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Abstract: Polyethylene terephthalate glycol (PETG) and silicon nitride (Si3N4) were combined to
create five composite materials with Si3N4 loadings ranging from 2.0 wt.% to 10.0 wt.%. The goal was
to improve the mechanical properties of PETG in material extrusion (MEX) additive manufacturing
(AM) and assess the effectiveness of Si3N4 as a reinforcing agent for this particular polymer. The
process began with the production of filaments, which were subsequently fed into a 3D printer to
create various specimens. The specimens were manufactured according to international standards
to ensure their suitability for various tests. The thermal, rheological, mechanical, electrical, and
morphological properties of the prepared samples were evaluated. The mechanical performance
investigations performed included tensile, flexural, Charpy impact, and microhardness tests. Scan-
ning electron microscopy and energy-dispersive X-ray spectroscopy mapping were performed to
investigate the structures and morphologies of the samples, respectively. Among all the composites
tested, the PETG/6.0 wt.% Si3N4 showed the greatest improvement in mechanical properties (with a
24.5% increase in tensile strength compared to unfilled PETG polymer), indicating its potential for
use in MEX 3D printing when enhanced mechanical performance is required from the PETG polymer.

Keywords: polyethylene terephthalate glycol (PETG); silicon nitride (Si3N4); nanocomposites;
material extrusion (MEX); three-dimensional (3D) printing; mechanical performance; broadband
dielectric spectroscopy (BDS)

1. Introduction

Additive manufacturing (AM) technology has been the subject of intense research and
development for over 30 years, resulting in constant progress and innovative techniques
that constitute a true revolution in manufacturing. AM processes include most notably
stereolithography (SLA) [1], fused deposition modeling (FDM) [2], three-dimensional
printing (3DP) [3], selective laser sintering (SLS) [4], laminated objective manufacturing
(LOM) [5], and laser metal deposition (LMD) [6]. AM provides the opportunity to create
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parts with complex geometries in a shorter period of time and at a significantly lower
cost [7] than traditional manufacturing techniques [8]. AM has important and innovative
applications in a variety of fields, such as engineering [9], aerospace [10–15], the automotive
industry [11,12,16,17], energy [18], the use of ceramic materials [19], electronics [20,21],
defense [22,23], and medicine [24–29].

Fused filament fabrication (FFF) or material extrusion (MEX) can easily be utilized for
the processing of polymers and reinforced polymers because it is a simple procedure that
involves feeding an extrusion-suitable thermoplastic filament into a nozzle and fabricating
the desired 3D sample [30,31]. It should be mentioned that some settings must be properly
and carefully set during each FFF procedure because they can influence the mechanical
performance of the 3D-printed sample [32,33]. Those could be, among others, the print-
ing speed, the layer thickness, the temperature of the nozzle, the bed, and the chamber,
etc. [34,35].

Polyethylene terephthalate glycol (PETG) is the most common thermoplastic polymer
resin among polyesters. It is a modified polyethylene terephthalate (PET) polymer filled
with glycol that provides better processability in the FFF technique [36,37]. It possesses
some advanced properties compared to PET, such as chemical alkali resistance, high
shrinkage, transparency, gloss, low haze, good printability [38], and processability, along
with the ability to be easily mixed with blends [39]. It can be useful in applications that
require more enhanced mechanical properties than PET; moreover, its 3D-printing FFF
process is easy to use, and it can be utilized for food packaging [38], engineering [40], and
medical applications [41], among others.

Many industries tend to choose ceramics for specific applications owing to their ad-
vanced properties [42] such as high hardness and high melting temperature (Tm). Such
quantities are utilized in applications featuring high loads, such as in cutting tools [43,44].
Silicon nitride (Si3N4) is a ceramic material that exhibits extraordinary properties, such as
high durability, potency, crack-withstanding ability, and resistance to sudden temperature
changes [45–47]. Therefore, such ceramics and analogous materials are suitable for specific
applications that require optimal operation under harsh working conditions, such as bear-
ings [48], hard coatings, cutting tools [49], spark plugs [50,51], and engine parts that operate
at high temperatures [52]. According to many studies, the presence of nitride nanoparticles
can be beneficial to the characteristics and behavior of polymer nanocomposites with regard
to their thermomechanical properties [47,53,54]. In addition to its excellent mechanical
properties as a ceramic material, Si3N4 is considered a bioceramic that can be useful for
medical or healthcare applications. It is a subject of interest in the field of biomedicine
because of its biocompatibility and superior chemical, physical, and mechanical properties,
which are necessary for applications such as implants [55,56] and scaffolds [57,58]. Si3N4
ceramics are also characterized by their bacteriostatic properties, which can be useful in
a variety of biomedical applications [45,46]. Recently, they have been used in biomedi-
cal applications such as in 3D printing using material extrusion (MEX) [59,60] and vat
photopolymerization (VPP) [61,62] methods.

In this research endeavor, various composites were developed by blending PETG as the
matrix material with Si3N4 ceramic as the filler, with the aim of evaluating their performance
in a range of tests. This study examined the impact of Si3N4 nanoparticles as reinforcing
agents for PETG thermoplastic. The objective was to enhance the mechanical properties of
PETG thermoplastic in MEX 3D printing, with an emphasis on developing a process that
could be scaled up for industrial production. This enhancement is intended to improve the
durability of components, particularly in applications where PETG thermoplastic is the
preferred polymer, thus potentially expanding its range of use. It is worth noting that this
investigation into PETG/Si3N4 nanocomposites, especially in terms of their mechanical
properties, is novel in the literature, particularly within the realm of additive manufacturing
(AM) or MEX 3D printing technologies.

In this study, PETG was used in conjunction with Si3N4 to create composites with five
filler percentages (2.0, 4.0, 6.0, 8.0, and 10.0 wt.%). The corresponding mixtures were created



Polymers 2024, 16, 1043 3 of 23

and used to fabricate filaments via material extrusion (MEX). The produced filaments were
later fed into a three-dimensional printer (3D-P) to fabricate the desired specimens in accor-
dance with the respective international standards, for which the specimens subsequently
underwent a variety of tests. The same settings were applied for the fabrication of all the
samples so that the results would be comparable. The samples were subjected to a series of
mechanical tests, including tensile, flexural, impact, and microhardness tests. Thermogravi-
metric analysis (TGA), differential scanning calorimetry (DSC), and Raman spectroscopy
were used to determine the thermal properties of the composites. Their electrical/dielectric
properties over a broad frequency range were examined, and scanning electron microscopy
(SEM) and energy-dispersive X-ray spectroscopy (EDS) were employed to reveal the struc-
tural characteristics and chemical compositions of the samples. Micro-CT (µ-CT) was used
to determine the dimensional accuracy and internal structure of the fabricated samples. A
significant enhancement in the mechanical properties was exhibited by the 6.0 wt.% com-
posite made of Si3N4, which led to this specific filler percentage composite being considered
suitable for providing the nanocomposites with reinforced mechanical properties. However,
the electrical/dielectric response of PETG/Si3N4 composites is mainly dependent on the
electrical behavior of the polymer matrix. This study aims to achieve the following:

• Examine the ability of Si3N4 to enhance the mechanical properties and reinforce the
performance of the PETG polymer.

• Determine the contribution of Si3N4 to the electrical/dielectric properties of the
PETG polymer.

• Investigate and provide evidence for the suitability of PETG/Si3N4 composites for use
as 3D printable materials for the fabrication of various parts that can serve a constantly
increasing variety of applications in demanding and extreme environments.

2. Materials and Methods

The present work involved a series of steps, summarized in Figure 1, regarding the
preparation of the raw materials, filaments, and specimens as well as the tests conducted
on them. Figure 1A,B display the raw materials prepared and dried in an oven to remove
any absorbed moisture. As shown in Figure 1C,D, the filaments were extruded and allowed
to dry in an oven, while Figure 1E,F show their quality inspection and mechanical testing.
Figure 1G,H show the material extrusion 3D-P of the corresponding specimens and their
quality control. Figure 1I,J concern the mechanical testing and evaluation of the specimens,
while their rheological and morphological characteristics are shown in Figure 1K,L.

2.1. Materials

Polyethylene Terephthalate Glycol (PETG) was supplied by Felfil Srl (Torino, Italy) in
pellet form. Nanographi (Ankara, Turkey) was used as the source of silicon nitride (Si3N4)
nanoparticles (Ankara, Turkey).

2.2. Preparation of the PETG/Si3N4 Filament and 3D Printing

Preparation of PETG/x wt.% Si3N4 filaments began by measuring the correct quantities
of both materials and then using them to synthesize the desired compounds. As to the
definition of the filler percentage limit, it was set according to the results of preliminary
tests conducted on the samples, while gradually increasing the filler quantity. Increasing
the amount of additive was discontinued when the performance of the samples ceased to
provide useful results and information. Apart from the pure PETG quantity, which was
prepared, five different mixtures of PETG/x wt.% Si3N4 were also compounded, namely,
PETG/2.0 wt.% Si3N4, PETG/4.0 wt.% Si3N4, PETG/6.0 wt.% Si3N4, PETG/8.0 wt.% Si3N4,
and PETG/10.0 wt.% Si3N4. After being left in the oven overnight at 80 ◦C to dry, the
filaments were fed onto a 3D Evo Composer single-screw 450 extruder supplied by 3devo
(3devo B. V., Utrecht, The Netherlands). It should be noted that the diameter of the filaments
was monitored during extrusion using a filament diameter sensor with the ability to make
micro-adjustments, if needed, to the extrusion speed. The available literature provided



Polymers 2024, 16, 1043 4 of 23

this study with the necessary information about the extrusion parameters. The diameter
for all filaments remained almost steady at a range between 1.65 mm and 1.85 mm, which
is considered suitable for the 3D-P of the specimens. The filaments, which were dried
overnight at 80 ◦C, were subsequently supplied to an FFF Intamsys Funmat HT 3D printer
purchased from Intamsys Technology Co., Ltd. (Shanghai, China) for the production of 3D-
P specimens. They were designed using 3D Autodesk® Fusion 360™ software (Autodesk®,
Inc, San Francisco, CA, USA, https://www.autodesk.com/campaigns/education/fusion-
360, accessed on 20 November 2023) and exported into Standard Tesselation Language
(STL) format files.
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Figure 1. The steps followed in the present study include (A) the preparation of the unprocessed
materials and (B) their drying; (C) the production of the filaments through extrusion and (D) their
subsequent drying; (E) inspection of quality and (F) mechanical testing; the (G) material extrusion
of the three-dimensional specimens and (H) the inspection of their quality; (I,J) examination and
evaluation of mechanical properties; and (K) rheological and (L) morphological investigation.

2.3. SEM of Si3N4 and EDS Analysis

Scanning electron microscopy (SEM) analysis was conducted by capturing fracture
and side surface images of the specimens using an electron Jeol JSM-IT700HR (Jeol Ltd.,
Tokyo, Japan) field-emission scanning electron microscope. The chemical elements of the
samples were detected via EDS analysis using the same device employed for SEM. The
chemical composition of Si3N4 was investigated using the same procedure. The scanning
electron microscope was operated in high-vacuum mode with a 5 kV acceleration voltage,
and the samples were gold-sputtered during the SEM and EDS analyses.

In Figure 2A, an SEM image of Si3N4 at 10,000× magnification is presented, and the
highlighted square area is shown in Figure 2B at 20,000× magnification. The highlighted
square area in Figure 2B is magnified 50,000× (Figure 2C). The EDS mapping results for
Si3N4 are shown in Figure 2D, and Figure 2C shows the chemical composition analysis
derived from the EDS. As can be observed, high levels of Si were detected, which was an
expected phenomenon.

https://www.autodesk.com/campaigns/education/fusion-360
https://www.autodesk.com/campaigns/education/fusion-360
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Figure 2. Analyzation of the unprocessed material of Si3N4 through (A) SEM pictures magnifying
specific areas of the material at 10,000×, (B) 20,000×, and (C) 50,000× as well as (D) an EDS mapping
image and (E) a chemical composition analysis via EDS.

2.4. Mechanical Tests

The various mechanical tests conducted on the specimens included tensile, flexural,
Charpy impact, and microhardness (MH) tests. Several 3.2 mm thick V-type tensile speci-
mens were created and tested according to the American Society for Testing and Materials
(ASTM) standard D638-02a [63]. The specimens were placed between the standardized
grips of an Imada MX2 (Imada Inc., Northbrook, IL, USA) tension/flexure test device in ten-
sile mode for the tensile tests. The same machine but in flexural mode was used for flexural
3-point bending tests based on ASTM D790-10 [64] (3-point bending test with a 52.0 mm
support span). ASTM D6110-04 [65] was used for impact testing, which was conducted
using a Charpy impact apparatus (Terco MT 220, Terco, Sweden). ASTM E384-17 [66]
was used for M–H measurements, and a Vickers apparatus, Innova Test 300 (Europe BV,
Maastricht, The Netherlands), was used on specimens whose surfaces were preliminarily
fully polished under a force of 100 gF and for an indentation duration of 10 s.

On the left side of Figure 3, the set 3D-P parameters are presented, along with some
samples from the actual 3D-printed tensile, flexural, and impact specimens. The nozzle
temperature was set to 240 ◦C, the bed temperature was 80 ◦C, the thickness of the layers
was 0.2 mm, and the travel speed was 40 mm/s. On the right side of Figure 3, the initially
designed models of the tensile, flexural, and impact specimens are presented along with
their dimensions and related ASTM standards.

2.5. Raman Spectroscopy

A confocal LabRAM HR Raman spectrometer (HORIBA Scientific, Kyoto, Japan) was
employed to obtain Raman Spectroscopy measurements under laboratory conditions. A
532 nm laser line was used for Raman signal excitation with a power of 90 mW. To help
control the laser power applied to the sample, a 5% neutral-density filter was placed in the
optical path of the laser beam. The laser was focused on the sample with a 50× microscope
Olympus objective lens (LMPlanFL N) with a Numerical Aperture (NA) and a 10.6 mm
working distance. The Raman signal was collected using the same objective lens and
visualization of the sample area. The acquisition settings used in this study were as follows:
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• Measurement spectral sensitivity range (50 up to 3900 cm−1);
• Spectral resolution (2 cm−1);
• Spectrometer grating (600 grooves/mm);
• Exposure time at each measurement point (10 s);
• Measurement accumulations per point (5);
• Measurement point dimensions (1.7 µm laterally and 2 µm axially).
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The laser power resulting from the surface of the sample was 2 mW.
Following each measurement, any possible discoloration or degradation caused by

laser irradiation was detected by visually inspecting the irradiated areas. No such events
were detected in the Raman spectroscopy measurements, as described above, ensuring that
the parameters for obtaining various Raman spectra were optimal.

2.6. Thermogravimetric and Differential Scanning Calorimetry Analyses

The thermal behaviors of the samples derived from the PETG/x wt.% Si3N4 compos-
ites and the pure PETG were examined by means of thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC). The apparatus used was a Diamond Perkin Elmer
(Waltham, MA, USA) with a 40–550 ◦C temperature cycle at an increase rate of 10 ◦C/min.
A Discovery Series DSC-25 DSC calorimeter (TA Instruments, New Castle, DE, USA) was
used to obtain DSC measurements, along with an RSC-90 Refrigerated Cooling System.
The TGA and DSC analyses were conducted in an inert environment in the presence of
high-purity N2 (nitrogen gas).

2.7. Investigation of the Rheometric Behavior

A DHR-20 Discovery Hybrid Rotational Rheometer (TA Instruments, DE, USA) was
used to record rheological measurements, according to ASTM D1238-13 [67], for the melt
flow rate (MFR). An Environmental Test Chamber with a parallel-plate setup was used
for temperature regulation, and the duration of the acquisition was set to 10 s at every
measurement point, with the aim of preventing excessive heating and decomposition. Melt
flow rate (MFR) and rotational rheometric tests were used to assess the flow rates of the
materials at certain temperatures and previously determined pressures.
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2.8. Broadband Dielectric Spectroscopy (BDS) Examination

Dielectric spectroscopy measurements of PETG/x wt.% Si3N4 composites were per-
formed using an Alpha-ANB high-resolution dielectric analyzer combined with a ZGS
Alpha Active sample holder and BDS 1100 module (Novocontrol Technologies GmbH
& Co., Montabaur, Germany). Measurements were performed in the frequency range of
10−2 Hz–4 MHz at room temperature. Disk-shaped specimens with a diameter of 40 mm
and a thickness of 4 mm were prepared via thermal pressing to form the dielectric material
of the sandwich-structured capacitor in a two-electrode configuration. A conductive paste
was applied to both sides of the specimens to ensure proper electrical contact with the
gold-plated electrodes of the sample holder. The applied ac voltage was set to Vrms = 1 V.
WinDeta software, developed by Novocontrol Technologies (Novocontrol Technologies
GmbH & Co., Montabaur, Germany, https://www.novocontrol.de/php/windeta.php,
accessed on 20 December 2023), was used to control the experiments and acquire data.

The dielectric results are presented as the complex dielectric permittivity ε*(ω), dissipa-
tion factor tan(δ), and complex AC conductivity σ*(ω) according to the following equations:

ε∗(ω) = ε′ − iε′′ =
C(ω)

Co
− i

1
ω·Co·R(ω)

(1)

tan(δ) =
ε′′

ε′
(2)

and
σ∗(ω) = σ′ − iσ′′ = iωεo(ε

∗(ω)− 1) = ωεoε′′ − iωεo
(
ε′ − 1

)
(3)

where R(ω) and C(ω) are the resistance and capacitance of the equivalent circuit in parallel
connection measured using the dielectric analyzer, Co = εo·π·r2/d is the capacitance of
the empty cylindrical sample cell with radius r and distance d between the electrodes,
ω = 2πf is the angular frequency, and εo is the permittivity of the vacuum. The real part of
the dielectric permittivity (ε′) measures the energy storage under the effect of an applied
electric field, whereas the dissipation factor tan(δ) ε′′ is related to the energy loss within
the material.

2.9. Micro-Computed Tomography

The porosity and dimensional deviation of the manufactured 3D-P specimens were
examined using micro-CT (µ-CT). A CT scanner, namely, a Tomoscope HV Compact 225 kV
Micro Focus (Werth Messtechnik GmbH, Giessen, Germany), with a 1024 × 1024-pixel
sensor was employed along with VG Studio MAX 2.2 software (Volume Graphics GmbH,
Heidelberg, Germany) for data processing. Through these examinations, the effects of
additives on the 3D-P structure were evaluated. A 75 L setup (72.58 µm resolution on the
X-axis and 72.65 µm resolution on the Y-axis) was used to examine dimensional accuracy.
A 16 L setup (15.46 µm resolution on the X-axis and 15.49 µm resolution on the Y-axis)
was used to examine porosity. A total of 1600 sections per revolution were acquired for
both cases.

3. Results
3.1. Raman Results for PETG/x wt.% Si3N4 Composites

Figure 4a shows the Raman spectra of the pure PETG and PETG/x wt.% Si3N4 com-
posites, while in Figure 4b, the results obtained by subtracting pure PETG from all the
spectra of Figure 4a are presented.

In Table 1, the related Raman peaks from the pure PETG sample are presented as
extracted from the literature, along with their references in brackets, indicating the work(s)
from whence the data originated.

https://www.novocontrol.de/php/windeta.php
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Figure 4. Representation of (a) the Raman graphs of the neat PETG and the PETG/x wt.% Si3N4

(x = 2.0, 4.0, 6.0, 8.0, and 10.0 wt.%) samples, accompanied by the (b) graphs created by the subtrac-
tion of the pure PETG spectral signature.

Table 1. Significant Raman peaks and their related assignments from pure PETG.

Wavenumber (cm−1) Intensity Raman Peak Assignment

631 Strong phenyl ring vibration [68,69]
703 Medium C-H out-of-plane bending [68]
772 Small O-C(O)-O stretching [69]
793 Medium
855 Strong γ(C–OH)ring [70,71]

1115 Strong Skeletal vibrations, C–O–C bonds [72]
1172 Strong Skeletal vibrations, C–O–C bonds [68,72]
1283 Strong Skeletal vibrations, C–O–C bonds [68,72]
1369 Small C–C–H, C–O–H, and O–C–H [72]
1409 Medium C-H3 deformation [73]

1440–1464 Medium C-H3 deformation [68,73]; C-H2 deformation [72];
C-H3 symmetric bending [69,73,74]

1613 Very Strong Phenyl ring stretch [69]
1724 Very Strong C=O bond [75]
2857 Medium C-H2 symmetric stretching [72]
2890 Medium CH2 symmetric stretching [72,76]
2955 Strong CH2 asymmetric stretching [72]
3081 Strong C-H stretching [73]

As shown in Figure 4a, as the concentration of Si3N4 increased in the PETG composite,
the related Raman lines of the pure PETG differentiated in intensity. Furthermore, broad
photoluminescence appeared to increase as the Si3N4 concentration increased in the spectral
region from 800 to 1800 cm−1.
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The addition of Si3N4 to PETG resulted in an increase in the intensity of the phenyl ring
bond at 631 cm−1 and a gradual increase in the intensity of the C–O–C bonds at 1616 cm−1.
A significant decrease in intensity was also observed in the Raman peaks at 2955 cm−1

and 3081 cm−1, corresponding to the C-H2 and C-H bond stretching modes, respectively.
A somewhat inconsistent behavior was observed in the 1716–1741 cm−1 spectral range,
where C=O bonds were present. In low-concentration Si3N4 composites with compositions
bearing 2 wt.%, 4 wt.%, and 6 wt.% Si3N4, respectively, an intensity decrease was found.
In contrast, for the 8 wt.% and 10 wt.% Si3N4 composites, the intensity increased. This
information is presented in Table 2.

Table 2. Significant Raman peak differences between the PETG/Si3N4 samples and PETG/pure.

631 Peak rise Small increase in phenyl ring bond

1616 Gradual increase Significant increase in skeletal vibrations or
C–O–C bonds

1716–1741 Inconsistent behavior C=O bond [75]
2955 Peak drop Significant decrease
3081 Peak drop Significant decrease

3.2. Thermogravimetric and Differential Scanning Calorimetry Analysis

Figure 5a shows the weights of the temperature curves of PETG/2.0% Si3N4, PETG/4.0%
Si3N4, PETG/6.0% Si3N4, PETG/8.0% Si3N4, PETG/10.0% Si3N4, and pure PETG as well
as an inset graph of their weight loss values depending on the filler percentage. Figure 5b
shows the heat flow as temperature curves for the PETG/x wt.% Si3N4 with x = 2.0, 4.0,
6.0, 8.0, and 10.0 wt.%, respectively, and pure PETG, along with the glass transition (Tg)
temperatures for each filler percentage included in the inserted graph.
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Figure 5. Pure PETG and PETG/x wt.% Si3N4 (x = 2.0, 4.0, 6.0, 8.0, and 10.0 wt.%) analyzed
(a) thermogravimetrically and through (b) differential scanning calorimetry.

3.3. Viscosity and MFR Analysis

The solid lines in Figure 6a represent the viscosity values of all the PETG/x wt.% Si3N4
composites and pure PETG, whereas the dotted lines indicate their stress values at 240 ◦C.
It can be observed that as the filler percentage increased, the viscosity increased, whereas
the stress was not significantly influenced. Moreover, the viscosity decreased as the stress
increased. Figure 6b shows the MFR values with respect to the Si3N4 filler percentage for
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the PETG/x wt.% Si3N4, x = 2.0, 4.0, 6.0, 8.0, and 10.0 wt.% composites and pure PETG at
250 ◦C, at which point it is evident that PETG/4.0% Si3N4 has the highest value.
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(a) their viscosity properties at 240 ◦C and (b) their rates of melting flow at 250 ◦C.

3.4. Monitoring of the Filament

The extrusions of the pure PETG and PETG/4.0 wt.% Si3N4 filaments were monitored
in order to observe the quality and diameter of the extruded material, and the results are
shown in Figures 7a and 7b, respectively, along with pictures of the materials. The filaments
seem to have a high-quality surface, without defects, while also being able to maintain an
almost steady diameter ranging between 1.65 mm and 1.85 mm. The ultimate strength
and Young’s modulus results corresponding to those of the PETG/x wt.% Si3N4 with
x = 2.0, 4.0, 6.0, 8.0, and 10.0 wt.%, respectively, and pure PETG filaments are contained in
Figures 7c and 7d respectively. The recorded values for PETG/6.0 wt.% Si3N4 were higher
than those of the other composites with other filler percentages, revealing an 18.8% increase
with respect to pure PETG in the case of ultimate strength and a 19.0% increase with respect
to pure PETG in the case of Young’s modulus.

3.5. Mechanical Tests

The prepared composites, namely, PETG/2.0 wt.% Si3N4, PETG/4.0 wt.% Si3N4,
PETG/6.0 wt.% Si3N4, PETG/8.0 wt.% Si3N4, PETG/10.0 wt.% Si3N4, and pure PETG,
were all tested for their tensile mechanical responses, and the results are presented in
Figure 8. In Figure 8a, the tensile stress curves are shown for all the prepared composites,
and in Figure 8b,c, the ultimate strength and Young’s modulus values are presented.
The PETG/6.0 wt.% Si3N4 composite exhibited the highest values, with a 24.5% ultimate
strength and an 18.3% Young’s modulus, higher than those of pure PETG.

All the prepared composites, namely, PETG/2.0 wt.% Si3N4, PETG/4.0 wt.% Si3N4,
PETG/6.0 wt.% Si3N4, PETG/8.0 wt.% Si3N4, PETG/10.0 wt.% Si3N4, and pure PETG were
also tested for their flexural mechanical responses, and the results are shown in Figure 9.
Figure 9a shows the flexural stress curves, while Figures 9b and 9c present the bending
strength and bending modulus values, respectively. PETG/6.0 wt.% Si3N4 showed the
highest values, with a 16.6% bending strength and a 16.8% bending modulus, constituting
higher values than those of neat PETG.
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Figure 9. Results for pure PETG and PETG/x wt.% Si3N4 (x = 2.0, 4.0, 6.0, 8.0, and 10.0 wt.%)
specimens about (a) flexural stress-to-strain graphs, (b) bending strength, and (c) bending modulus.

The results for the pure PETG, PETG/2.0 wt.% Si3N4, PETG/4.0 wt.% Si3N4, PETG/6.0
wt.% Si3N4, PETG/8.0 wt.% Si3N4, and PETG/10.0 wt.% Si3N4 specimens are shown in
Figure 10. Information regarding tensile toughness, Charpy impact strength, and M–H is
shown in Figure 10a, Figure 10b, and Figure 10c, respectively. In relation to the pure PETG
results, the composites with the highest values were PETG/6.0 wt.% Si3N4, exhibiting a
15.6% increase for tensile toughness; PETG/8.0 wt.% Si3N4, exhibiting an increase of 20.9%
with respect to the Charpy impact strength; and the PETG/10.0 wt.% Si3N4, exhibiting an
increase of 18.8% as to the M-H.
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derived from the (a) tensile toughness, (b) Charpy impact strength, and (c) M-H tests.

3.6. Electrical/Dielectric Characterization

The real part of the dielectric permittivity (ε′), the dissipation factor tan(δ), and
the real part of ac conductivity (σ′) as a function of the frequency of the PETG/Si3N4
nanocomposites with different filler content (0–10 wt.% Si3N4) are shown in Figure 11a–c.
The dielectric permittivity of pure PETG showed no considerable frequency dispersion
over the measured frequency range; that is, ε’ increases gradually from a value of 2.8 at
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4 MHz to 3.3 at low frequencies, in accordance with reported values in the literature [77].
The corresponding dissipation factor exhibits values lower than 0.04 over almost the entire
measured frequency range. A broad relaxation peak in the tan(δ) spectra was observed at
high frequencies, located at approximately 10 kHz. This high-f feature remained unaffected
by the addition of Si3N4 nanoparticles and can be attributed to the relaxation polarization of
the polymer matrix [78]. Furthermore, an additional feature developed at low frequencies
of approximately 2 Hz, which increased in intensity with an increasing filler content. This
low-f feature can be attributed to the interfacial polarization caused by the interaction
between the polymer matrix and conductive filler particles.
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factor tan(δ), and (c) the real part of ac conductivity (σ′) of pure PETG and PETG/x wt.% Si3N4

composites at filler proportions ranging from 2 to 10 wt.%. (d) DC conductivity (σdc) measured at
1 Hz and dielectric permittivity, ε∞ (measured at 1 MHz), as a function of Si3N4 content.

When the Si3N4 content was increased to 10 wt.%, we did not observe any significant
spectral changes in either the dielectric permittivity or the ac-conductivity representation
(Figure 11a,c). The permittivity values at high frequencies (ε∞) exhibited insignificant
changes, varying from 2.8. to 3.4, as shown in Figure 11d. The AC conductivity spectra of
the pure PETG and PETG/x wt.%Si3N4 nanocomposites show the characteristic behavior
of insulating materials such as polymers; that is, ac-conductivity scales with ω at high fre-
quencies. In the low-frequency range, a DC plateau began to develop, corresponding to the
DC conductivity values of the composites varying from 5 × 10−16 S/cm to 6 × 10−15 S/cm.
The variation in conductivity values measured at 1 Hz (dc-conductivity) with an increasing
filler content is shown separately in Figure 11d. The above observations suggest that the
overall electrical/dielectric behaviors of the PETG/x wt.% Si3N4 composites are mainly
determined by the properties of the polymer matrix.
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3.7. Analysis of Specimens through Micro Computed Tomography (µ-CT) Scanning

In Figure 12a, the dimensional deviation graphs of pure PETG, PETG/2.0 wt.% Si3N4,
PETG/4.0 wt.% Si3N4, PETG/6.0 wt.% Si3N4, PETG/8.0 wt.% Si3N4, and PETG/10.0
wt.% Si3N4 are presented. Figure 12b,c depict color-coded tensile stress test results for
PETG/2.0 wt.% Si3N4 regarding its dimensional deviation. Figure 12d shows A2N at a 95%
dimensional deviation for PETG/2.0 wt.% Si3N4, PETG/4.0 wt.% Si3N4, PETG/6.0 wt.%
Si3N4, PETG/8.0 wt.% Si3N4, and PETG/10.0 wt.% Si3N4 and pure PETG, among which
the value of PETG/6.0 wt.% Si3N4 was found to be 62.1% below the one corresponding to
pure PETG.
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Relevant information regarding the void compactness, sphericity, and diameter of
such characteristics for the various specimens is shown in Figure 13a for the pure PETG and
all PETG/x wt.% Si3N4 composites. The results for the PETG/6.0 wt.% Si3N4 composite
are illustrated in Figures 13b and 13c, respectively, in which they are color-coded regarding
voids, while the porosity percentages of pure PETG and the PETG/x wt.% Si3N4 with
x = 2.0, 4.0, 6.0, 8.0, and 10.0 wt.% composites are presented in Figure 13d. It can be
observed that the x = 4.0 wt.% Si3N4 composite presented the most promising results, being
48.5% lower than the value corresponding to pure PETG.
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3.8. Analysis of Specimens through Scanning Electron Microscopy

The mechanically tested specimens were subjected to SEM analysis, and relevant
images of their sides and fracture surfaces are shown in Figure 14. Figure 14a,d,g depict
the side surfaces of the pure PETG, PETG/4.0 wt.% Si3N4, and PETG/8.0 wt.% Si3N4,
respectively, magnified 150×, indicating good layering of the material without defects.
Figure 14b,e,h show the fracture surfaces of the pure PETG, PETG/4.0 wt.% Si3N4, and
PETG/8.0 wt.% Si3N4 specimens, respectively, magnified 30×, presenting a solid layering
with some voids. The same samples are presented in Figure 14c,f,i, where the fractured
surfaces are magnified 1000×, and their high quality can be observed and confirmed, as no
defects appear to be present.

Side surface images of a PETG/10.0 wt.% Si3N4 specimen can be observed in Figure 15a,b,
magnified at 30× and at 150× respectively, indicating great layer fusion. Figure 15c
shows an EDS mapping image, while Figure 15d–f present the fracture surface images
of PETG/10.0 wt.% Si3N4 at 30×, 1000×, and 30,000× magnifications, respectively. The
revealed structure was determined to be of high quality because the defects and voids
were minimal, except in the case of Figure 15f, where some areas showed uneven pieces
of material.
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Figure 14. Depiction of the surfaces of the pure PETG, PETG/4.0 wt.% Si3N4, and PETG/8.0 wt.%
Si3N4 samples through SEM, namely, (a,d,g) their side surfaces magnified 150×, (b,e,h) their fracture
surfaces at 30× magnification, and (c,f,i) their fracture surfaces at 1000× magnification.
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Figure 15. (a,b) Depiction of the PETG/10.0 wt.% Si3N4 sample’s side surface via SEM, magni-
fied at 30× and 150×, respectively; (c) EDS mapping picture of a chosen sample; (d–f) depiction
of the PETG/10.0 wt.% Si3N4 sample’s fracture surface via SEM, magnified at 30×, 1000×, and
30,000×, respectively.



Polymers 2024, 16, 1043 17 of 23

4. Discussion

The authors used a typical thermomechanical process for filament preparation, con-
stituting the standard in the industry for both pure polymeric materials and composites.
They chose to use this approach as it can easily be scaled up and industrialized. The
drying process was used to remove any remaining moisture from the atmosphere first from
the raw materials and the filament afterward. This is also a typical method and entails
removing moisture from the atmosphere. The production of the filament did not include
any solutions or other liquids that would need to be removed using filtration processes
afterward. Additionally, a thorough process was followed to ensure the quality of the pro-
duced filament, as presented in this manuscript. This included inspection of random parts
of the filament under a microscope to locate possible defects and qualitatively evaluate its
surface roughness, measuring its diameter, and finally conducting tensile tests to assess
its strength. In the mechanical tests, no high deviations were found between the samples,
indicating a similar composition and structure between the filament samples. The tensile
test results are comparable to those of the respective 3D printed samples, although such a
comparison cannot be considered reliable. The filaments were not tested according to a
standard, as the authors are not aware of such a standard for filament tensile testing.

The findings on the mechanical properties revealed reinforcement in relation to the
behavior of pure PETG, especially for a 6.0 wt.% Si3N4 filler percentage, which presented
the most enhanced properties among all the various composites synthesized. The dielectric
properties were examined, and the results suggested that the polymer matrix mainly
affected overall electrical behavior. The structures of the specimens were observed using
an electron microscope (SEM) at various magnifications. These SEM images show the very
good layering and inner structures of the various specimens, which were not negatively
affected by the addition of different filler percentages of Si3N4. The dimensional deviation
results were significant in the case of the 6.0 wt.% Si3N4 composite, while in the case of
4.0 wt.% Si3N4, the porosity percentage was the lowest among all the different composites
synthesized. The EDS analysis showed a relatively good dispersion of the additive, which
verified the excellent results for sample structure derived from the rest of the tests. On
the left side of Figure 16, the spider graph shows all the mechanical properties of the
PETG/x wt.% Si3N4 and pure PETG samples, whereas on the right side of Figure 16, the
mechanical properties are matched with the composites in which their greatest values
were detected. This enhancement in the mechanical properties can be attributed to the
interactions between the nanoparticles and the matrix as well as the restriction of polymer
chain mobility resulting from the nanoparticles occupying the spaces between them [79–81].

Regarding the physical properties, rheology was affected, as discussed. This has an
effect on the 3D-printed structure, which provides information for the optimization of
the 3D-printing settings for each composite to maximize mechanical performance. For
comparison purposes, this optimization was not performed in this study. Regarding the
brittleness of the samples, no large differences were found between the unfilled PETG and
the nanocomposites. The inspection of the fracture surfaces showed minimum deformation
in both the pure PETG and the nanocomposites. At the same time, the 3D-printed samples
failed at similar strain values for tensile strength. Only the higher-loaded samples failed at
lower strain values, revealing inferior mechanical strength. This can be attributed to the sat-
uration of the filler in the matrix, which negatively affects mechanical performance [79,82].

It is important to highlight that the scanning electron microscopy (SEM) images
displayed finely crafted surfaces and a uniformly distributed layering of the materials,
even after the addition of fillers. A few voids were detected, and any defects observed
were minimal in size. The incorporation of Si3N4 nanoparticles influenced the rheological
behavior of the PETG polymer, resulting in an overall increase in viscosity. The MFR
increased to 4 wt.% Si3N4 content in the composites and drastically reduced at higher
loadings. Despite these changes, there were no significant disparities in the quality of
the 3D-printed parts. The fusion of layers, as evidenced by the images of the lateral
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surfaces, appeared to remain intact, even for the higher-loaded nanocomposites, indicating
a consistent layer thickness.
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Inspection of the internal structure via micro-computed tomography (µ-CT) corrobo-
rated these findings. The addition of Si3N4 enhanced dimensional accuracy and reduced
the number of voids in the internal structure. Notably, nanocomposites with superior
mechanical performance exhibited fewer voids and better dimensional accuracy, implying
a correlation between printing quality and mechanical strength. This is in agreement with
the literature, which indicates that increased porosity negatively affects the mechanical per-
formance of 3D-printed parts [83,84]. In contrast, the addition of 4 wt.% composite showed
the minimum porosity among the samples tested, showing that other factors affected the
mechanical strength of the samples besides porosity. The 6 wt.% composite showed the
best dimensional accuracy among the samples assessed, which is an indication of good
3D-printing quality as well, showing that good 3D-printing quality positively affects the
mechanical performance of the 3D-printed parts.

The thermal property analysis indicated that there was a negligible impact of Si3N4
addition on the PETG response to high temperatures, confirming the safety of the tem-
perature levels used and the absence of thermal degradation. Tg increased only slightly
in the composites with higher filler loadings. SEM and energy-dispersive X-ray spec-
troscopy (EDS) did not reveal major particle clustering in the fracture surfaces, even in
the higher-loaded composites. No agglomerations were located in the nanocomposites
with lower Si3N4 content. Moreover, the mechanical tests revealed that the deviation
in results remained within acceptable limits, which suggests that the composition of the
nanocompounds was consistent across all the examined samples. Therefore, it is safe to
assume that a good dispersion of Si3N4 nanoparticles in the PETG matrix was achieved
using the process followed for the preparation of the nanocomposites. The raw material
mixing process and the filament extruder used, the latter of which is specially optimized
for material mixing, contributed to this result. Even the highest-loaded samples exhibited
slightly superior mechanical performance compared to pure PETG. A decreasing trend was
found, indicating possible saturation of the filler, although the saturation threshold of the
Si3N4 filler in the matrix was not precisely determined, as such information fell outside the
scope of this study.
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After reviewing the related literature, similar investigations were performed to exam-
ine Si3N4 as a filler and its reinforcing properties in nanocomposites. In ref. [85], Si3N4 was
employed as an additive in the matrix material of polypropylene (PP) to investigate its effect
on the mechanical and electrical properties of PP, as also observed in this study, in which
PETG was used as the matrix material. The results indicate an increase in impact strength
and a decrease in tensile strength, which is in disagreement with the tensile strength results
of the study. This behavior may be attributed to the different matrix materials used in
each study.

In another study [60], Si3N4 was added to two polymer matrix materials: high-density
polyethylene (HDPE) and polypropylene. The 3D-printed parts of the polymer–ceramic
material presented smooth surfaces without ledges or discontinuous areas, a result that
was also observed in the samples in this study. Moreover, the filler content of 10 wt.%
did not cause any remarkable reinforcement of the elastic modulus, and the critical strain
decreased. In ref. [42], biomedical-grade PLA with various filler loadings was employed as
a matrix material for Si3N4. A series of tests were conducted on the composites, indicating
an increase in flexural and tensile strength, as also observed in the present work. In
Table 3 below, a comparison of the effects of Si3N4 as a reinforcement agent on different
polymeric matrices is presented. As shown, there are differences in the performance of
Si3N4 as a reinforcement agent between the polymeric matrices, but overall, the results can
be considered comparable. Any differences can be attributed to the different polymeric
matrices used and the differences in the preparation process of the composites.

Table 3. Comparison with the literature regarding the findings on the effect of using Si3N4 as an
additive in polymeric matrices on mechanical properties.

Current Study [42] (PLA Matrix) [55] (ABS Matrix) [59] (PP Matrix) [85] (PP Matrix)

Impact strength increase 20.9% 30.2% Decrease 11.1% 25%
Tensile strength increase 24.5% 40.4% 25.6% 16% Decrease

Flexural strength increase 16.6% 33.2% 30.3% 15.7% -
microhardness 18.8% 20.9% 34.9% 33.6% -

5. Conclusions

Composites consisting of PETG and Si3N4 were synthesized in appropriate mixtures
and used to produce filaments suitable for the fabrication of various specimens using MEX
3D-P. Specifically, composites with 2.0, 4.0, 6.0, 8.0, and 10.0 wt.% Si3N4 filler quantities
were shaped into mixtures, filaments, and finally specimens. Samples originating from
the raw materials, the filaments, and the final 3D-P specimens underwent specific tests,
with the aim of investigating their properties and performance under specific conditions.
SEM was used to investigate the structures of all the specimens. An EDS analysis was
conducted to examine the chemical compositions of the composites and raw Si3N4 to
reveal the expected chemical elements, thus confirming the quality and homogeneity of
the prepared materials. The electrical and dielectric properties pertaining to BDS were
investigated. Raman spectroscopy, TGA, and differential scanning calorimetry (DSC) were
performed. The viscosities and MFR were also investigated. The tensile performance of the
filaments was tested. A similar experiment was performed on the specimens to determine
their flexural properties, Charpy impact strength, and microhardness. The dimensional
deviation and void percentages of the various samples were also examined.

The derived results revealed a remarkable enhancement in PETG/6.0 wt.% Si3N4 per-
formance for the majority of the properties. Additional work could include observing the
influence of different 3D-P settings on the performance of the samples. Thus, elucidating
the influence of 3D-P settings on the overall performance of the final products can have a
tremendous impact on the creation of various parts used in anti-ballistic protection [86], in-
cluding various armor parts used in personal protective gear, such as helmets, breastplates,
or joint protective gear for kneepads and elbows. All of the above can have a significant
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positive impact on the defense and security industry, revolutionizing applications and
reducing manufacturing costs significantly.
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