bond at 1720 cm−1,
a peak absent in the spectrum of the original cotton fibers. Upon undergoing a reaction
catalyzed by EDCI-NHS, adenine and thymine reacted with TOCNF to form a tertiary
amide structure, with the peak at 1641 cm−1 corresponding to the stretching vibration
peak of the C=O bond tertiary amide. Owing to the attachment of the tertiary amide
structure to electron donor groups, a slight blue shift was observed when compared to
the primary amide structure. In terms of base complementarity, the following two typical
forms exist: Watson–Crick pairing and Hoogsteen pairing [35–37]. Studies from the past
have demonstrated that in the liquid phase, Hoogsteen pairing tends to be predominant,
exhibiting a distinctive infrared absorption peak. In the instance of adenine and thymine
forming a hydrogen bond structure via Hoogsteen pairing, the corresponding stretching
vibration peaks were at 3197 cm−1 and 3395 cm−1 [38]. However, in an unfortunate turn
of events, these peaks were not observed in the FTIR spectrum of the TOCNF-AT. This
absence of peaks suggested that the adenine and thymine groups grafted onto the surface of
TOCNF-AT did not aggregate significantly in alignment with Hoogsteen pairing. The lack
of aggregation could be attributed to the rigidity inherent to the TOCNF fibers, coupled
with the reality that the modified base groups comprised only a minor portion of the fiber
surface. Consequently, it became challenging to ensure adequate free collisions between
adenine and thymine when the nanofibers were concentrated and aggregated, resulting in
a more random nature of the aggregation.
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Figure 2. FTIR spectra of cellulose fibers, TOCNF and TOCNF-AT.

3.2. X-ray Diffraction Analysis

Figure 3 displays the typical XRD pattern of type I cellulose, featuring diffraction
peaks at 16.68◦ and 22.4◦ in 2θ. The crystallinity of cotton cellulose fiber was 66.8%, the
crystallinity of TOCNF was 55.3%, and the crystallinity of TOCNF-AT was 51.4%. As cotton
fibers underwent nanofiberization, the crystallinity of cellulose was reduced. This reduction
was attributable to the fact that during the TEMPO oxidation process, the cellulose fibers
were initially immersed in a sodium hydroxide solution, leading to the disruption of some
of the hydrogen bonds within the cellulose. Subsequently, carboxylation of the hydroxyl
group at C6 ensued, causing a degree of disruption to the original regular hydrogen bond
network. Nonetheless, the crystallinity continued to exhibit a decrease even during the
TOCNF modification with adenine and thymine. This phenomenon could likely be due
to the esterification of the carboxyl groups by EDCI, modifying adenine and thymine,
which possess a comparatively low surface affinity for cellulose. These components, acting
as “impurities” on the surface of cellulose, interfered with the establishment of regular
hydrogen bond connections between fiber surfaces as the fibers aggregated. However, from
the standpoint of proton exchange membrane functionality, lower crystallinity signifies an
abundance of proton migration pathways. This feature was conducive to the enhancement
of proton conductivity.
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3.3. Morphological Characterization

High-resolution scanning electron microscopy (SEM) and atomic force microscopy
(AFM) were utilized to examine the surface structure of TOCNF prior to and following
modification. By analyzing the AFM images with ImageJ software (1.8.0), the fiber diameter
distribution of TOCNF was determined to range between 20 and 100 nm (Figure 4a),
whereas the fiber diameter distribution of TOCNF-AT was found to range between 50 and
300 nm (Figure 4b). This phenomenon indicated that TOCNF-AT exhibited non-uniform
random aggregation. Based on the aggregation behavior of adenine and thymine in
neutral water at room temperature, this phenomenon could be attributed to the preferential
aggregation of parts of the fiber surface modified with adenine and thymine during the
neutralization and evaporation concentration processes, which induces the ordered parallel
aggregation of nanofibers. From the SEM images, it was observed that TOCNF (Figure 4c)
aggregated more densely compared to TOCNF-AT (Figure 4d). This could be due to the
higher rigidity of TOCNF-AT, which results from the parallel aggregation of several TOCNF
in contrast to the thinner single cellulose nanofiber, as well as non-uniform aggregation
factors. In Figure 4d, it was also noted that thicker fibers consisted of thinner fiber branches.
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Whether it is the surface-loading of adenine or thymine, TOCNF will aggregate during
evaporation and concentration. If no base group is modified, during the evaporation and
aggregation processes, TOCNF will first be connected by water bridges. As the free water
evaporates, the distance between nanofibers is further reduced due to surface tension,
forming hydrogen bonds between hydroxyl groups. However, after introducing adenine
and thymine onto the surface of cellulose, they play a role in inducing the aggregation of
TOCNF. Compared with unmodified TOCNF, although both have aggregated, the former
occurs evenly while the latter is affected by base groups and occurs unevenly. During
the evaporation and concentration process of TOCNF-AT, adenine and thymine groups
may preferentially aggregate, and the aggregated parts hinder the formation of hydro-
gen bonds between nearby cellulose hydroxyl groups, increasing the porosity between
celluloses. At the same time, the occurrence of uneven aggregation will further lead to an
increase in porosity and specific surface area. However, it is indeed difficult to observe
the changes in the pore size and specific surface area of TOCNF membranes and TOCNF-
AT membranes from AFM and SEM images. These changes require BET data as direct
evidence. Since the AFM and SEM equipment used in this work do not have sufficient
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lateral and vertical resolution to support the observation of small changes below 5 nm, it is
not practical to directly observe the changes in specific surface areas and micropores from
morphological characteristics.

3.4. BET Analysis

The BET-specific surface area of the TOCNF membrane registered a mere 6.1 m²/g,
as characterized by N2 adsorption. However, following the modification with adenine
and thymine and the subsequent induced aggregation, the BET-specific surface area of
the TOCNF-AT membrane escalated significantly to 86.5 m²/g (Figure 5a). The maximum
pore size of the TOCNF membrane stood at 1.5 nm (Figure 5b), whereas the maximum
pore size of the TOCNF-AT membrane widened to a range of 2.6–3.1 nm (Figure 5c). The
augmentation in specific surface area was ascribed to the heterogeneous aggregation of
the modified cellulose nanofibers and to the dilation of aggregate spaces between cellulose
molecules by the adenine and thymine groups on the cellulose surface. In fact, during the
drying and concentration process, both TOCNF and TOCNF-AT underwent aggregation.
However, the difference lies in the fact that the aggregation of TOCNF was uniform while
that of TOCNF-AT was not. During the drying and concentration process of TOCNF, water
bridges were formed between TOCNF molecules, and as the free water evaporated, the
distance between TOCNF molecules was further reduced due to surface tension, forming
hydrogen bonds between hydroxyl groups. This process occurred uniformly. In the
concentration process of TONCF-AT, due to the induction effect of adenine and thymine,
the surface part of the cellulose modified by base groups expelled water molecules upon
reaching a certain concentration, resulting in aggregation. However, only a carboxyl
content of 1.3 mmol/g made the distribution of adenine and thymine on the surface of
the nanofibers very uneven, leading to an uneven aggregation as well, thereby increasing
the specific surface area. The amplified specific surface area implies the presence of an
increased number of microchannels available for proton conduction and transition, which
is advantageous for proton conductivity. The enlarged pores could mitigate the energy
required for transportation, albeit still falling short of the approximate 4 nm pore size
delineated in the literature for Nafion membranes.
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3.5. Dry and Wet Strength Tests of TOCNF and TOCNF-AT Membranes

The dry strength of TOCNF and TOCNF-AT was assessed using samples that had been
completely dried to eliminate free water. Conversely, the wet strength was evaluated using
samples derived by immersing the dry films of both materials in deionized water at room
temperature for one hour, followed by the removal of surface moisture with filter paper.
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The findings of these tests are illustrated in Figure 6. The tensile strength of TOCNF’s
dry film registered at 77.8 MPa, and its elastic modulus stood at 3.4 GPa. In contrast, the
dry film of TOCNF-AT displayed a tensile strength of 47.1 MPa and an elastic modulus
of 3.8 GPa. The decrease in tensile strength for the modified nanofiber, TOCNF-AT, was
significant due to its comparatively looser structure and larger pores. However, the nearly
unchanged elastic modulus was attributed to the rigid bonding between adenine and
thymine. Upon wetting, the tensile strength of TOCNF diminished to 2.1 MPa, and its
modulus was reduced to 0.27 GPa. Conversely, the tensile strength and elastic modulus of
the modified TOCNF-AT were higher than those of the unmodified version, recorded at
2.8 MPa and 0.48 GPa, respectively. The enhanced wet strength of the modified cellulose
nanofibers can be attributed to the lower hydrophilicity of adenine and thymine compared
to cellulose under neutral conditions at room temperature, resulting in fewer structures
prone to swelling. This relatively higher wet strength of the TOCNF-AT proton exchange
membrane, along with its capability to resist deformation under high humidity conditions,
proves advantageous for applications in fuel cells.
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3.6. Proton Conductivity Test

The assessment of proton conductivity emerged as the paramount characteristic for
gauging the applicability of proton exchange membranes in devices like fuel cells. Owing
to the presence of carboxyl groups on the surface of TOCNF, its proton conductivity
generally far surpasses that of other cellulose materials [39–41]. Nonetheless, it lagged
commercial Nafion membranes by more than an order of magnitude. Employing the
alternating current impedance method (ESI), we determined the proton conductivity of the
TOCNF-AT membrane at room temperature to be 0.053 S cm−1, marking an approximate
increase of 31.2 times over that of TOCNF. Following a seven-day immersion in deionized
water, the proton conductivity of TOCNF-AT showed negligible degradation (Figure 7). At
lower temperatures, the proton conductivity of the TOCNF-AT proton exchange membrane
approached that of the commercial Nafion117 membrane [11]. This phenomenon was
credited to the abundant proton donors and acceptors found on adenine and thymine,
coupled with the effective nano-water channels that resulted from non-uniform aggregation.
The stability of the proton conductivity of TOCNF-AT is attributed to the non-hydrophilicity
of adenine and thymine under neutral conditions at room temperature. This property
ensures the stability of the structure and pores of the proton-conducting membrane in water.
Compared to the previous research results of the team, the proton conductivity of adenine
modified on the surface of chitosan under the same conditions was only 0.0309 S cm−1,
which was nearly 40% lower than the research in this work [27]. The site of adenine
modification on the surface of chitosan was the amino group, while the site of modification
on the surface of TOCNF was the carboxyl group. Although imine structures and amide
structures were formed, respectively, the chemical structures of other parts were similar.
Even with the higher amino acid coverage of chitosan, its achievable grafting rate of adenine
was higher. With the advantage of chemical structure, the proton conductivity rate was still
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lower than that in this work. Therefore, the significant difference in proton conductivity
values might come from the contribution of nanochannels in TOCNF-AT proton exchange
membranes. To further improve the proton conductivity of TOCNF-AT, increasing the
carboxyl content on the surface of TOCNF and increasing the loading rate of base groups
by increasing carboxyl groups could be achieved.
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4. Conclusions

This study employed a straightforward and environmentally friendly methodology
to fabricate a proton exchange membrane characterized by high proton conductivity,
biodegradability, and eco-friendliness, utilizing the heterogeneous aggregation of TOCNF
surface-modified by base groups. Through this innovative approach, the membrane not
only acquired a high specific surface area and larger pore size but also manifested an
enhanced wet strength and modulus. By incorporating base groups onto the surface of
TOCNF, the preparations provided a multitude of proton jump sites and donor receptors,
enhancing proton conduction and significantly sculpting rich micro-water channels in
the membrane. These advancements facilitated the inventive integration of two distinct
mechanisms. With an eye toward a sustainable future for proton exchange membrane fuel
cells (PEMFCs), the newly developed membrane may emerge as an economically viable
rival to current cost-intensive PEM technologies that rely on metals or non-degradable
materials. This research paved a new path for the preparation of environmentally friendly
proton exchange membrane materials and provided a new design concept for improving
proton conduction efficiency. From the perspectives of process technology and material
surface groups, the coordinated design of the structure of the proton exchange membrane
meets the functional requirements of fuel cells. This further enhances the potential of
natural materials in energy storage applications.
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