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Abstract: The glass transition temperature of polymers is a key parameter in meeting the application
requirements for energy absorption. Previous studies have provided some data from slow, expensive
trial-and-error procedures. By recognizing these data, machine learning algorithms are able to extract
valuable knowledge and disclose essential insights. In this study, a dataset of 7174 samples was
utilized. The polymers were numerically represented using two methods: Morgan fingerprint and
molecular descriptor. During preprocessing, the dataset was scaled using a standard scaler technique.
We removed the features with small variance from the dataset and used the Pearson correlation
technique to exclude the features that were highly connected. Then, the most significant features were
selected using the recursive feature elimination method. Nine machine learning techniques were
employed to predict the glass transition temperature and tune their hyperparameters. The models
were compared using the performance metrics of mean absolute error (MAE), root mean square error
(RMSE), and coefficient of determination (R2). We observed that the extra tree regressor provided
the best results. Significant features were also identified using statistical machine learning methods.
The SHAP method was also employed to demonstrate the influence of each feature on the model’s
output. This framework can be adaptable to other properties at a low computational expense.

Keywords: machine learning; feature selection; hyper-parameter optimization; glass transition
temperature; polymer

1. Introduction

The term “polymer” encompasses a diverse array of substances that are character-
ized by the existence of extended molecular chains composed of recurring monomeric
units [1–5]. Polymerization is the process through which monomers undergo chemical
bonding to form polymer chains. Polymers possess a wide range of properties, including
mechanical strength, flexibility, high temperature resistance, and electrical conductivity,
which are identified by their distinctive composition and molecular structure [6–9]. They
are extensively employed in several productions such as packaging, automotives, manu-
facturing, textiles, electronics, medical, and others due to their diverse features. Medical
devices, tissue engineering, implants, and other applications use polymers extensively, and
the electronic industry uses them in circuit boards, insulation, and packaging. Polymers
are also utilized in the automotive industry for applications like tires and bumpers. The
rapid synthesis or discovery of new polymers, along with the likelihood of numerous
undiscovered polymers, necessitates a comprehensive understanding and documentation
of the physical and mechanical features associated with these polymers. One such crucial
property is the glass transition temperature of polymers. The glass transition temperature
(Tg) is usually characterized as the temperature range at which the polymer makes a shift
from a rigid, glass-like state to a more flexible, elastic state [10–17]. The Tg value of a
polymer is acknowledged to be affected by the polymer’s chain mobility or volume without
chains. The properties of a polymer are decided by its molecular mass, cross-links, side
groups, and chain ends. Although theoretical investigations have given crucial insights
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into the polymer glass transition, they are inadequate for accurate forecasts of polymer Tg
and inverse polymer synthesis. The precise estimation of the glass transition temperature is
of the utmost importance in customizing polymers to fulfill specific application demands,
since it directly impacts their functionality and durability.

Various techniques can be employed to ascertain the glass transition temperature,
including differential scanning calorimetry (DSC), differential thermal analysis (DTA), and
thermal mechanical analysis (TMA) [18]. Despite possessing a considerable breadth of
knowledge in the field of polymers, the task of creating a polymer with a precise glass
transition temperature remains a formidable challenge. Therefore, making a prediction
tool for figuring out the glass transition temperature of polymers is very important and
helpful in finding new polymers and making new products. Various modeling techniques,
including molecular dynamics (MD) and Monte Carlo (MC), have been utilized in the
estimation of the glass transition temperature of polymers. Nevertheless, the efficacy of
simulations and the computational expenditure pose significant limitations.

Machine learning (ML) [19,20] techniques provide viable alternatives for predicting
polymer attributes. This approach expedites the progression of material development
and facilitates the execution of intricate computations that are beyond human cognitive
capabilities. Machine learning has demonstrated significant effects in various domains,
including diverse catalyst design, material design, and drug research. It has found ap-
plication in the highly efficient screening of polymer qualities due to its ability to bypass
the need for expensive computer calculations, such as quantum chemical calculations and
molecular dynamics (MD) simulations, which require a deep understanding of chemical
properties. Various ML algorithms, including decision trees (DTs), support vector regres-
sion (SVR), adaptive boosting (AB), K-nearest neighbors (KNN), random forests (RFs),
extreme gradient boosting (XGBoost), hist gradient boosting (HGB), light gradient boosting
machines (LGBMs), and extra tree (ET), have been employed to predict the glass transition
temperature of polymers and to optimize process conditions.

Several investigations have been conducted for predicting the glass transition tem-
perature through the utilization of various machine learning algorithms. For example,
Cassar et al. [21] developed and implemented an artificial neural network with the pur-
pose of generating a predictive model for determining the glass transition temperature of
multicomponent oxide glasses. An optimization approach was employed to determine
the optimal hyperparameter values employed in an artificial neural network, resulting in
the development of an algorithm with superior predictive performance. Then, Alcobaca
et al. [22] explored various machine learning techniques that might be employed for the
prediction of the glass transition temperature using the chemical composition of the glasses
as the input. Additionally, the researchers optimized the hyperparameters of the machine
learning algorithms. The findings indicate that the random forest method is the most
effective machine learning approach for forecasting Tg.

Zhang et al. [23] made predictions about the glass transition temperature (Tg) by
using the molecular traceless quadrupole moment and the molecule average hexadecapole
moment parameters as descriptors in a Gaussian process regression model. The investi-
gation encompassed a dataset of 60 samples with Tg values ranging from 194 K to 440 K.
The resulting model exhibited favorable attributes, including rapidity, cost-effectiveness,
and a high degree of accuracy and stability in estimating Tg. Meanwhile, Yan et al. [24]
developed a new machine learning (ML) framework to predict the recovery stresses of
thermosetting shape memory polymers (TSMPs). To demonstrate this framework, two
new epoxy networks were made and tested, and the ML model was used to figure out
the amount of stress that was needed to recover from. Then, Zhang et al. [25] devised the
Gaussian process regression (GPR) model for the purpose of forecasting the glass transition
temperature of styrenic copolymers. The model demonstrated a high level of accuracy and
stability in its prediction. It exhibited a plain and simplistic nature, necessitating a reduced
number of parameters in comparison to other alternative modeling techniques.
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Lee et al. [26] used extended connectivity fingerprints and traditional QSPR finger-
prints to make machine learning models that could accurately predict the glass transition
temperature, melting temperature, density, and tensile modulus. The non-linear model
using the random forest method was found to be more accurate than linear regression
in general. However, using feature selection or regularization, the accuracy of the linear
models was shown to be significantly improved. In another study, Tao et al. [27] conducted
comprehensive benchmark research involving the compilation of 79 distinct machine learn-
ing models, which were subsequently trained on a dataset. Representation is determined
based on several features, such as Morgan fingerprinting with or without substructure
frequency, RDKit descriptors, molecular embedding, molecular graphs, etc. The combina-
tion of the random forest and Morgan fingerprint with frequency (MFF) yielded the most
favorable outcomes.

In this study, a comprehensible machine learning framework was devised to forecast
the glass transition temperature of polymers. Initially, the Morgan fingerprint and molec-
ular descriptor were employed to quantitatively depict polymer data. Subsequently, the
recursive feature elimination technique was utilized to select the most salient features. In
order to forecast the glass transition temperature, a comprehensive array of nine machine
learning methodologies was utilized, encompassing decision trees, support vector ma-
chines, AdaBoost, K-nearest neighbor, extreme gradient boosting, random forests, light
gradient boosting, histogram gradient boosting, and extra tree. Furthermore, the hyper-
parameters of these approaches were also fine-tuned. The attributes were ranked using
machine learning and statistical methodologies. The SHAP methodology is employed to
demonstrate the influence of specific features on the model’s output. In summary, this
study presents the following contributions:

• To evaluate the effectiveness of various machine learning algorithms on polymer data.
• To implement feature representation techniques for polymers.
• To rank and identify significant features associated with polymers.
• To propose an interpretable machine learning framework to predict the glass transition

temperature of polymers.
• To implement the SHAP technique to demonstrate the effects of specific features on

the model’s output.

The subsequent sections of this paper are structured in the following manner: Section 2
provides a description of the proposed research methodology and outlines the materials
utilized in the course of the investigation. Sections 3 and 4 of this paper encompass the
results of the experiments and subsequent analyses. Section 5 provides a summary of our
research findings and presents an outline for future directions based on our study.

2. Materials and Methods

In the present study, an open-source polymer dataset was utilized, and a combination
of statistical and machine learning methodologies were employed. During the analysis, a
series of processes were identified, including data pre-processing, polymer representation,
feature selection, parameter tuning, model building, model training, and testing. The
workflow of this study is illustrated in Figure 1.

2.1. Polymer Dataset

In our work, a total of 7174 polymers exhibiting a diverse range of glass transition
temperatures were selected from the reference cited as ref. [28]. The dataset consists of a
blend of experimental and computed values. Experimental data give direct measurements
and are generally considered more accurate. However, computed values can sometimes
offer valuable insights, particularly when there are a lack of experimental data or experi-
mental data are not available. This dataset utilizes monomers as polymer graphs to forecast
the glass transition temperature. The monomer graphs possess two distinct features that
indicate the points of polymerization for the monomers. The glass transition temperature
of the substance refers to the specific temperature range in which the glass transition oc-
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curs. The distribution of glass transition temperatures in the polymer dataset is shown in
Figure 2. The glass transition temperature exhibits a maximum value of 495.0, a minimum
value of −139.0, and an average value of 141.95. The first step in running the tests was to
obtain the simplified molecular input line-entry system (SMILES) notation for the polymer
structures. The compounds were canonicalized using RDKit to generate uniform SMILES
notations [29].
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2.2. Data Preprocessing

By minimizing the complexity of the dataset and removing unimportant or noisy
attributes, we may enhance the model’s capacity to detect significant connections and
patterns within the data. This technique has the potential to improve learning efficiency
and boost generalization performance, ultimately leading to enhanced accuracy in real-
world situations [30,31].

For this reason, the Pearson correlation technique is employed first to eliminate
elements that exhibit strong correlations. The outcome of this process is depicted in
Figure 3. Additionally, we proceed to exclude features with a low variance from our dataset.
In machine learning problems, a large amount of data has the capacity to inadvertently
introduce bias into the prediction. In order to achieve equitable consideration of all variables
in our models, each input variable underwent a normalization process, which involved
transforming the original values into new normalized values. This transformation was
carried out according to the following formula:

Zi =
Xi − X

σ
(1)

where Zi represents the new normalized value, Xi represents the original value, X repre-
sents the mean of all values, and σ represents the standard deviation [32].
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2.3. Polymer Representation

The utilization of polymer data for direct-training machine learning models is not
feasible. Therefore, it is crucial to represent polymer structures in a way that a computer can
understand. In this section, we present a qualitative approach for characterizing polymers,
along with two quantitative descriptors used to analyze these materials.

The simplified molecular input line entry system (SMILES) is a widely employed
method for the concise representation of a compound’s chemical structure using line
notations. SMILES employs the American Standard Code for Information Interchange
(ASCII) notations, which are characterized by their inherent simplicity. Computers are
capable of efficiently interpreting the notations, yielding valuable parameters for machine
learning models. The utility of SMILES extends beyond that of a mere connection table, as
it is a language-based structure rather than a data structure. It constitutes a true language,
having a limited vocabulary and set of grammar rules. It can serve as a viable alternative
to quantitative structure property relationships (QSPRs). The utilization of SMILES as
a parameter for quantitative structure activity relationships (QSARs) has proven to be
efficient and beneficial for numerous chemical species, since it offers a concise and effective
means of describing molecular structures. The level of information contained in a SMILES
representation is equivalent to that of an expanded connection table. The spatial footprint
of SMILES is significantly reduced due to its compact nature, often occupying 50%−70%
less area than a comparable connection table [33].

Morgan fingerprints (MF) are highly effective in capturing structural similarities and
are well-suited for conducting large-scale investigations. This technique is applied to detect
and classify all the substructures present in a given molecule [34]. These substructures are
then encoded into a bit vector, with each substructure’s presence or absence being repre-
sented by a specific bit value. The presence or absence of specific substructures is encoded
by individual bits inside the bit string. By comparing the bit strings of various molecules,
it is possible to assess their level of structural similarity. The feature representation is
presented in a vector format, which offers flexibility for employment in different machine
learning models. Morgan fingerprints are widely used in the field of cheminformatics
because they are specialized in encoding chemical structures for a variety of computational
uses [26].

Molecular descriptors provide a comprehensive depiction of molecular characteristics,
which can enhance the accuracy of predictions but may necessitate additional process-
ing resources. It includes both numerical and categorical descriptions of chemical com-
pounds [35]. They are able to describe a wide range of structural, chemical, and physical
properties of molecules. A vector of feature representations is derived from molecular
structures to quantify physical and chemical characteristics. The inclusion of extra cal-
culations for descriptors, such as those informed by quantum chemistry, necessitates a
greater investment of labor and time compared to the utilization of the Morgan fingerprint.
Prominent software libraries and tools, such as RDKit version 2022.09.5, Open Babel, and
ChemPy, offer a diverse array of functions that facilitate the computation of many chemical
descriptors. The use of descriptors is of utmost importance in the transformation of intricate
chemical structures into numerical or categorical representations, which are then employed
in machine learning models and other computer studies. Chemical compounds enable
researchers to extract significant information, facilitating drug discovery and material
design [27].

2.4. Feature Selection Method

The Morgan fingerprint and molecular descriptor exhibit a high degree of complexity,
and it is important to note that not all of its elements may be significant in accurately
defining a specific attribute. Indeed, the inclusion of irrelevant variables frequently results
in a decreased predictive capacity. From a practical standpoint, the inclusion of huge
fingerprint and descriptor dimensionalities in a system also results in increased training
times. Hence, it is crucial to determine the optimal subset of the complete fingerprint
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and descriptor that is necessary for successfully forecasting a certain attribute. Instead of
manually selecting fingerprint or descriptor components, researchers can employ various
dimensionality reduction strategies to automatically choose a set of features that accurately
represent a specific trait. In our study, the recursive feature elimination (RFE) algorithm is
employed. The process is iterative and involves choosing attributes based on the correctness
of the model. Each iteration determines the ranking score metric and eliminates low-
ranking features. The recursive operation repeats until the desired number of features
has been achieved. Every phase of recursive deletion calculates the accuracy metric to
evaluate the model’s performance after feature removal. Analyzing how accuracy measures
vary with each iteration may indicate each feature’s value to model performance. The
machine learning process selected the most efficient set of attributes based on its best
overall precision [1].

2.5. Feature Ranking Technique

Feature ranking is a technique used to assess the importance of characteristics in a
dataset. The aim of this evaluation is to evaluate the impact of different characteristics on
the predicted performance of a machine learning model. During the course of our inquiry,
we employed various strategies such as information gain, Pearson correlation, and reliefF
for the purpose of rating aspects. The concept of information gain (IG) is contingent upon
the notion of entropy, which serves as a measure of the impurity or uncertainty inherent
in a given dataset [36]. Pearson’s correlation coefficient (PCC) is computed to calculate
the relationship between variables within a certain class with the aim of determining the
attribute’s value [37]. The determination of a feature’s value in reliefF is achieved through
a continuous process of sampling an instance and assessing the attribute’s value in relation
to the nearest instances of both identical and distinct categories [38].

2.6. Statistical Analysis

The Chi-square test employs the p-value to calculate the significance of a feature’s as-
sociation with the predictor variables. A p-value exceeding 0.05 suggests that the attributes
of the category lack correlation with the target dependent variable. Conversely, when the
p-value falls below 0.05, it indicates a probable correlation between the category attributes
and the dependent variable. The equation for χ2 is given below:

χ2 = ∑n
k=1

(Ok − Ek)
2

Ek
(2)

where the observed frequencies are denoted as Ok, the predicted frequencies are denoted
as Ek, and the sample size is denoted as n [39].

2.7. Machine Learning Model

In our research, the decision tree, support vector machine, AdaBoost, K-nearest neigh-
bor, extreme gradient boosting, random forest, light gradient boosting, histogram gradient
boosting, and extra tree machine learning models were utilized. Their descriptions are
provided below.

The decision tree [40] is a nonparametric computational approach utilized for both
classification and regression applications, relying on a hierarchical tree structure. The
classification and regression tree (CART) is an example of a binary tree structure that
consists of a limited number of nodes, each with two child nodes at the output. The
architecture is comprised of intermediate nodes that execute the test on input variables as
well as terminal nodes that indicate the class labels. The tree is formed using the growing
tree method, and the selection of splitting points is determined by the utilization of a greedy
algorithm. The algorithm evaluates all the provided variables by considering various splits
and selecting the one that maximizes the reduction in node impurity. The Gini cost function
is employed to measure the purity of the nodes.



Polymers 2024, 16, 1049 8 of 19

Support vector regression [41] is a supervised learning approach that is employed for
the purpose of predicting discrete values. It aims to optimize the margin of tolerance by
customizing the hyperplane in such a manner that minimizes the error. Linear support
vector regression (SVR) is employed for a simple dataset. In the context of handling intricate
data, the nonlinear support vector regression (SVR) technique utilizes kernel functions to
transform the data into a higher-dimensional space, thereby enabling linear separability.
Frequently employed kernel functions encompass the linear kernel, polynomial kernel,
sigmoid kernel, and others.

AdaBoost, also known as adaptive boosting [42], is an ensemble method that enhances
the performance of weak estimators in order to provide a more robust and precise regressor
for the purpose of process prediction. The procedure begins by applying a regressor to the
original data values. Subsequently, additional instances of the regressor are fitted to the
identical data, but with adjustments made to the weights of each instance based on the error
of the present prediction. Moreover, it is utilized to enhance the efficacy of several machine
learning methods. This approach demonstrates particular efficacy when implemented
for individuals who have slower rates of learning. Ensemble algorithms are commonly
employed in the domain of material science [43].

The K-nearest neighbor (KNN) [44] method is a statistical procedure that differs from
model-based algorithms. It is versatile in its use, as it may be effectively utilized for
both classification and regression tasks. In order to generate a forecast for an unknown
datapoint, this algorithm identifies the K-nearest neighbors to the datapoint within the
range of features. The selection of a distance metric, such as Euclidean distance, influences
the definition of proximity or “closest” in a certain context. After identifying the neighbors,
the algorithm proceeds to determine the average, or weighted average, of their respective
goal values. The aforementioned value is the estimated forecast for the forthcoming data
point [45].

The random forest method is a type of ensemble approach that utilizes numerous
decision trees and incorporates a training procedure with a minor degree of randomiza-
tion in order to enhance overall performance. The ultimate outcome of the regression
or classification process is determined through the application of a weighted average or
weighted vote, taking into account all predictions generated by the forest. Furthermore,
the utilization of RF has the potential to offer an inherent measure for assessing the signif-
icance of individual descriptors. This capability is beneficial in the context of the logical
development of polymers. The number of individual trees in our RF model is adjusted to
achieve a balance between forecast accuracy and computational cost [46].

XGBoost [47] is a technique in ensemble learning that employs gradient boosting.
This approach iteratively updates the classifier by assigning weights to the components
that are not accurately categorized by the classifier. The hyperparameters necessary for
constructing the XGBoost model were acquired through a grid search. It incorporates
regularization algorithms that effectively mitigate the issue of overfitting. The model
incorporates parameters that govern the intricacy of the individual trees as well as the
overall complexity of the model.

Hist gradient boosting regression is a technique used in gradient boosting for building
quicker decision trees. The technique of binning or discretizing can significantly enhance the
efficiency of the training tree models that are subsequently incorporated into an ensemble.
The hist gradient boosting method utilizes its algorithm to implement the processing of
input variables. Every tree incorporated into an ensemble endeavors to rectify the predicted
flaws by leveraging the existing models within the ensemble [48].

The light gradient boosting machine (LGBM) [49] is a machine learning algorithm that
leverages decision-tree techniques to address a variety of problems, including regression,
classification, and other related tasks. The system has been purposefully engineered
to exhibit a high efficiency, scalability, and proficiency in managing extensive datasets.
Gradient-boosted trees operate by training models in a sequential manner, where each
succeeding tree is trained to learn from the errors made by the prior trees. Additionally,
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this technique also employs the histogram-based algorithm and a leaf-wise growth strategy
for the trees to enhance the efficiency of training and minimize memory consumption. One
notable distinction between LGBM and other gradient boosters based on trees is the vertical
growth of trees in LGBM, as opposed to the horizontal growth observed in other methods.
Moreover, it has been demonstrated that LGBM exhibits a higher accuracy and efficiency
compared to alternative gradient boosting methods, since it is capable of delivering more
precise outcomes within a shorter timeframe [50].

The extra tree (ET) approach demonstrates computing efficiency and the ability to
handle input vectors with high dimensions [51]. This algorithm employs the same underly-
ing principle as the RF algorithm. Nevertheless, in order to mitigate the risk of overfitting,
ET regression employs a technique where a random subset of features is utilized to train
each individual base learner. RF uses the bootstrap approach to train regression trees,
whereas ET utilizes the entire training set for each individual tree. In general, it is widely
acknowledged that both the random forest and extra tree algorithms exhibit comparable
performances. However, the extra tree method has been seen to surpass random forests in
scenarios where noisy characteristics are present [52].

2.8. Hyperparameter Optimization Technique

To enhance the quality of the model, many crucial hyperparameters were taken into
account for tuning before conducting the evaluations. The grid search was performed
in order to systematically alter the selected values. In order to enhance the efficiency
of grid search implementation, the tuning procedure commenced by exploring a wide
range of hyperparameter values and performing a preliminary grid search with a smaller
number of times or fewer training sets. Additionally, a more focused search was conducted
by increasing the number of epochs. The selection of a sequential tuning strategy was
motivated by the considerable number of variables involved in the tuning process [53].

2.9. Shapley Additive Explanations (SHAP)

The SHAP [54,55] framework explains the output of machine learning models by
employing principles from game theory. This method quantifies the contributions of
features to the predictions made by the model. DeepSHAP, Linear SHAP, TreeSHAP,
and Kernel SHAP are model explanation techniques used for computing SHAP values in
various types of models. The utilization of bee swarm, violin, bar, and river flow plots
effectively highlights this prominent aspect. We employed bar and violin diagrams to
illustrate the significance of these features. Bar graphs illustrate the impact of individual
features on the predictions of a model. The features are arranged in descending order based
on their highest absolute SHAP values. Violin plots are employed to visually represent
control directionality across all properties.

2.10. Performance Evaluation Metrics

The final step after developing a machine learning model is to evaluate its efficacy.
Typical assessment procedures include the hold-out technique [56], bootstrapping sam-
pling [57], and cross validation (CV) [58]. The objective of CV is to prevent a ML method
from overfitting. The most common CV formats include leave-one-out CVs as well as
k-fold CVs. Unfortunately, CV computations may involve substantial computational ex-
penses. The prediction ability of a machine learning method is calculated by comparing the
actual values to the model’s predicted values [59]. ML-computed metrics, depending on
the machine learning algorithms, are used to evaluate model quality. The determination
coefficient (R2), mean absolute error (MAE), and root mean square error (RMSE) are used
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to measure the performance of regression algorithms [60,61]. R2, MAE, and RMSE are
described as follows:

R2 =

[
∑t

i=1 (c − q́e)
(

qu(i) − q́u

)]2

∑t
i=1

(
qe(i) − q́e

)2
∑t

i=1

(
qu(i) − q́u

)2 (3)

MAE =
1
t ∑t

i=1

∣∣∣qe(i) − qu(i)

∣∣∣ (4)

RMSE =

√
1
t ∑t

i=1

∣∣∣qe(i) − qu(i)

∣∣∣2 (5)

where the sum of samples is t, the expected value is qu(i), the actual value is qe(i), the
average value of all expected set is q́u, and the average value of all real sets is q́e.

3. Experimental Results

In our work, we implemented a variety of machine learning regressors, including DT,
SVR, AB, KNN, XGB, RF, LGB, HGB, and ETR. The experimental work was performed
at the Google Colaboratory using Scikit-Learn in Python. The ten-fold cross-validation
approach [62] is applied in this study to develop prediction models. The datasets are
randomly split into equivalent 10 folds in the 10-fold cross-validation method. When
constructing the model, nine folds are employed for training, and one is utilized for testing.
This technique is repeated ten times, and then the outcomes are averaged. To validate the
experiment results, various assessment metrics, such as the determination coefficient (R2),
mean absolute error (MAE), and root mean square error (RMSE), are applied. In the context
of the mean absolute error (MAE) and root mean square error (RMSE) metrics, a lower
value is indicative of a greater performance. Conversely, in the case of the R-squared (R2)
metric, a higher value is associated with a superior performance.

3.1. Finding Significantly Associated Features Using Statistical Methods

We applied the Chi-square test to the polymer dataset in order to detect the most
influential feature of the polymers. Our results are depicted in Figure 4. We found that
MaxEStateIndex, SMR_VSA5, NumAliphaticHeterocycles, FpDensityMorgan1, BalabanJ,
and SlogP_VSA1 were the most important descriptors because they exhibited a strong
correlation with the goal’s property and efficiently incorporated the relevant molecular
characteristics that influenced that target attribute. SlogP_VSA2, VSA_EState5, NHO-
HCount, fr_ester, and SlogP_VSA11 were the least important descriptors because they had
little association with the targeted property and inadequately incorporated the molecular
factors that affected it.

3.2. Prediction of Glass Transition Temperature Using Machine Learning Techniques

The anticipated outcomes of several machine learning methodologies for the Morgan
fingerprint are presented in Table 1. The XGB algorithm had the highest R2 at 82.96%, along
with the lowest MAE of 32.823 and RMSE of 46.241 when compared to other regression
algorithms. RF, LGB, and HGB also demonstrated excellent performance across all the
evaluation metrics. In contrast, AB exhibited the lowest R2 at 62.71%, the highest MAE at
55.384, and the highest RMSE at 69.528.
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Table 1. Results of machine learning algorithms using Morgan fingerprinting.

DT SVR AB KNN XGB RF LGB HGB ETR

R2 0.686 0.684 0.620 0.8015 0.811 0.7981 0.7997 0.807 0.704
MAE 40.953 47.604 54.300 35.719 33.865 34.317 36.016 35.128 40.242
RMSE 62.283 62.467 68.553 49.516 48.312 49.936 49.741 48.823 60.465

Table 2 demonstrates the results obtained by employing machine learning approaches
with hyperparameter adjustments in the context of the Morgan fingerprinting method.
The HGB model demonstrated the greatest coefficient of determination (R2) of 83.35%
and the lowest root mean square error (RMSE) of 45.719 among all the regression models.
In contrast, the XGB model exhibited the lowest mean absolute error (MAE) of 32.247
when compared to the other regression models. However, the XGB model yielded the
second-most favorable result. In addition, the remaining regression models, namely SVR,
KNN, LGB, HGB, and RF, also yielded exceptional results.
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Table 2. Results of machine learning algorithms with hyperparameter tuning using Morgan fingerprinting.

DT SVR AB KNN XGB RF LGB HGB ETR

R2 0.754 0.815 0.664 0.789 0.816 0.803 0.810 0.820 0.797
MAE 39.204 32.979 51.195 35.325 33.291 35.506 34.072 33.032 37.105
RMSE 55.077 47.798 64.378 51.040 47.730 49.354 48.389 47.099 50.123

In Table 3, the expected outcomes of several machine learning methodologies for
molecular descriptors are displayed. Compared to the other regression algorithms, the ETR
algorithm had the highest R2 at 87.83%, along with the lowest MAE of 26.243 and RMSE
of 38.99. Additionally, RF, XGB, LGB, and HGB demonstrated outstanding performances
across all the evaluation metrics. SVR had the lowest R2 value of 65.88% and the highest
RMSE of 65.51. In contrast, AB had the highest MAE among all the regressors at 51.453.

Table 3. Results of machine learning algorithms using molecular descriptors.

DT SVR AB KNN XGB RF LGB HGB ETR

R2 0.690 0.652 0.679 0.805 0.841 0.850 0.857 0.851 0.867
MAE 41.668 50.165 50.172 34.615 30.922 29.898 30.325 31.018 27.960
RMSE 61.840 65.560 62.955 49.033 44.295 43.011 42.010 42.900 40.477

The findings achieved utilizing machine learning techniques with hyperparameter
tuning using the molecular descriptor method are presented in Table 4. The ETR model had
the highest R2 value of 88.01% and the lowest MAE value of 26.186, as well as the lowest
RMSE value of 38.839 when compared to all the other regression models. The SVR, KNN,
XGB, RF, LGB, and HGB models produced favorable outcomes. On the other hand, AB
exhibited the lowest R2 value of 68.39%, a MAE of 50.553, and an RMSE of 63.016 compared
to all the other regression models. Figure 5 shows a scatter plot of the extra tree regressor’s
predicted and measured glass transition temperatures of the polymers.

Table 4. Results of machine learning algorithms with hyperparameter tuning using molecular descriptors.

DT SVR AB KNN XGB RF LGB HGB ETR

R2 0.734 0.861 0.690 0.829 0.862 0.825 0.859 0.861 0.869
MAE 41.774 28.057 49.570 30.779 28.882 33.971 29.696 28.937 27.895
RMSE 57.299 41.362 61.920 45.963 41.249 46.507 41.773 41.371 40.286

3.3. Feature Ranking Using Machine Learning Techniques

We also ranked the features using mutual information, Pearson correlation, and reliefF
machine learning techniques. First, we calculated the feature importance value of mutual
information, Pearson correlation, and reliefF. Then, the average values of these three
methods were computed. The outcomes are depicted in Figure 6. In Figure 6, we analyzed
the relevance of the polymer’s descriptors and identified BalabanJ as the most prominent.
Other critical descriptors include SlogP_VSA1, SMR_VSA10, MinAbsEStateIndex, and
Estate_VSA2.

NumAliphaticCarbocycles, SlogP_VSA4, NHOHCount, VSA_EState5, fr_ether, VSA_
EState3, etc. were the least essential descriptors.
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3.4. Analysis of the Significance of Features on Model Output

The framework is specifically designed for the purpose of interpreting the outcomes
of a model. One notable benefit of SHAP is its ability to accurately quantify the influence of
a feature on each individual sample, providing insights into both its positive and negative
impacts. The SHAP values corresponding to each molecular descriptor are presented
in a ranked manner, as shown in Figure 7. This approach enabled the identification of
BalabanJ, fr_bicyclic, NumAliphaticHeterocycles, and SlogP_VSA1 as the key descriptors
in the model, indicating their significance in properly predicting results. The horizontal
coordinate represents the magnitude of the impact on the expected value of Tg depicted in
Figure 8. BalabanJ, fr_bicyclic, and MinAbsEStateIndex were the most essential descriptors.
On the other hand, the descriptors fr_ester, MinEStateIndex, and SMR_VSA10 were the
least significant.
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Through the utilization of explainable machine learning techniques, we gained signifi-
cant understanding of the internal mechanisms of the model and the individual impacts of
each descriptor, ultimately improving the model’s clarity and comprehensibility.
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4. Discussion

The accurate estimation of the glass transition temperature of polymers is of paramount
importance in the process of polymer design. After quantitatively depicting polymer data
using Morgan fingerprinting and molecular descriptors, the recursive feature elimination
technique was used to identify the most important features. We conducted a separate
application of statistics and machine learning algorithms to the dataset of polymers. The
features were assessed, and the glass transition temperature of the polymers was estimated
using a machine learning technique. The hyperparameters of the machine learning model
were also adjusted. Next, statistical approaches were employed to determine the significant
characteristics of the polymers. The SHAP methodology was also used to demonstrate the
influence of specific features on the model’s output.

The utilization of machine learning models is prevalent in the prediction of the glass
transition temperature of polymers. The ability of machine learning algorithms to identify
hidden patterns within a dataset through the analysis of various features might contribute
to a more inclusive comprehension. The predictions that exhibited a greater accuracy
score demonstrated a level of reliability in forecasting and ensured practical relevance in
real-world scenarios. In the particular case of molecular descriptors, the ETR technique
yielded the highest results, with an R2 value of 88.01%, a MAE of 26.186, and an RMSE
of 38.839. The HGB, XGB, and LGB approaches also showed excellent performances. The
order of rating for the machine learning algorithms in predicting Tg, from highest to lowest
performance, is as follows: ETR, LGB, XGB, HGB, SVR, RF, KNN, DT, AB. It was observed
that molecular descriptors exhibit superior performance compared to Morgan fingerprints.
It was found that optimizing the hyperparameters of the machine learning techniques led
to an improved performance.
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The findings of our study indicate that there are several crucial and relevant features
that may be used in the estimation of the glass transition temperature of polymers. The Chi-
squared test revealed that the MaxEStateIndex, SMR_VSA5, NumAliphaticHeterocycles,
FpDensityMorgan1, BalabanJ, and SlogP_VSA1 were the most significant features. The
key attributes of the machine learning model include BalabanJ, SlogP_VSA1, SMR_VSA10,
MaxEStateIndex, Estate_VSA2, and VSA_EState2. Furthermore, we identified noteworthy
indicators, namely MaxEStateIndex, BalabanJ, and SlogP_VSA1, which showed identical
characteristics in both the statistical association and machine learning approaches. Our
work indicates that the identification of important features is adequate for the prediction
of the glass transition temperature of polymers, thereby enabling the efficient design
of polymers.

In the preceding study, Liu et al. [28] achieved the highest coefficient of determination
R2 value of 86.4% and the lowest root mean square error (RMSE) value of 41.2. However,
our research yielded a higher coefficient of determination R2 at 88.01%, indicating a strong
relationship between the variables. Additionally, we observed a lower mean absolute error
(MAE) of 26.186 and a lower root mean square error (RMSE) of 38.839, suggesting a high
level of accuracy in our findings. It might be argued that the results obtained from the
current effort with the identical dataset are superior to those achieved in past endeavors.

The glass transition temperature of polymers is a key material parameter in determin-
ing their mechanical behavior at room temperature. When the glass transition temperature
is higher than room temperature, the polymers are flexible, like rubber, elastomers, etc.
Such polymers have a large deformation capability and improved strength at a high strain
rate [63–66]. Thus, these polymers are a promising candidate for energy absorption in
impact engineering. When the glass transition temperature is lower than room tempera-
ture, the polymers are rigid, like polymethyl methacrylate. They also can be applied for
energy absorption after microstructural modifications [67–71]. Therefore, this work offers
an intellectual method for determining the glass transition temperature of polymers for
applications as absorbent materials of mechanical energy.

5. Conclusions

This study presents a machine learning framework to predict the glass transition
temperature of polymers. In this study, we employed Morgan fingerprinting and molecular
descriptor approaches in order to quantitatively represent polymers. Subsequently, we
employed the recursive feature elimination strategy to determine significant descriptors.
Next, we employed nine distinct machine learning models to analyze the aforementioned
dataset, both with default and fine-tuned hyperparameter values, in order to predict the
glass transition temperature. This study revealed that the extra tree technique, when ap-
plied with optimized hyperparameter values, demonstrated superior performance in the
context of molecular descriptors. Additionally, we employed machine learning and statisti-
cal techniques to determine the most prominent features, resulting in the identification of
MaxEStateIndex, BalabanJ, and SlogP_VSA1. The SHAP approach was utilized in our study
to interpret the model. It was found that the BalabanJ, fr_bicyclic, and MinAbsEStateIndex
descriptors exhibited the most substantial influence on the model. This work has the poten-
tial for further expansion in order to forecast further polymer properties, including tensile
strength, Young’s modulus, toughness, elasticity, and density. It was demonstrated that
this method could effectively replace empirical methodologies in the development of novel
polymers with beneficial features and applications and further promote the applications of
polymer-based absorbent materials in mechanical engineering.

Author Contributions: Conceptualization, J.F.; methodology, M.J.U. and J.F.; software, M.J.U.; valida-
tion, M.J.U. and J.F.; formal analysis, M.J.U. and J.F.; investigation, M.J.U. and J.F.; resources, J.F.; data
curation, M.J.U. and J.F.; writing—original draft preparation, M.J.U.; writing—review and editing,
M.J.U. and J.F.; supervision, J.F.; project administration, J.F.; funding acquisition, J.F. All authors have
read and agreed to the published version of the manuscript.



Polymers 2024, 16, 1049 17 of 19

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data are available from the authors upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kim, C.; Chandrasekaran, A.; Huan, T.D.; Das, D.; Ramprasad, R. Polymer Genome: A Data-Powered Polymer Informatics

Platform for Property Predictions. J. Phys. Chem. C 2018, 122, 17575–17585. [CrossRef]
2. Kim, C.; Batra, R.; Chen, L.; Tran, H.; Ramprasad, R. Polymer design using genetic algorithm and machine learning. Comput.

Mater. Sci. 2021, 186, 110067. [CrossRef]
3. Kazemi-Khasragh, E.; Blázquez, J.P.F.; Gómez, D.G.C.; González, C.; Haranczyk, M. Facilitating polymer property prediction with

machine learning and group interaction modelling methods. Int. J. Solids Struct. 2024, 286, 112547. [CrossRef]
4. Mohit, H.; Sanjay, M.R.; Siengchin, S.; Kanaan, B.; Ali, V.; Alarifi, I.M.; El-Bagory, T.M.A.A. Machine learning-based prediction of

mechanical and thermal properties of nickel/cobalt/ferrous and dried leaves fiber-reinforced polymer hybrid composites. Polym.
Compos. 2024, 45, 489–506. [CrossRef]

5. Mysona, J.A.; Nealey, P.F.; de Pablo, J.J. Machine Learning Models and Dimensionality Reduction for Prediction of Polymer
Properties. Macromolecules 2024, 57, 1988–1997. [CrossRef]

6. Champa-Bujaico, E.; Díez-Pascual, A.M.; Redondo, A.L.; Garcia-Diaz, P. Optimization of mechanical properties of multiscale
hybrid polymer nanocomposites: A combination of experimental and machine learning techniques. Compos. Part. B: Eng. 2024,
269, 111099. [CrossRef]

7. Albuquerque, R.Q.; Rothenhäusler, F.; Ruckdäschel, H. Designing formulations of bio-based, multicomponent epoxy resin
systems via machine learning. MRS Bull. 2024, 49, 59–70. [CrossRef]

8. Li, D.; Ru, Y.; Liu, J. GATBoost: Mining graph attention networks-based important substructures of polymers for a better property
prediction. Mater. Today Commun. 2024, 38, 107577. [CrossRef]

9. Jeon, J.; Rhee, B.; Gim, J. Melt Temperature Estimation by Machine Learning Model Based on Energy Flow in Injection Molding.
Polymers 2022, 14, 5548. [CrossRef]

10. Babbar, A.; Ragunathan, S.; Mitra, D.; Dutta, A.; Patra, T.K. Explainability and extrapolation of machine learning models for
predicting the glass transition temperature of polymers. J. Polym. Sci. 2024, 62, 1175–1186. [CrossRef]

11. Miccio, L.A.; Borredon, C.; Schwartz, G.A. A glimpse inside materials: Polymer structure–Glass transition temperature relation-
ship as observed by a trained artificial intelligence. Comput. Mater. Sci. 2024, 236, 112863. [CrossRef]

12. Wang, S.; Yang, H.; Stratford, T.; He, J.; Li, B.; Su, J. Evaluating the effect of curing conditions on the glass transition of the
structural adhesive using conditional tabular generative adversarial networks. Eng. Appl. Artif. Intell. 2024, 130, 107796.
[CrossRef]

13. Liu, C.; Wang, X.; Cai, W.; He, Y.; Su, H. Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass. Processes
2023, 11, 2806. [CrossRef]

14. Qu, T.; Nan, G.; Ouyang, Y.; Bieketuerxun, B.; Yan, X.; Qi, Y.; Zhang, Y. Structure–Property Relationship, Glass Transition, and
Crystallization Behaviors of Conjugated Polymers. Polymers 2023, 15, 4268. [CrossRef]

15. Sangkhawasi, M.; Remsungnen, T.; Vangnai, A.S.; Maitarad, P.; Rungrotmongkol, T. Prediction of the Glass Transition Temperature
in Polyethylene Terephthalate/Polyethylene Vanillate (PET/PEV) Blends: A Molecular Dynamics Study. Polymers 2022, 14, 2858.
[CrossRef] [PubMed]

16. Krupka, J.; Dockal, K.; Krupka, I.; Hartl, M. Elastohydrodynamic Lubrication of Compliant Circular Contacts near Glass-Transition
Temperature. Lubricants 2022, 10, 155. [CrossRef]

17. Hu, A.; Huang, Y.; Chen, Q.; Huang, W.; Wu, X.; Cui, L.; Dong, Y.; Liu, J. Glass transition of amorphous polymeric materials
informed by machine learning. APL Mach. Learn. 2023, 1, 026111. [CrossRef]

18. Karuth, A.; Alesadi, A.; Xia, W.; Rasulev, B. Predicting glass transition of amorphous polymers by application of cheminformatics
and molecular dynamics simulations. Polymer 2021, 218, 123495. [CrossRef]

19. Alesadi, A.; Cao, Z.; Li, Z.; Zhang, S.; Zhao, H.; Gu, X.; Xia, W. Machine learning prediction of glass transition temperature of
conjugated polymers from chemical structure. Cell Rep. Phys. Sci. 2022, 3, 100911. [CrossRef]

20. Zhao, Y.; Mulder, R.J.; Houshyar, S.; Le, T.C. A review on the application of molecular descriptors and machine learning in
polymer design. Polym. Chem. 2023, 14, 3325–3346. [CrossRef]

21. Cassar, D.R.; de Carvalho, A.C.; Zanotto, E.D. Predicting glass transition temperatures using neural networks. Acta Mater. 2018,
159, 249–256. [CrossRef]

22. Alcobaça, E.; Mastelini, S.M.; Botari, T.; Pimentel, B.A.; Cassar, D.R.; De Carvalho, A.C.; Zanotto, E.D. Explainable Machine
Learning Algorithms for Predicting Glass Transition Temperatures. Acta Mater. 2020, 188, 92–100. [CrossRef]

23. Zhang, Y.; Xu, X. Machine learning glass transition temperature of polymers. Heliyon 2020, 6, e05055. [CrossRef] [PubMed]
24. Yan, C.; Feng, X.; Wick, C.; Peters, A.; Li, G. Machine learning assisted discovery of new thermoset shape memory polymers

based on a small training dataset. Polymer 2021, 214, 123351. [CrossRef]

https://doi.org/10.1021/acs.jpcc.8b02913
https://doi.org/10.1016/j.commatsci.2020.110067
https://doi.org/10.1016/j.ijsolstr.2023.112547
https://doi.org/10.1002/pc.27793
https://doi.org/10.1021/acs.macromol.3c02401
https://doi.org/10.1016/j.compositesb.2023.111099
https://doi.org/10.1557/s43577-023-00504-9
https://doi.org/10.1016/j.mtcomm.2023.107577
https://doi.org/10.3390/polym14245548
https://doi.org/10.1002/pol.20230714
https://doi.org/10.1016/j.commatsci.2024.112863
https://doi.org/10.1016/j.engappai.2023.107796
https://doi.org/10.3390/pr11092806
https://doi.org/10.3390/polym15214268
https://doi.org/10.3390/polym14142858
https://www.ncbi.nlm.nih.gov/pubmed/35890634
https://doi.org/10.3390/lubricants10070155
https://doi.org/10.1063/5.0137357
https://doi.org/10.1016/j.polymer.2021.123495
https://doi.org/10.1016/j.xcrp.2022.100911
https://doi.org/10.1039/D3PY00395G
https://doi.org/10.1016/j.actamat.2018.08.022
https://doi.org/10.1016/j.actamat.2020.01.047
https://doi.org/10.1016/j.heliyon.2020.e05055
https://www.ncbi.nlm.nih.gov/pubmed/33083589
https://doi.org/10.1016/j.polymer.2020.123351


Polymers 2024, 16, 1049 18 of 19

25. Zhang, Y.; Xu, X. Machine learning glass transition temperature of styrenic random copolymers. J. Mol. Graph. Model. 2021,
103, 107796. [CrossRef] [PubMed]

26. Lee, F.L.; Park, J.; Goyal, S.; Qaroush, Y.; Wang, S.; Yoon, H.; Rammohan, A.; Shim, Y. Comparison of Machine Learning Methods
towards Developing Interpretable Polyamide Property Prediction. Polymers 2021, 13, 3653. [CrossRef]

27. Tao, L.; Varshney, V.; Li, Y. Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition
Temperature. J. Chem. Inf. Model. 2021, 61, 5395–5413. [CrossRef]

28. Liu, G.; Zhao, T.; Xu, J.; Luo, T.; Jiang, M. Graph Rationalization with Environment-based Augmentations. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ser. KDD ’22, Washington, DC, USA, 14–18 August
2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1069–1078.

29. Nguyen, T.; Bavarian, M. A Machine Learning Framework for Predicting the Glass Transition Temperature of Homopolymers.
Ind. Eng. Chem. Res. 2022, 61, 12690–12698. [CrossRef]

30. Kabir, H.; Garg, N. Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements.
Sci. Rep. 2023, 13, 1497. [CrossRef]

31. Bolón-Canedo, V.; Remeseiro, B. Feature selection in image analysis: A survey. Artif. Intell. Rev. 2020, 53, 2905–2931. [CrossRef]
32. Ibarra, D.S.; Mathews, J.; Li, F.; Lu, H.; Li, G.; Chen, J. Deep learning for predicting the thermomechanical behavior of shape

memory polymers. Polymer 2022, 261, 125395. [CrossRef]
33. Goswami, S.; Ghosh, R.; Neog, A.; Das, B. Deep learning based approach for prediction of glass transition temperature in

polymers. Mater. Today Proc. 2021, 46, 5838–5843. [CrossRef]
34. Ma, R.; Liu, Z.; Zhang, Q.; Liu, Z.; Luo, T. Evaluating Polymer Representations via Quantifying Structure–Property Relationships.

J. Chem. Inf. Model. 2019, 59, 3110–3119. [CrossRef] [PubMed]
35. Tao, L.; Chen, G.; Li, Y. Machine learning discovery of high-temperature polymers. Patterns 2021, 2, 100225. [CrossRef] [PubMed]
36. Akter, T.; Satu, M.S.; Khan, M.I.; Ali, M.H.; Uddin, S.; Lió, P.; Quinn, J.M.W.; Moni, M.A. Machine Learning-Based Models for

Early Stage Detection of Autism Spectrum Disorders. IEEE Access 2019, 7, 166509–166527. [CrossRef]
37. Fang, G.; Xu, P.; Liu, W. Automated Ischemic Stroke Subtyping Based on Machine Learning Approach. IEEE Access 2020, 8,

118426–118432. [CrossRef]
38. Hasan, S.M.M.; Uddin, P.; Mamun, A.; Sharif, M.I.; Ulhaq, A.; Krishnamoorthy, G. A Machine Learning Framework for Early-Stage

Detection of Autism Spectrum Disorders. IEEE Access 2023, 11, 15038–15057. [CrossRef]
39. Uddin, M.J.; Ahamad, M.M.; Hoque, M.N.; Walid, M.A.A.; Aktar, S.; Alotaibi, N.; Alyami, S.A.; Kabir, M.A.; Moni, M.A. A

Comparison of Machine Learning Techniques for the Detection of Type-2 Diabetes Mellitus: Experiences from Bangladesh.
Information 2023, 14, 376. [CrossRef]

40. Lakshmi, A.V.; Ghali, V.; Subhani, S.; Baloji, N.R. Automated quantitative subsurface evaluation of fiber reinforced polymers.
Infrared Phys. Technol. 2020, 110, 103456. [CrossRef]

41. Mahajan, A.; Bajoliya, S.; Khandelwal, S.; Guntewar, R.; Ruchitha, A.; Singh, I.; Arora, N. Comparison of ML algorithms for
prediction of tensile strength of polymer matrix composites. Mater. Today Proc. 2022, in press. [CrossRef]

42. Ahmad, A.; Ahmad, W.; Chaiyasarn, K.; Ostrowski, K.A.; Aslam, F.; Zajdel, P.; Joyklad, P. Prediction of Geopolymer Concrete
Compressive Strength Using Novel Machine Learning Algorithms. Polymers 2021, 13, 3389. [CrossRef] [PubMed]

43. Anjum, M.; Khan, K.; Ahmad, W.; Ahmad, A.; Amin, M.N.; Nafees, A. Application of Ensemble Machine Learning Methods
to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete. Polymers 2022, 14, 3906. [CrossRef]
[PubMed]

44. Goodarzi, B.V.; Bahramian, A.R. Applying machine learning for predicting thermal conductivity coefficient of polymeric aerogels.
J. Therm. Anal. Calorim. 2022, 147, 6227–6238. [CrossRef]

45. Daghigh, V.; Lacy, T.E.; Daghigh, H.; Gu, G.; Baghaei, K.T.; Horstemeyer, M.F.; Pittman, C.U. Heat deflection temperatures of
bio-nano-composites using experiments and machine learning predictions. Mater. Today Commun. 2020, 22, 100789. [CrossRef]

46. Zhu, M.-X.; Deng, T.; Dong, L.; Chen, J.-M.; Dang, Z.-M. Review of machine learningdriven design of polymer-based dielectrics.
IET Nanodielectr. 2022, 5, 24–38. [CrossRef]

47. Ueki, Y.; Seko, N.; Maekawa, Y. Machine learning approach for prediction of the grafting yield in radiation-induced graft
polymerization. Appl. Mater. Today 2021, 25, 101158. [CrossRef]

48. Gayathri, R.; Rani, S.U.; Cepová, L.; Rajesh, M.; Kalita, K. A Comparative Analysis of Machine Learning Models in Prediction of
Mortar Compressive Strength. Processes 2022, 10, 1387. [CrossRef]

49. Kong, Y.K.; Kurumisawa, K. Application of machine learning in predicting workability for alkali-activated materials. Case Stud.
Constr. Mater. 2023, 18, e02173. [CrossRef]

50. Post, A.; Lin, S.; Waas, A.M.; Ustun, I. Determining damage initiation of carbon fiber reinforced polymer composites using
machine learning. Polym. Compos. 2023, 44, 932–953. [CrossRef]

51. Shozib, I.A.; Ahmad, A.; Rahaman, M.S.A.; Abdul-Rani, A.M.; Alam, M.A.; Beheshti, M.; Taufiqurrahman, I. Modelling and
optimization of microhardness of electroless Ni–P–TiO2 composite coating based on machine learning approaches and RSM. J.
Mater. Res. Technol. 2021, 12, 1010–1025. [CrossRef]

52. Armeli, G.; Peters, J.-H.; Koop, T. Machine-Learning-Based Prediction of the Glass Transition Temperature of Organic Compounds
Using Experimental Data. ACS Omega 2023, 8, 12298–12309. [CrossRef]

https://doi.org/10.1016/j.jmgm.2020.107796
https://www.ncbi.nlm.nih.gov/pubmed/33248342
https://doi.org/10.3390/polym13213653
https://doi.org/10.1021/acs.jcim.1c01031
https://doi.org/10.1021/acs.iecr.2c01302
https://doi.org/10.1038/s41598-023-28763-1
https://doi.org/10.1007/s10462-019-09750-3
https://doi.org/10.1016/j.polymer.2022.125395
https://doi.org/10.1016/j.matpr.2021.02.730
https://doi.org/10.1021/acs.jcim.9b00358
https://www.ncbi.nlm.nih.gov/pubmed/31268306
https://doi.org/10.1016/j.patter.2021.100225
https://www.ncbi.nlm.nih.gov/pubmed/33982020
https://doi.org/10.1109/ACCESS.2019.2952609
https://doi.org/10.1109/ACCESS.2020.3004977
https://doi.org/10.1109/ACCESS.2022.3232490
https://doi.org/10.3390/info14070376
https://doi.org/10.1016/j.infrared.2020.103456
https://doi.org/10.1016/j.matpr.2022.12.105
https://doi.org/10.3390/polym13193389
https://www.ncbi.nlm.nih.gov/pubmed/34641204
https://doi.org/10.3390/polym14183906
https://www.ncbi.nlm.nih.gov/pubmed/36146051
https://doi.org/10.1007/s10973-021-10960-7
https://doi.org/10.1016/j.mtcomm.2019.100789
https://doi.org/10.1049/nde2.12029
https://doi.org/10.1016/j.apmt.2021.101158
https://doi.org/10.3390/pr10071387
https://doi.org/10.1016/j.cscm.2023.e02173
https://doi.org/10.1002/pc.27144
https://doi.org/10.1016/j.jmrt.2021.03.063
https://doi.org/10.1021/acsomega.2c08146


Polymers 2024, 16, 1049 19 of 19

53. Lockner, Y.; Hopmann, C.; Zhao, W. Transfer learning with artificial neural networks between injection molding processes and
different polymer materials. J. Manuf. Process. 2022, 73, 395–408. [CrossRef]

54. Singla, S.; Mannan, S.; Zaki, M.; Krishnan, N.M.A. Accelerated design of chalcogenide glasses through interpretable machine
learning for composition–property relationships. J. Phys. Mater. 2023, 6, 024003. [CrossRef]

55. Alkadhim, H.A.; Amin, M.N.; Ahmad, W.; Khan, K.; Nazar, S.; Faraz, M.I.; Imran, M. Evaluating the Strength and Impact of Raw
Ingredients of Cement Mortar Incorporating Waste Glass Powder Using Machine Learning and SHapley Additive ExPlanations
(SHAP) Methods. Materials 2022, 15, 7344. [CrossRef] [PubMed]

56. Sendek, A.D.; Ransom, B.; Cubuk, E.D.; Pellouchoud, L.A.; Nanda, J.; Reed, E.J. Machine Learning Modeling for Accelerated
Battery Materials Design in the Small Data Regime. Adv. Energy Mater. 2022, 12, 2200553. Available online: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/aenm.202200553 (accessed on 29 June 2022). [CrossRef]

57. Chang, Y.-J.; Jui, C.-Y.; Lee, W.-J.; Yeh, A.-C. Prediction of the Composition and Hardness of High-Entropy Alloys by Machine
Learning. JOM 2019, 71, 3433–3442. [CrossRef]

58. Wei, J.; Chu, X.; Sun, X.; Xu, K.; Deng, H.; Chen, J.; Wei, Z.; Lei, M. Machine learning in materials science. InfoMat 2019, 1, 338–358.
Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/inf2.12028 (accessed on 9 September 2019). [CrossRef]

59. Parikh, N.; Karamta, M.; Yadav, N.; Tavakoli, M.M.; Prochowicz, D.; Akin, S.; Kalam, A.; Satapathi, S.; Yadav, P. Is machine
learning redefining the perovskite solar cells? J. Energy Chem. 2022, 66, 74–90. [CrossRef]

60. Ghosh, A.; Satvaya, P.; Kundu, P.K.; Sarkar, G. Calibration of RGB sensor for estimation of real-time correlated color temperature
using machine learning regression techniques. Optik 2022, 258, 168954. [CrossRef]

61. Chen, H.; Li, X.; Wu, Y.; Zuo, L.; Lu, M.; Zhou, Y. Compressive Strength Prediction of High-Strength Concrete Using Long
Short-Term Memory and Machine Learning Algorithms. Buildings 2022, 12, 302. [CrossRef]

62. Lu, H.-J.; Zou, N.; Jacobs, R.; Afflerbach, B.; Lu, X.-G.; Morgan, D. Error assessment and optimal cross-validation approaches in
machine learning applied to impurity diffusion. Comput. Mater. Sci. 2019, 169, 109075. [CrossRef]

63. Ali, S.F.; Fan, J. Capturing Dynamic Behaviors of a Rate Sensitive, Elastomer with Strain Energy Absorptions and Dissipation
Effects. Int. J. Appl. Mech. 2021, 13, 2150104. [CrossRef]

64. Ali, S.F.; Fan, J.T.; Feng, J.Q.; Wei, X.Q. A Macro-Mechanical Study for Capturing the Dynamic Behaviors of a Rate-Dependent
Elastomer and Clarifying the Energy Dissipation Mechanisms at Various Strain Rates. Acta Mech. Solida Sin. 2021, 35, 228–238.

65. Fan, J.; Weerheijm, J.; Sluys, L. High-strain-rate tensile mechanical response of a polyurethane elastomeric material. Polymer 2015,
65, 72–80. [CrossRef]

66. Fan, J.T.; Weerheijm, J.; Sluys, L.J. Glass interface effect on high-strain-rate tensile response of a soft polyurethane elastomeric
polymer material. Compos. Sci. Technol. 2015, 118, 55–62. [CrossRef]

67. Ali, S.F.; Fan, J. Elastic-viscoplastic constitutive model for capturing the mechanical response of polymer composite at various
strain rates. J. Mater. Sci. Technol. 2020, 57, 12–17.

68. Fan, J.T. Strain rate dependent mechanical properties of a high-strength poly(methyl methacrylate). J. Appl. Polym. Sci. 2018,
135, 46189. [CrossRef]

69. Fan, J.T.; Weerheijm, J.; Sluys, L.J. Compressive response of a glass–polymer system at various strain rates. Mech. Mater. 2016, 95,
49–59. [CrossRef]

70. Fan, J.T.; Weerheijm, J.; Sluys, L.J. Compressive response of multiple-particles-polymer systems at various strain rates. Polymer
2016, 91, 62–73. [CrossRef]

71. Fan, J.T.; Wang, C. Dynamic compressive response of a developed polymer composite at different strain rates. Compos. Part B Eng.
2018, 152, 96–101. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jmapro.2021.11.014
https://doi.org/10.1088/2515-7639/acc6f2
https://doi.org/10.3390/ma15207344
https://www.ncbi.nlm.nih.gov/pubmed/36295407
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202200553
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202200553
https://doi.org/10.1002/aenm.202200553
https://doi.org/10.1007/s11837-019-03704-4
https://onlinelibrary.wiley.com/doi/pdf/10.1002/inf2.12028
https://doi.org/10.1002/inf2.12028
https://doi.org/10.1016/j.jechem.2021.07.020
https://doi.org/10.1016/j.ijleo.2022.168954
https://doi.org/10.3390/buildings12030302
https://doi.org/10.1016/j.commatsci.2019.06.010
https://doi.org/10.1142/S1758825121501040
https://doi.org/10.1016/j.polymer.2015.03.046
https://doi.org/10.1016/j.compscitech.2015.08.007
https://doi.org/10.1002/app.46189
https://doi.org/10.1016/j.mechmat.2015.12.005
https://doi.org/10.1016/j.polymer.2016.03.041
https://doi.org/10.1016/j.compositesb.2018.06.025

	Introduction 
	Materials and Methods 
	Polymer Dataset 
	Data Preprocessing 
	Polymer Representation 
	Feature Selection Method 
	Feature Ranking Technique 
	Statistical Analysis 
	Machine Learning Model 
	Hyperparameter Optimization Technique 
	Shapley Additive Explanations (SHAP) 
	Performance Evaluation Metrics 

	Experimental Results 
	Finding Significantly Associated Features Using Statistical Methods 
	Prediction of Glass Transition Temperature Using Machine Learning Techniques 
	Feature Ranking Using Machine Learning Techniques 
	Analysis of the Significance of Features on Model Output 

	Discussion 
	Conclusions 
	References

