
Citation: Li, D.; Yu, L.; Lu, Z.; Kang,

H.; Li, L.; Zhao, S.; Shi, N.; You, S.

Synthesis, Structure, Properties, and

Applications of Fluorinated

Polyurethane. Polymers 2024, 16, 959.

https://doi.org/10.3390/

polym16070959

Academic Editor: Ru-Jong Jeng

Received: 12 March 2024

Revised: 30 March 2024

Accepted: 30 March 2024

Published: 1 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Synthesis, Structure, Properties, and Applications of
Fluorinated Polyurethane
Donghan Li 1,2,*, Lu Yu 1,2, Zhan Lu 1, Hailan Kang 1,2 , Long Li 1,2, Shufa Zhao 3, Ning Shi 1 and Shibo You 1

1 College of Materials Science and Engineering, Shenyang University of Chemical Technology,
Shenyang 110142, China

2 Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang University of Chemical Technology,
Shenyang 110142, China

3 Shenyang Guide Rubber Products Co., Ltd., Shenyang 110141, China
* Correspondence: lidonghan@syuct.edu.cn; Tel.: +86-159-0402-4628

Abstract: Fluorinated polyurethane (FPU) is a new kind of polyurethane (PU) material with great
applicational potential, which is attributed to its high bond energy C-F bonds. Its unique low surface
energy, excellent thermal stability, and chemical stability have attracted considerable research atten-
tion. FPU with targeted performance can be precisely synthesized through designing fluorochemicals
as hard segments, soft segments, or additives and changes to the production process to satisfy the
needs of coatings, clothing textiles, and the aerospace and biomedical industries for materials that are
hydrophobic and that are resistant to weathering, heat, and flames and that have good biocompatibil-
ity. Here, the synthesis, structure, properties, and applications of FPU are comprehensively reviewed.
The aims of this research are to shed light on the design scheme, synthesis method, structure, and
properties of FPU synthesized from different kinds of fluorochemicals and their applications in
different fields and the prospects for the future development of FPU.
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1. Introduction

Polyurethane (PU), i.e., polycarbamate (-NHCOO-), is a block polymer composed of
alternate soft (soft amorphous phase) and hard (hard crystalline phase) segments. PU is
synthesized via the stepwise polymerization of polyhydroxy polymers (polyol) and poly-
isocyanates [1,2]. The soft segments are flexible chain segments, accounting for ~50%–90%
of the total volume of the PU molecular chain. They are generally composed of polyester or
polyether polyols and have a random curve shape at room temperature (20 ◦C). The hard
segments are rigid chain segments, accounting for ~10%–50% of the total volume of the PU
molecular chain. They are generally composed of polyisocyanates, small molecule diols (as
the chain expander), and monohydric alcohols (as the capping agent). The high cohesion
energy of aryl and urethane groups promotes intermolecular hydrogen bonding, which
yields a rod shape of these hard segments at room temperature.

In addition, the thermodynamic incompatibility of the soft and hard segments in
PU causes their dispersion and aggregation to form a microphase separation structure.
This structure yields PU with unique mechanical and processing properties. Therefore, it
is widely used in various products, such as coatings, adhesives, elastomers, foams, and
leather [3].

PU was first synthesized by Otto Bayer [4] in the mid-1930s. Since then, it has been
further developed into various types, including thermoplastic PU, flexible PU, rigid PU,
and water-based PU. Thus, PU is one of the fastest developing and indispensable synthetic
polymer materials. In recent years, with the development of science and technology, the
weather resistance, corrosion resistance, degradability, and actual demand of PU under
harsh and complex conditions have increased.
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To mitigate these shortcomings, high-performance PU was synthesized by designing
a molecular chain structure by introducing nanomaterials or chemical groups, such as
polycarbonates and nitrogen-containing, phosphorus-containing, and fluorinated groups.
Such PU materials are typically known as nanomaterial-based PU, polycarbonate PU,
nitrogen-containing PU, phosphorus-containing PU, fluorinated PU (FPU), and polysilox-
ane PU [5–7].

Owing to its excellent chemical properties, fluorine has garnered considerable attention
for the synthesis and application of high-performance polymer materials, particularly PU.
The small atomic radius and high electronegativity of fluorine yields C-F bonds with a bond
energy as high as 485.67 kJ/mol, which is considerably higher than that of C-C bonds, which
is 332 kJ/mol [8,9]. The related constants of C, H, and halogen are shown in Table 1. When
fluorinated chain segments are introduced into PU, they migrate to the PU-air interface and
considerably reduce the surface-free energy of the material. The adjacent fluorine atoms
are distributed in a spiral along the carbon chain, playing a good shielding role for the
molecular chain. The as-obtained PU retains its mechanical properties and microphase
separation structural characteristics and attains high hydrophobicity, oleophobicity, thermal
stability, flame retardancy, and biocompatibility. This makes FPU stand out among other
modified PU materials; therefore, it is widely used in coatings, clothing textiles, and the
aerospace and biomedical fields [10,11]. FPU has garnered wide attention since it was
successfully synthesized using diisocyanate and fluor diol by Lovelace [12] for the first
time in 1958.

Table 1. Related constants of C, H, and halogen [8,9].

C H F Cl Br I At

Bond length
(×10−10 m) 1.70 1.2 1.35 1.85 1.96 2.16 -

Electronegetivity 2.55 2.10 3.98 3.16 2.96 2.66 2.20
Number of valence

electrons 2 1 5 5 5 5 5

Ionization energy
(kJ·mol−1) 1086.5 1319.85 1689.83 1257 1139.9 1008.4 890 ± 40

Electron affinity
(kJ·mol−1) 121.7 72.78 328.1 348.5 324.5 295.1 233

C-X bond length
(×10−10 m) 1.53 1.091 1.32–1.43 1.72–1.85 1.87–1.96 2.13 -

C-X bond energy
(kJ·mol−1) 332 416.90 485.67 326.80 276 240 -

Atomic polarizability
(α, cm3/10−24) 1.76 0.66 0.68 2.58 3.05 4.7/5.35 -

To explore new materials that are resistant to liquid oxygen and noncombustible in
pure oxygen, the Narmco Research & Department Division of the Whittaker Corporation
(Simi Valley, CA, USA) developed several types of fluorinated isocyanates, fluorinated
diols, polyesters, and polyethers in 1963, thereby expanding the applicability of FPU. To
promote the development of the space industry led by the National Aeronautics and Space
Administration, Minnesota Mining and Manufacturing, Dupont, the Ukrainian Institute
of Polymer Science of the former Soviet Union and other organizations subsequently
conducted more in-depth research on FPU. Furthermore, FPU has not only occupied a place
in modified PU but has also become an independent research direction of fluoropolymers.
(Figure 1 showed that schematic diagram of PU structure and migration of fluorinated
chain segments).
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Although FPU has been extensively studied, its applications have not been compre-
hensively reported. Herein, the synthesis, structure, properties, and applications of FPU 
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ture, and properties of FPU products and their applications in various fields. Moreover, 
the future development of FPU is prospected (Figure 2). 

 
Figure 2. The synthesis method of PU and the introduction method of the fluorinated chain segment 
of FPU and its application. (Image of the self-healing process of the FPU spline: reprinted with per-
mission from Ref. [13]. Copyright 2022, copyright Elsevier. Image of FPU coating and its model: 
reprinted with permission from Ref. [14]. Copyright 2022, copyright Elsevier. Image of the applica-
tion of FPU in rocket launches [15]. Image of FPU/PU composite fabric permeation and its prepara-
tion method: reprinted with permission from Ref. [16]. Copyright 2019, copyright SAGE). 

  

Figure 1. Schematic diagram of PU structure and migration of fluorinated chain segments.

Although FPU has been extensively studied, its applications have not been compre-
hensively reported. Herein, the synthesis, structure, properties, and applications of FPU
are comprehensively reviewed to highlight the design scheme, synthesis method, structure,
and properties of FPU products and their applications in various fields. Moreover, the
future development of FPU is prospected (Figure 2).
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Figure 2. The synthesis method of PU and the introduction method of the fluorinated chain segment
of FPU and its application. (Image of the self-healing process of the FPU spline: reprinted with
permission from Ref. [13]. Copyright 2022, copyright Elsevier. Image of FPU coating and its model:
reprinted with permission from Ref. [14]. Copyright 2022, copyright Elsevier. Image of the application
of FPU in rocket launches [15]. Image of FPU/PU composite fabric permeation and its preparation
method: reprinted with permission from Ref. [16]. Copyright 2019, copyright SAGE).
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2. Synthesis of Typical PU

PU is traditionally synthesized using polyisocyanates and polyols containing two or
more isocyanate groups [R-(N=C=O)n≥2] and a hydroxyl group [R-(OH)n≥2] via a polycon-
densation reaction. The synthesis involves a one-step method, a prepolymer method, and
a semiprepolymer method. The one-step method involves the continuous processing of
synthetic raw materials in proportion to a mixing reaction or chemical reaction process. The
one-step method is simple, but the heat release is concentrated, and the resulting material
strength is slightly lower than that obtained using the prepolymer method.

In the prepolymer method, oligomer polyols and excessive amounts of polyisocyanate
undergo a mixed reaction to produce PU prepolymers with low molecular weights and
regular structures in the presence of chain extenders as the curing agent. The semiprecursor
method was developed based on the aforementioned reaction, in which certain amounts
of oligomer polyols and polyisocyanates are synthesized into a semiprepolymer. The
remaining oligomer polyol is then mixed with the chain extenders, which then reacts with
the semiprepolymer to form PU. Moreover, several methods, such as emulsification and
self-emulsification (acetone, prepolymer dispersion, molten dispersion, ketoimine, and
ketoazine), are used for synthesizing waterborne polyurethane (WPU). The properties of
PU mainly depend on the types of polyisocyanates and polyols used for its synthesis. In
this block polymer, the polyisocyanates and chain extenders form the hard segments, which
yields the strength and hardness to the PU. The oligomer polyols, with a weak polarity,
forms soft segments, which yield the elasticity and low-temperature properties of the PU.
PU with different functions can be designed and synthesized simply by changing the
content and synthetic raw materials used for synthesis, such as polyisocyanates, polyols, or
additives. The components of PU and their roles are shown in Figure 3 [17–19].
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2.1. Hard Segments

Hard segments usually affect the mechanical properties of PU, particularly its tensile
strength, tear resistance, and hardness. Polyisocyanates and chain extenders are tradition-
ally used as the main raw materials for synthesizing the hard segments in PU.
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2.1.1. Isocyanates

In 1849, the German chemist A. Wurzt prepared alkyl isocyanate via the metathesis of
alkyl sulfate and potassium cyanate for the first time but did not find its suitable use, and in
1869, Gentier performed a preliminary determination of the isocyanate structure. In 1884, W.
Hentschel produced isocyanates by reacting amines or (amine) salts with phosgene, which
laid the foundation for industrial development. Isocyanates can be synthesized via Hoffman
rearrangement, Curtius rearrangement, and Lossen rearrangement reactions [20,21].

The isocyanates used for PU synthesis are mainly aromatic, aliphatic, and alicyclic
structures. Toluene-2,4-diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexam-
ethylene diisocyanate (HDI), xylene diisocyanate (XDI), isophorone diisocyanate (IPDI),
p-phenylene diisocyanate (PPDI), and tetramethyl-xylylene (TMXDI) are the most com-
monly used isocyanates; their structures are shown in Table 2. Aromatic isocyanates have a
higher reactivity than that of aliphatic and alicyclic isocyanates. Due to the presence of a
rigid aromatic ring, the hard segments have a higher cohesive energy but weak oxidation
and UV resistance. These segments easily turn yellow and affect the aesthetics of materi-
als. Thus, the types and content of polyisocyanates considerably impact the properties of
PU [22–25].

Table 2. Commonly used isocyanate structures and their corresponding PU product features [22–25].

Code Structure -NCO Content% Product Features

TDI
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Code Structure -NCO Content% Product Features 

TDI 

  

48.2 Good thermal stability 

MDI 
 

33.5 
Good thermal stability  

Good moldability 
Good mechanical properties 

HDI  49.7–49.5  

Good mechanical properties 
Good chemical resistance  
Good weather resistance 

Good adhesion 

XDI 
 

44 Good light stability 

IPDI 

 

37.5–37.8 
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PPDI 
 

52.5 
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52.5
Good moisture resistance

Good heat resistance
Good oil and tear resistance

TMXDI
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Liu et al. [26] synthesized a series of PU materials with different hard segments
from MDI, TDI, and HDI using the prepolymer method, and their microphase separation
structures and properties were analyzed. The results show that the PU synthesized from
flexible the aliphatic isocyanate, HDI, had a higher degree of phase separation, whereas
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that synthesized from the rigid isocyanate, TDI, had a lower degree of phase separation
and better mechanical properties. However, excessive amounts of hard segments will affect
the heat resistance of PU. Additionally, due to the strong micro-orientation ability of the
PU synthesized using MDI and the high two-phase mixing degree, its tensile strength can
reach up to a maximum of 26.8 MPa. The reactivity of the MDI-based PU is higher than
that of the TDI-based PU, because the two -NCO groups in MDI are far apart, without any
substituents nearby and are very active. If one of the -NCO group reacts, the other -NCO
group still retains its high activity [27].

2.1.2. Chain Extenders

Chain extenders (chain growth agents) are the most commonly used curing agents
for PU synthesis and play an important role in the structure and morphology of the
finished product. During PU synthesis, the chain extenders react vigorously with the
-NCO group to form high concentrations of carbamate groups that form hard and stiff
polymers. They also regulate the reaction rate of the system [28,29]. Furthermore, suitable
chain extenders can improve the heat, chemical, and weather resistance of PU. They are
mainly categorized as diols and diamines. Diols such as 1,4-butanediol (BDO), ethylene
glycol (EG), diethylene glycol (DEG), and hydroquinone bis(2-hydroxyethyl) ether (HQEE)
have lower molecular weights than PU prepolymers and a higher reactivity with the
-NCO group. Carboxylated diols with hydrophilic groups can be used to synthesize
WPU. 3,3′-dichloro-4,4′-diphenylmethane diamine (MO-CA) and diethyltoluenediamine
(DETDA) are commonly used diamine chain extenders. They rapidly react with the -NCO
group and are difficult to control; however, the as-synthesized PU has good mechanical
properties. Notably, water is also a special chain extender. The hydrogen atom in the water
molecule reacts with the -NCO group to form substituted urea, which is equivalent to a
dual-functional chain extender. Thus, during PU synthesis, the moisture content of raw
materials must be strictly controlled. However, when EG is used as the chain extender and
if the hard segment content is considerably high, the as-derived biphenyl compounds are
prone to degradation [27,30–32].

2.2. Soft Segments

Soft segments usually affect the mechanical properties and thermal properties of
PU, particularly its elasticity and low-temperature performance. Polyols (oligomers) are
generally used as an important raw material for the synthesis of PU soft segments.

Polyols

Alcohols that contain two or more hydroxyl groups are called polyols. They can also
contain functional groups such as esters, ethers, amides, acrylics, and metals [33]. Polyols
usually act as soft segments and are used to synthesize PU components, which include
polyether polyols; polyester polyols; and other oligomer polyols, such as polyolefin polyols,
vegetable oil polyols (castor oil, castor oil-derived polyols, soybean oil polyols, palm oil
polyols, and tall oil, etc.) [34–36], and rosin ester polyols, can also be used for synthesizing
PU components. Their number-average molecular weight (Mn) is usually between 500 and
6000. Polyether polyols are generally prepared via the ring-opening homopolymerization or
epoxy monomer copolymerization of the initiator (polyhydroxy, primary amine compounds
or alcohol amines) with ethylene oxide (EO), propylene oxide (PO), butylene oxide (BO), etc.,
under the action of a catalyst [37,38]. Poly propylene glycol (PPG), poly-tetrahydrofuran
glycol (PTMG), tetrahydrofuran propylene oxide copolymer glycol, and polyether polyols
are commonly used polyether polyols. As the polyether-type PU has ether groups that
rotate easily, compared with the polyester-type PU with relatively unstable ester groups
in their molecular chain, they have a higher low-temperature flexibility and hydrolysis
resistance. Polyester polyols are usually prepared via the condensation reaction of organic
dicarboxylic acid (anhydrides or esters) and diols (including polyols). As their molecules
contain a large number of ester groups, they have a stronger intermolecular bonding and
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higher cohesive energy (12.2 kJ/mol) than the ether groups (4.2 kJ/mol). The resulting soft
segments also have strong intermolecular force, and the ester groups can form hydrogen
bonds with the urea ester in the hard segments, promoting the mixing of the soft and
hard segments. Polyester polyols have a stronger adhesion to polar substrates and higher
viscosity than polyether polyols. The as-synthesized PU also have better mechanical
properties. Polycaprolactone polyol, polycarbonate diol, conventional polyester polyol,
and modified polyester are commonly used polyester polyols. The reaction mechanism of
isocyanates with alcohols is shown in Figure 4. The oxygen atom in the alcohol acts as a
nucleophile and attacks the carbon atom in the isocyanates, causing a nucleophilic-addition
reaction. The resulting product undergoes an intramolecular proton transfer to form
an imine acid intermediate, which then undergoes tautomerization to form a carbamate
structure [27,39,40].
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Although typical PU has a high mechanical strength, high elastic modulus, and high
abrasion resistance, the enrichment of polar groups (hydrophilics) on its surface leads to
poor weather resistance as well as humidity and heat resistance, which limit its applicational
range. Therefore, new PU materials with enhanced properties have been synthesized via
the route of a molecular chain structure design. Since this development, FPU has stood out.
The introduction of fluorinated chain segments retained the original excellent performance
and microphase separation structure characteristics of PU and endowed PU with excellent
hydrophobicity, weather, heat, and flame resistance, and good biocompatibility. Therefore,
FPU has currently become a research hotspot [41–43].

3. Design and Synthesis of FPU

Since 1958, when Lovelace [12] (UK) first synthesized and patented FPU from diiso-
cyanate and fluorinated glycol, FPU have been studied extensively by researchers in various
fields. Up to now, FPU with targeted performance can be synthesized precisely by design-
ing fluorochemicals including fluorinated isocyanates, fluorinated capping agents, and
fluorinated chain extenders as hard segments; fluorinated polyester polyols and fluorinated
polyether polyols as soft segments; and fluorinated acrylate as additives. The methods of
introducing fluorinated chain segments and their corresponding product characterization
are shown in Table 3 [44–46].

Table 3. Methods of introducing fluorinated chain segments and their corresponding product
characterization.

Fluorochemical Characteristics Ref.

Fluorinated isocyanates Difficult to synthesize;
high cost [27,44]

Fluorinated capping agents Low fluorine content;
the modification effect is not obvious [47]
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Table 3. Cont.

Fluorochemical Characteristics Ref.

Fluorinated chain extenders
Excellent water resistance,

flame retardancy,
and thermal stability

[48,49]

Fluorinated polyester polyols High surface energy;
unsatisfactory water resistance [50]

Fluorinated polyether polyols Excellent hydrophobicity;
excellent hydrolytic stability [51]

Fluorinated acrylate-non-
copolymerization

Large core-shell dispersion in PU emulsions;
poor emulsion stability [46]

Fluorinated
acrylate-copolymerization

Excellent water resistance and
thermal stability;

good mechanical properties
[46]

3.1. Design of Fluorochemicals as Hard Segments

The fluorochemicals designed and synthesized for the hard segments of FPU mainly
include fluorinated isocyanates, fluorinated capping agents, and fluorinated chain exten-
ders [47].

3.1.1. Fluorinated Isocyanates

Although there are industrial products of fluorinated isocyanates, their synthesis cost
is high, the types are few, the preparation process is complicated, and the flexibility of the
finished FPU product is poor, which leads to a great limitation in applications.

In 1967, Hollander et al. [52], of Narmco R&D, first used hexafluoropentanediamine,
hexafluoropentamethylene bischloro-formate, and tetrafluoro-phenylene bischloroformate,
etc., as raw materials to separately synthesize six kinds of fluorinated diisocyanates, which
included perfluorotrimethylene diisocyanate, hexafluoropentamethylene diisocyanate, and
perfluoroglutaryl diisocyanate, etc., (Figure 5a). They were, respectively, used as fluoro-
chemicals to synthesize FPU, but the results show that this kind of FPU has poor flexibility,
low solubility, and only one type of the FPU could reach a thermal decomposition tempera-
ture of 300 ◦C (about 20 ◦C higher than typical PU), and the rest of the FPU showed a lower
thermal stability than typical PU, which makes it difficult to be widely used in industrial
production. To improve the problem of poor solubility, Lim [53] first used N-Ethyl-N-2-
hydroxyethyl-per-fluorooctanesulfonamide and tris(6-isocyanatohexyl) isocyanurate to
synthesize fluorine-modified diisocyanate. On this basis, anionic waterborne fluorinated
polyurethane (WFPU) was synthesized by the direct dispersion method, and the results of
this performance study show that the particle size of the WFPU increased from 174.3 nm to
239.7 nm with an increasing fluorine content. This may have been due to the fact that the
increase in the amount of fluorinated isocyanate leads to stronger rigidity, and the increase
in the viscosity of the liquid is not conducive to the fragmentation of the dispersed phase.
The particle size of the WFPU decreased from 269.8 nm to 81.7 nm with an increasing
neutralization degree. This was due to the increase in the number of hydrophilics in the
WFPU with an increase in the neutralization degree.

For the FPU synthesized by the above method, its fluorinated chains are immobilized
in the main chain of the macromolecule, which may lead to an undesirable surface enrich-
ment of fluorine and a limited migration freedom. Additionally, the shorter fluorinated side
chains (CnF2n+1 (n ≤ 3)) cannot be well-oriented, and the FPU performance improvements
are further limited. In this context, Wen [54] first used 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-
1-octanol and a hex-amethylene diisocyanate trimer to synthesize a fluorinated isocyanate
trimer (Figure 5c). A series of WFPU with both flexible spacer layers and long fluorinated
side chains were synthesized as hard segments by the prepolymerization method, and
the effects of the fluorine content and fluorinated side chains on the properties of WFPU
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were investigated. The results show that with the growth in the length of the fluorinated
side chains and the increase in the dosage of the home-made fluorinated isocyanate trimer,
the hydrophobicity of the WFPU gradually increased and the water resistance gradually
decreased. The contact angles of water and methylene iodide can be up to 121.8◦ and
90.7◦ respectively, and the lowest surface tension was 12.2 mN·m−1. The surface tension
decreased, resulting in easy spreading. There was an increase of up to 20.9 ◦C in the
initial decomposition temperature (temperature at 5% and 10% mass loss) compared with
typical PU. The tensile strength decreased from 18.0 MPa to 5.8 MPa, and the elongation
at break increased from 552.0% to 1220.1%. This may have been due to the plasticization
of long fluorinated side chains, which disrupts the interaction between macromolecules.
In general, by controlling the dosage of fluorinated isocyanates, it is possible to obtain an
FPU with a low surface-free energy and great wetting ability. Figure 5b showed that a
digital photograph of the FPU coating synthesised by Yang [55] with fluorinated isocyanate
after many days of immersion in the Yellow Sea and the anti-cavitation mechanism of
the coating.
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Figure 5. (a) Structure of six kinds of fluorinated diisocyanates [52]. (b) Digital photos of panels coated
with FPU after static immersion in Yellow Sea for multiple days, and anti-cavitation mechanism
diagram of FPU coating. (Reprinted with permission from Ref. [55]. Copyright 2021, copyright
Elsevier). (c) Schematic diagram for the synthesis of WFPU [54].
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3.1.2. Fluorinated Capping Agents

Fluorinated capping agents are primarily fluorinated monohydric alcohols with a low
molecular weight and low surface energy. When introduced as hard segments into FPU,
fluorinated capping agents rapidly migrate towards the polymer-air interface because of
their terminal position. As a result, the fluorinated groups are anchored on the surface
of the FPU, enhancing its surface properties while maintaining the original microphase
structure of the PU. This allows for improved surface characteristics without compromising
the material’s high mechanical strength [56]. However, there are reports [57] showing that
its modified effect is not obvious due to the lower fluorine content, and until now, little has
been reported on the effects of fluorinated capping agents on the performance of FPU.

Lahiouhl et al. [58] found that when the fluorinated chains are located in the side
chain of the compound, its surface properties are significantly improved. Zhu [59] used
monofunctional perfluorinated oligomers with fluorinated groups in both main and side
chains (fluorinated monohydric alcohols FPOL, CF3CF2CF2O(CFCF3CF2O)2CFCF3CH2OH
with a y-shaped structure), which were synthesized as capping agents with MDI and
poly (ether glycol) (PEG) to form a telechelic FPU capped with perfluorinated polyether
chains. The tests showed that unlike the main-chain FPU, perfluoropolyether-capped
FPU have better flowability, and the fluorinated groups have a higher mobility. The
hydrophobicity of the telechelic FPU significantly improved when the water contact angle
increased from 85◦ to 113◦, and its static water contact angle is comparable to that of pure
polytetrafluoroethylene. Additionally, the perfluoropolyether chain segments can disrupt
main-chain stacking and can the increase crystallization barrier; however, it will not affect
the original microphase separation structure of PU. Under the same weight loss rate, the
thermal decomposition temperature of FPU is about 15 ◦C higher than that of typical PU.
This is due to the hydroxyl group at the end of the molecular chain of PU, which can break
the urethane bond during the reaction process through inter- or intramolecular reactions,
resulting in chain breakage(Figure 6b), and the introduction of fluorinated end-groups
replaces the original end-hydroxyl groups, so that FPU shows better thermal stability.
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(b) Decomposition mechanism of PU [59]. (c) The position of fluorinated groups in FPU. (Reprinted
with permission from Ref. [61]. Copyright 2014, copyright Springer).
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Figure 6a showed that a schematic diagram of Kim’s [60] synthesis of a one-pot coat-
able FPU with a fluorinated capping agent and the antifouling test by immersion in dyed
water: bare substrate and FPU; Figure 6c showed that the position of fluorinated groups in
FPU synthesised by Wang [61] with fluorinated capping agents. Table 4 showed that the
commonly used fluorinated capping agents for synthesizing FPU and their applications.

Table 4. Commonly used fluorinated capping agents for synthesizing FPU and their applications [62].

Fluorinated Capping Agents Applications

F(CF2)nOH (n = 6~12) Hydrophobic, oleophobic, and anti-adhesion fabric finishes

F(CF2CF2)nCH2CH2OH (n = 3~7) Hydrophobic, oleophobic, and anti-adhesion fabric finishes
Emulsion polymers

F(CF2CF2)nCH2CH2SH Hydrophobic and oleophobic fabric finishes
C7F15CH2OH Rigid insulating foam

HOCH2CF2CF2OCF(CF3) CF2OCF2=CF Elastomer
C6F13(CH2)2S(CH2)3OH Fiber cladding material

3.1.3. Fluorinated Chain Extenders

The design and synthesis of FPU hard segments based on fluorochemicals are most
commonly in the form of fluorinated chain extenders, and the main types primarily en-
compass small molecular fluorinated diols/fluorinated diamines. The FPU synthesized
in this manner exhibits enhanced water resistance, flame retardancy, and thermal stability
compared to unmodified PU [49].

Chen [63] used 2,2,3,3,4,4,5,5- octafluoro-1,6-hexanediol (OF) and 2,2,3,3-tetrafluoro-1,4-
butanediol (TF) as chain extenders for polycondensation with HDI and poly-tetramethylene
oxide (PTMO) to synthesize aliphatic FPU. By comparing this with FPU synthesized
by BDO as the chain extender, the results show that elemental fluorine increases wa-
ter resistance to some extent. The water contact angle of the OF type increased from
57.3 ± 2.2◦ to 59.7 ± 2.3◦ compared to the BDO type, and more fluorocarbon chains also
significantly reduced the degree of platelet adhesion and platelet activation on the FPU
surface. The synthesis of FPU using fluorinated diamines as chain extenders is scarcely
reported in the relevant literature, and to fill the relevant theoretical gaps. Xu [64] used
2-chlorobenzotrifluoride and bisphenol A as raw materials and a home-made fluorinated di-
amine chain extender bis [4-(4-amino-2-trifluoromehyloxyphenyl)phenyl]propane (BAFPP)
and used them to synthesize a series of FPU with different fluorine contents(Figure 7a).
The results show that with an increase in the fluorine content, the water contact angle
of the FPU increased from 67.3◦ to 86.2◦ and the water absorption decreased from 3.0%
to 2.2%. The improvement in hydrophobicity and water resistance was attributed to the
low surface-free energy of the fluorinated groups, which migrate and concentrate at the
outermost interface of the polymer during synthesis. The peak heat release rate of the FPU
synthesized on the basis of the chain extender TF was 282.9 W/g, which was much lower
than the value of 537.2 W/g for ordinary PU, showing good flame retardancy. In terms
of thermal stability, the thermal decomposition temperature of FPU is about 20 ◦C higher
than that of PU at a 10% weight loss, which was attributed to the strongly polar -CF3 in the
molecular chain, which requires more heat to break the polar bonding, and the strong polar
bonding contributes to the microphase separation of the soft and hard segments of FPU,
which has better thermal stability.
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Xu [66] synthesised a novel triazine-based fluorinated diol CC-F.Subsequently, a series
of WFPU (CC-FPUF-n) were synthesized using CC-F as the chain extender, and the synthetic
schematic diagram is shown in Figure 7c. Figure 7d showed that a schematic illustration of
fabricating SiO2 FPU superhydrophobic coatings summarised by Jiang et al. [67].

However, the fluorinated groups of the FPU synthesized in the above method exist in
the main chain of the FPU. Although this can obviously improve the overall performance
of the FPU, due to the restriction of the migration of the fluorinated groups, it is difficult to
efficiently reduce the surface-free energy, and the performance of water and oil resistance
will be affected. Owing to the excessive hydrophilic groups, the hydrophobicity of WPU
is relatively poor, which limits its applicational scope. On this basis, Wu [68] synthesized
a novel fluorinated chain extender (Figure 8a), which was dihydroxy-capped and which
could introduce fluorinated groups as side chains into the WFPU by reacting 3-mercapto-1,2-
propanediol (TPG) and 1,1,2,2-tetrahydroperfluorodecyl methacrylate (FDMA) in a simple
and effective thiol-alkene click chemistry. Dedicated -NCO-terminated WFPU prepolymer
tests have found that the water contact angle of WFPU increases from 67◦ to 104◦ with
an increasing fluorine content, significantly improving the hydrophobicity of it, which is
attributed to the migration of the fluorine groups to the interface, reducing the surface-free
energy; however, due to the low dissociation energy of the introduced C-S bond, the thermal
stability of WFPU is slightly decreased. In response to unsatisfactory thermal stabilization,
Li et al. [65] applied a simple synthesis method to combine pentadecafluoro-octanoyl
chloride and 2-Amino-2-methyl-1,3-propanediol into a novel long-segment side-chain
fluorinated chain extender (AMPF) (Figure 7b). Subsequently, an environmentally friendly
waterproof and breathable FPU membrane was synthesized by the prepolymerization
method. The results of structural and performance studies show that the introduction of
fluorine promotes the microphase separation of the soft and hard segments of FPU, and the
tensile strength increases by approximately 28 MPa. As the fluorine content increases, the
FPU membrane changes from hydrophilic (77.8 ± 2.7◦) to hydrophobic (95.2 ± 2.1◦), and
the heat resistance improves by about 5% compared to ordinary PU.
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Additionally, extending the length of the fluorinated group of the chain extenders is
to advantageous for the thermal stability of FPU; a longer length of the fluorinated group
would enhance the incompatibility of soft segments with hard segments, which would
thus contribute to the microphase separation of FPU by hard-segment aggregation, thus
requiring more heat to destroy the strong polar bonding.

Shi et al. [69] used home-made N-[2-[(2-hydroxyethyl) amino]ethyl]-perfluoroalkyl
ether carboxylamide (Fpn-AEE) together with BDO as chain extenders (Figure 8b), and a
series of novel environmentally friendly FPU were synthesized by the prepolymerization
method. The surface and thermal properties were studied. The results show that the
water contact angle of the FPU increased from 81◦ to more than 120◦ with an increase
in the fluorinated dibasic diol ratio. The contact angle of tetradecane increased rapidly,
and an excellent hydrophobic effect could be obtained. In addition, the introduction
of fluorinated dibasic diols can lower the glass transition temperature of PU, and the
microphase separation of the soft and hard segments of the PU is more obvious. Within a
certain range, the decomposition temperatures of the Tsmax and Thmax of the soft segments
and hard segments of FPU can reach 422 ◦C and 353.5 ◦C, respectively, which are higher
than those of typical PU (33.7 ◦C and 26.5 ◦C), and this can significantly improve the
thermal stability of FPU. However, the rigid groups may hinder the movement of hard
segments, and the accumulation of hard segments is low, resulting in the lower thermal
stability of MDI-type FPU than those of the HDI-type, and this study contributes to the
development of FPU for practical applications.

3.2. Design Fluorochemicals as Soft Segments

The fluorochemicals designed and synthesized for the soft segments of FPU mainly
encompass semi-fluorinated polyester polyols, semi-fluorinated polyether polyols, per-
fluorinated polyether polyols, or conventional polyether/polyester blends via the above
fluorochemicals [70–72].
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3.2.1. Fluorinated Polyester Polyols

Fluorinated polyester polyols are easy to hydrolyze under acidic and alkaline con-
ditions due to the high surface energy of the ester group -COO-, so it does not improve
the overall performance of PU, and the hydrophobicity and oleophobicity are much lower
than polyether-type PU. In addition, owing to the high viscosity of the polyester polyols,
their miscibility with other components during the synthesis process is poor, resulting in
greater synthetic difficulties, so there are few reports on it. Polyester diols are generally
prepared from small molecules of fluorinated diols with non-fluorinated dichloride and
are then reacted with diisocyanate to synthesized FPU. It is important to note that when
the halogen content in FPU is too high, it may be difficult to cure due to the high spa-
tial potential resistance. Reaction of poly (hexafluoro-penta-methylene adipate) and poly
(hexafluoropenta-methylene malonate) with 2,4-TDI is shown in Figure 9a.
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Tamareselvy [50] used home-made 3-fluorophthalic anhydride, 1,2-propanediol (BDH)
and BDO to prepare fluorinated polyester glycol (Figure 9b), and a series of polyester-type
FPU were synthesized by reacting them with TDI and HDI, respectively. Their thermal
stability, alkali resistance, hydrolytic stability, and hot melt adhesion with chlorinated
and non-halogenated analogues were compared. The results show that all types of FPU
have an increased onset decomposition temperature of more than 50 ◦C compared to
typical PU, and tetra-halide PU has a better thermal stability than that of mono-halide PU.
The hydrolytic stability of FPU is far superior to that of ordinary PU, which hydrolyzed
to varying degrees only after 10 days in a 10% NaOH solution, but is poor relative to
chlorinated PU. In addition, FPU shows the highest adhesion, and its peel strength can reach
1.68 × 106 N·m−2. Therefore, FPU has a certain potential for application in related fields.

3.2.2. Fluorinated Polyether Polyols

Due to the low cohesive energy of the ether bond in the structure and being easy to
rotate, polyether polyols can reduce the viscosity of the system and are more easily miscible
with other components. This product has good low-temperature flexibility and hydrolysis
resistance, compared with polyester-type PU that contain unstable ester groups, and it has
better thermal stability and is commonly used in the synthesis of high-performance PU
coatings [51].

In the early stages, fluorinated polyether polyols were mainly prepared from 1,2 epoxy
fluorinated compounds, as in, for example, the anionic- and cationic-initiated polymer-
ization of 3,3,3-trifluoro-1,2-epoxypropane and its reaction with isocyanates to synthesize
polyether FPU [73]. After Ausimont [74] first synthesized perfluoropolyether (PFPE) gly-
cols (industry-named FomblinZ-DOL(HOCH2CF2O(CF2CF2O)p(CF2O)qCF2CH2OH) and
FomblinZ-DOLTX(H(OCH2CH2)nOCH2CF2O(C2F4O)p(CF2O)qCF2CH2O(CH2CH2O)nH)),
PFPE has been widely studied for its low surface energy, glass transition temperature, ex-
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cellent thermal stability, and ability to enhance the multi-phase structure of cross-linked
polymers, which significantly improve the service life of PU. Turri [75] used a ZDOL-type
perfluoropolyether glycol (Mn = 1000–2000), bis (hydroxymethyl)propionic acid (DMAP),
and IPDI as raw materials, and an anionic monomeric block-type WFPU (Figure 10a) was
synthesized by the prepolymerization method. The results of this study show that most
perfluoropolyether dispersions are stable for more than 12 months. Although perfluo-
ropolyether itself is soft, high modulus membranes can be obtained due to the efficient
phase separation of PU, and the lower the molecular weight, the higher the elastic modulus.
Furthermore, WFPU basically shows a fully fluorinated surface, which provides the possi-
bility of introducing a large number of fluorinated chain segments into WPU to improve
the performance at a later stage. The process of synthesis of FPU from fluorinated polyether
by Jia [76] and its water contact angle and SEM schematic are shown in Figure 10b.

AFM analyses of the microphase separation structure of polyether-type FPU (Figure 10c)
were performed by Liu [7] and Król [77] modelled the glass transition temperatures of
polyether-type FPU (Figure 10d).

Because most fluorinated coatings with excellent properties contain long perfluo-
roalkyl chains (CnF2n+1, n = 6–10), there are problems, such as bioaccumulation and toxicity
in nature, which have limited their use in the international community, and there is an
urgent need to find alternatives. Based on this, Zhu [78] used the ring-opening polymeriza-
tion of epoxy-butane to synthesize polyether diols containing CF3CF2CH2- and (CF3)2CH-.
Two kinds of WFPU containing novel fluorinated short alkyl chains were synthesized by
a reaction with IPDI. The results of this study show that the water contact angles of the
two different FPU on the treated fabrics were 132◦ and 146◦, which were almost superhy-
drophobic. The FPU containing linear CF3CF2CH2- showed better hydrophobicity and
was promising as a new raw material to replace the long perfluoroalkyl side chain in the
synthesis of fluorinated coatings.
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Figure 10. (a) Chemical structure of anionic polymer−repeating units of WFPU [75]. (b) (1) Schematic
of the synthesis of polyether−type FPU; (2) Contact angle photographs of FPU elastomers with
different fluorine contents to water and glycerol; (3) SEM plot of its variation with fluorine content.
(Reprinted with permission from Ref. [76]. Copyright 2015, copyright Springer). (c) The reaction
formula of fluorinate polyether diol and the AFM images of the microphase separation of FPU
(observation domain: 20 mm). (1) PFGE/PBA (100/0); (2) PFGE/PBA (70/30); (3) PFGE/PBA (50/50).
(Reprinted with permission from Ref. [7]. Copyright 2020, copyright Elsevier). (d) Simulation of the
glass transition temperature of polyether−type FPU [77].

To improve the comprehensive performance of FPU, the molecular chain of its soft
segments can be designed to have both ether and ester bonds, and this new type of FPU
can combine the advantages of polyester-type PU and polyether-type PU. Liu [7] first
self-synthesized a fluorinated polyether diol (PFEG) to improve the mechanical properties.
Polybutylene adipate (PBA) and PFEG were used together as soft segments, and a series
of thermoplastic FPU were synthesized by the prepolymerization method, and the effects
of the mass ratio of the soft segments and mass fraction of the hard segments on the
mechanical properties of FPU were also investigated. The results show that as the ratio
of the PFEG/PBA decreased, the elongation at break of the FPU increased from 89.1%
to 634.3%, and the tensile strength increased from 6.61 MPa to 14.33 MPa. However, as
the content of the hard segments increased, the tensile strength tended to increase and
then decrease, and as the fluorine content increased, the heat loss peak of the FPU shifted
towards higher temperatures.

3.3. Fluorinated Additives

With the iteration of FPU synthesis technology, which is different from traditional
synthesis methods, the design and synthesis of FPU based on fluorinated additives mainly
applies fluorinated acrylate to WFPU. The performance of acrylate has good complemen-
tarity with PU. Typical WPU often contains more hydrophilic groups, resulting in a higher
surface energy. Fluorinated acrylate can significantly enhance the water and oil resis-
tance, anti-adhesion, and other characteristics of PU [79–81]. In addition, the method
of synthesizing FPU has practical flexibility because of the wide variety of fluorinated
acrylates that can be synthesized relatively easily. The methods for synthesizing FPU from
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fluorinated acrylates can be classified into non-copolymerization and copolymerization
methods. Among these, the non-polymerization method first synthesizes PU precursors
containing hydrophilic groups and then uses an initiator to swell the fluorinated acrylate
containing hydrophobic chain segments from the outside of the PU to the inside, initiating
the polymerization reaction; however, in most products, PU and fluorinated acrylates exist
independently of each other, and there is large core-shell dispersion and poor emulsion
stability in WFPU. The copolymerization method can fully compensate for the shortcom-
ings of the non-polymerization method, so that the core-shell cross linked structure of
WFPU, which gives full play to the advantages of the monomer, limits the ability of chain
segments to move, and the tensile strength and thermal properties of the material are
further improved, and the film formation is more uniform. Therefore, it is the most widely
used method to synthesize FPU from fluorinated acrylates [82–84].

Ionized double-bond capped PU macromolecules were first introduced as emulsifiers
by Jiang [85] and then were self-emulsified by the copolymerisation method. It was used
with hexafluoro-butyl acrylate to synthesize WFPU (Figure 11a). The results of this study
show that the fluorine content of WFPU synthesized by self-emulsifying copolymerization
has little effect on the particle size and surface charge and is suitable for the synthesis
of a WFPU with a high fluorine content. The relatively regular microphase distribution
appeared on the surface of the WFPU, and the contact angle test showed that the surface
tension of the WFPU decreased significantly. However, with the deepening of research,
conventional copolymerization methods cannot effectively control the composition of the
polymer and chain length, etc. This has a greater limitation on the performance of the
finished product. Based on this, Jiang et al. [86] improved the synthesis method by using
self-made tetraphenyl ethanediol as a macromolecular initiator and were the first to use the
iniferter method. A series of novel FPU, for biomedical applications, that were synthesized
by the living radical polymerization of PU and hexafluoro-butyl acrylate were developed.
Moreover, the fluorine content in the FPU could be easily regulated by modulating the
hexafluoro-butyl acrylate content. The surface properties, thermal properties, mechanical
properties, and oxidative stability of the new FPU were investigated. The results show
that the monomer conversion of each component of the FPU was mostly dependent on
the temperature, and nearly a 89% conversion was accomplished at 80 ◦C for 18 h. As
the content of the hexafluoro-butyl acrylate increased, the water contact angle of the FPU
reached up to 120◦ ± 2◦, and the hydrophobic significantly improved. The glass transition
temperature increased, presumably owing to the hydrogen bonding between the PU and
hexafluoro-butyl acrylate. All FPU that in the test had good mechanical properties, with a
maximum elongation at break of 1002.5% ± 125.6%. The FPU in an oxidizing environment
did not show significant surface degradation compared to the drastic degradation of
typical PU.

Tan et al. [87] prepared hydroxy acrylates with different chain lengths by polymerizing
hexafluoro-butyl methacrylate with the chain transfer agent 1-thioglycerol radical and
successfully synthesized UV-curable WFPU with long fluorinated side chains (Figure 11b).
The results show that with the incorporation of fluorinated monomers, the roughness
increased up to 3.99 nm. The surface energy of the WFPU decreased from 44.44 mN/m to
29.09 mN/m with only a small amount of fluorine, and the hydrophobicity of the WFPU
significantly enhanced. The Tmax increased from 312.1 ◦C to 322.0 ◦C, and the thermal
stability enhanced. The adhesion between the UV-curable film and the substrate did not
decrease with an increase in the fluorine content, and the adhesion on the surface of the
polycarbonate, polyethylene terephthalate, and polymethyl methacrylate could reach 5 B.
In addition, the synthesis process of this WFPU raw material is simple, and the synthesis
and study of UV-curable WFPU with long fluorinated side chains can fill the theoretical
gap of related properties. Wang [88] synthesised a series of WFPU from polyester polyol
(NJ-330) and hexafluorobutyl acrylate (FA), the synthetic routes and SEM images are
shown in Figure 11c; Zhong et al. [89] synthesised a novel crosslinked coating matrix
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with fluorinated acrylates, and fluorinated water-dispersed PU particles were uniformly
distributed on the surface and in the interior, the structure of which is shown in Figure 11d.
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4. Advances in the Application of Functionalized FPU

FPU has become the main developmental direction of functionalized PU, and it has
been so for 60 years, ever since Lovelace [12] first synthesized FPU in 1958. Due to the
introduction of fluorinated chain segments, FPU has excellent properties that cannot be
compared with typical PU, such as its good thermal stability, flexibility, chemical resistance,
blood compatibility, and unique low interfacial-free energy. Therefore, it is widely used in
the coating, clothing textile, aerospace, and biomedical industries [81,90]. FPU has become
a research hotspot in recent years.

4.1. Coatings

With the development of the coating industry, the international market has an urgent
demand for high-performance coatings with excellent water resistance, weather resistance,
aging resistance, and other characteristics. Furthermore, FPU coatings have excellent
weather resistance, corrosion resistance, and chemical resistance. Its performance is much
higher than ordinary synthetic resin coatings, and its service life is generally up to 20 years
or more. Compared with other coatings, it is more resistant to sea spray corrosion, and its
internal structure is more stable; therefore, it has a wide range of applications in the field of
construction, aerospace, automobiles, and ships [91,92].

FPU coatings, which are mainly used in the construction field to protect buildings
and their internal materials from rain and snow and other weather corrosion damage and
can be constructed in the wet grass-roots level and form a waterproof layer, are non-toxic,
tasteless, and non-harmful to human health [93]. Wang [94] synthesized a series of FPU for
waterproof coatings for building materials using polyether diol (Mn = 2000) and TDI as
raw materials and investigated the fracture morphology, hydrophobicity, and adhesion of
the coatings. The results of this study show that the synthesized FPU coating systems are
homogeneous, and the contact angle in deionized water can reach up to 94.5◦ due to the
migration of fluorinated chain segments, showing excellent hydrophobicity and a good
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adhesion of the coating to the substrate. This kind of FPU can be well applied to waterproof
coatings for building materials.

In the field of marine and aerospace, in addition to the traditional protective and
decorative functions of coatings, it is more important to have excellent resistance to high
temperature, corrosion, water, oil, and weathering. Park et al. [95] synthesized a UV-curable
FPU coating that can be used for the antifouling of ships using 4,4′-dicyclohexymethane-
diisocynate, PTMG, and perfluoroalkyl acrylate 3,3,4,4,5,5,6,6,6,7,7,7,8,8,9,9,10,10,10-
heptadecafluorodecyl methacrylate as the raw materials, and the surface properties and
antifouling ability of FPU coatings were explored. The results show that the surface tension
of the coating decreased from 23.4 mN/m to 14.2 mN/m due to the introduction of fluori-
nated chain segments. The water contact angle and diiodomethane contact angle of the
coatings increased by 19.6◦ and 17.5◦, respectively, which significantly improved the water
and oil resistance of the PU coatings. This was attributed to its low surface tension, and
after 78 days of immersion, the surface of the FPU coating had a weak adhesion of algae
and barnacles, which are easy to remove, reflecting the excellent antifouling property of
this coating. Figure 12a below showed that the FPU dispersion emulsion and finished film
appearance; The schematic of antibacterial and antifouling WFPU films containing DMG
and the corresponding chemical structure are shown in Figure 12b. Li [7] synthesised a
series of FPU that with exceptional cavitation erosion resistance via hydroxy-terminated
liquid fluorine elastomer, and the cavitation resistance of FPU was explored as a coating by
SEM (Figure 12c); Figure 12d showed that the distribution of fluorinated chain segments
on the surface of WFPU coating.
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Figure 12. (a) FPU dispersion emulsion and finished film appearance. (Reprinted with permission
from Ref. [96]. Copyright 2022, copyright Elsevier). (b) The schematic of antibacterial and antifouling
WFPU films containing DMG and the corresponding chemical structure. (Reprinted with permission
from Ref. [97]. Copyright 2018, copyright WILEY). (c) SEM images of the surface of the PU and the
FPU coatings before and after exposure to cavitation erosion for 10 h (a1,b1,c1,d1 are undamaged
PU/FPU coatings; a2,b2,c2,d2 are the PU/FPU coatings which exposure to cavitation erosion under
25 µm; a3,b3,c3,d3 are the PU/FPU coatings which exposure to cavitation erosion under 5 µm).
(Reprinted with permission from Ref. [14]. Copyright 2023, copyright Elsevier). (d) Schematic
image of the surface of WFPU coatings. (Reprinted with permission from Ref. [69]. Copyright 2021,
copyright Elsevier).



Polymers 2024, 16, 959 21 of 30

Chen [98] first prepared a novel fluorinated diol and poly(L-lactide) (PLLA) by Michael
addition and a ring-opening polymerization reaction and synthesized a novel degradable
FPU from it. The results of this study show that with an increase in the fluorine content, the
water contact angle of the FPU increased from 71.12◦ to 108.24◦, indicating a transition from
hydrophilic to hydrophobic materials. The onset of the thermal decomposition temperature
increased from 155 ◦C to 178 ◦C, and the hydrolysis ability of the FPU increased significantly
with an increase in the PLLA content, which is an environmentally friendly biodegradable
coating that can be used for ships.

Tang et al. [99] synthesized a ZnO-graphene oxide/WFPU nanocoating by mixing
hydrophobically treated graphene oxide nanocomplexes with a homemade WFPU. The
results show that this composite coating has excellent double hydrophobic properties, sea
spray corrosion resistance, and friction resistance and can be well applied in the marine
field. In addition, FPU can be used as aircraft skin paint in aircraft cabins and pipeline
coatings, which is attributed to its good adhesion to alloy materials and good weather
resistance and flexibility.

4.2. Clothing Textiles

To meet the increasing demand for textile functionality, fluorinated finishing agents
are widely used in the textile industry. However, although fluorinated finishing agents
prepared by traditional methods have good surface properties, they are harmful to human
health due to the difficulty of the natural degradation of long fluorinated alkyl side chains,
such as perfluoro-octane sulfonyl and perfluoro-octane compounds, and are subject to
many limitations in their application. The use of FPU as a textile finishing agent can not
only provide textiles with excellent hydrophobic, oleophobic, and anti-adhesive properties
to meet the functional needs of textiles but also does not contain long fluorocarbon chain
segments, which can effectively improve the impact of fluorinated finishes on humans,
animals, and plants [100,101]. Zhu [102] prepared a series of fluorinated polyether diols
based on the ring-opening polymerization of epoxy butane and polymerized them with
IPDI to synthesize short-fluorinated carbon chain WFPU with different polyether diol
matrices, and they were, respectively, applied to textile surface modifications. The results
of this study show that with pentafluoro-propyl as the short fluorine chain, the water
contact angle was as high as 146◦, which was almost superhydrophobic, the elastic recovery
performance enhanced by about 27%, and the tensile strength significantly improved. In
the following figure, Figure 13a is the function of the number of abrasion cycles and the
breakthrough pressure of the FPU/FPOSS coating after self-healing; Figure 13b is the SEM
and 3D AFM images of fluorine-rich membrane surface and hyperbranched FPU nanofiber
membrane; Figure 13c showed that the penetration image of FPU/PU composite fabrics.
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Figure 13. (a) The function of the number of abrasion cycles for the FPU/FPOSS coating after
self-healing. The breakthrough pressure of the FPU/FPOSS coating as a function of abrasion, af-
ter self-healing. (Reprinted with permission from Ref. [103]. Copyright 2017, copyright ACS).
(b) Fluorine-enriching membrane surface; SEM and three-dimensional AFM images of fluorination of
hyperbranched polyurethane nanofibrous membranes. (Reprinted with permission from Ref. [104].
Copyright 2014, copyright Elsevier). (c) Image of FPU/PU composite fabric permeation. (Reprinted
with permission from Ref. [16]. Copyright 2019, copyright SAGE).

In addition, the global market demand for waterproof and breathable functional
fabrics is gradually increasing, and waterproof and breathable fabrics are widely used
in the military, medical, and other fields due to their good breathability and ability to
adapt to a variety of extremely harsh environments. Traditional waterproof and breathable
fabrics only have excellent waterproof and windproof performance but have poor moisture
permeability. The combination of FPU and electrostatic spinning technology can maintain
the original performance of the fabric while obtaining excellent moisture permeability,
providing the wearer good comfort [105,106].

Ge et al. [107] introduced perfluoro-1-decanol (CF3(CF2)7CH2CH2OH) (TEOH-8) to
synthesize a novel FPU. The low surface energy perfluoro-alkane side chains were located
at the end of the polymer, and the fluorinated chains efficiently migrated to the fiber surface.
The microporous PU/FPU composite fiber membranes with strong waterproof and air
permeability properties were prepared by electrostatic spinning technology. The results of
this study show that, due to the fluorine element, the degree of adhesion between the spun
filaments was reduced, the diameters were enlarged, the water contact angle reached 156◦,
and the oil contact angle reached 145◦, and a strong hydrophobicity and oleophobicity were
demonstrated. A air transmission rate of 8.46 L/(m2·s) and a water vapor transmission rate
of 0.384 kg/(m2·h) were present due to the presence of micropores. This FPU showed good
air permeability, and this kind of FPU can have a broader applicational prospect in the field
of moisture-permeable fabrics.



Polymers 2024, 16, 959 23 of 30

4.3. Aerospace Industry

Propellant technology for aerospace vehicles is one of the indicators of a country’s
advanced space technology, and it plays a vital role in the stability of engine operation
and the safety of the aircraft operations. For launch vehicles and spacecrafts that use
liquid hydrogen and liquid oxygen as their propellant, since liquid hydrogen and liquid
oxygen propellants are highly susceptible to evaporation and escape, leading to serious
accidents and huge losses due to fuel leakage, it is necessary to select a sealing material
that has both liquid-oxygen compatibility and excellent physical properties. FPU has good
chemical inertness and self-extinguishing and liquid oxygen compatibilities, which is to the
introduction of the fluorine element, with a good overall performance and can be used as an
excellent low temperature sealing material [108,109]. In addition, the use of fluorine or its
derivatives as additives in various propellants, explosives, and pyrotechnics, etc., has been
widely recognized [110]. To adapt to different engine operating environments, research
on fuel velocity modifiers for rocket propellants is becoming a new trend. The results of
this study show that binders with a high pyrolysis temperature can significantly increase
the temperature of the burning surface and reduce the burning speed of the propellant.
In contrast to traditional inorganic burn rate modifiers, FPU burn rate modifiers do not
drastically reduce the amount of energy produced by the propellant and have a superior
thermal stability compared to PU [111]. Xu et al. [112] synthesized a series of fluorosilicone
WPU and tested their performance. The results show that the maximum heat release rate
and total heat release of the WPU decreased significantly with an increase in the fluorinated
monomer. The flame resistance of the material greatly improved, while the thermal stability
and residual sputum rate of the WPU also significantly improved. In the figure below,
Figure 14a is the schematic illustration of the combustion reaction route of FPU/aluminum
nanoparticle composites; Figure 14b showed that the surface images of different propellants
burning at atmospheric pressure and the mechanism of FPU inhibition of agglomeration.
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In addition, how to improve the combustion efficiency of the Al powder is also a
hot topic of research at present, as Al powder is the most commonly used metal fuel in
solid rocket propellants, but pure Al powder has a low melting point and tends to liquefy
before ignition, which prolongs the ignition period. Owing to the viscous force of the
propellant burning surface, Al powder and other components of the propellant are prone to
agglomeration, fusion, and coalescence. This can seriously affect the propulsion efficiency.
In severe cases, this can lead to an accumulation of hot particles on the inner walls of the
engine and nozzle, ultimately causing flight failure [114,115]. FPU can be used to coat
the Al powder, as its decomposition of small molecules of fluorinated compounds can be
fluorinated with Al to produce AlF3, and the per unit of heat release is 80% more than
Al2O3 [116].

Zhang [117] synthesized nano-aluminum/fluorinated PU composites based on the
azide-alkyne click reaction. The results of this study show that Al or Al2O3 and the FPU
decomposition of small molecules of fluorinated compounds at a 370 ◦C reaction, the
formation of AlF3, the temperature of which overlaps with the reaction temperature of
aluminum thermite, can reduce the ignition point of the Al powder, at 20 wt% (nano-
aluminum in the FPU). The total exothermic amount reaches 2082 J/g, and the sublimation
temperature of AlF3 is 1277 ◦C, which is much lower than the boiling point of Al2O3
3000 ◦C, and it can effectively reduce the formation of the solid products of Al2O3.

4.4. Biomedical Industry

As an outstanding representative of stretchable elastomers, PU shows great potential
for applications in wearable electronics [118]. It is widely used in various medical devices
due to its good physical and chemical stability, mechanical properties, and biocompatibil-
ity. However, medical PU often causes a variety of adverse biological reactions, such as
thrombosis, coagulation, protein adsorption, etc., in the human body. Usually, the surface
modification of PU is used to reduce the formation of thrombus and related inflammations,
and how to further improve the antithrombotic and human adaptability of PU has become
a hot spot of research [119,120]. The introduction of fluorinated compounds into medical
PU can significantly improve the oil resistance of the material, will not absorb lipids in the
body and low surface properties, so that the fluorine atoms are enriched in the surface of
the material to achieve the purpose of preventing the degradation of oxygen media on the
body of the material, which can be used in the field of biomedicine [121]. In the following
figure, Figure 15a shows a demonstration of the relevant test tool for self-healing/self-
cleaning FPU and its self-healing/self-cleaning performance graphs; Figure 15b shows
the relative human fibrinogen adsorption data on the FPU surface and SEM image of the
membrane surface.

Jia [13] synthesized a multifunctionalized FPU from bisphenol AF (BPAF), PTMG,
MDI, and trimethylolpropane, which is a new material with efficient self-healing properties
and mechanical strength that can be used in wearable electronics. The results show that
the introduction of the C-F bond increases the energy of the covalent bond and raises Td5%
from 253 ◦C to 260 ◦C, and both the FPU and ordinary PU show elastic behavior at 100%
strain. In terms of self-healing performance, the self-healing efficiency of the FPU improved
by 5% and 14% after 1 h at 80 ◦C and 90 ◦C, respectively, compared with that of the normal
PU, and by 5% at 100 ◦C, with a self-healing efficiency of as high as 100%. In addition,
the FPU significantly increased the open-circuit voltage and self-cleaning capability of the
SH-TENG (increasing the efficiency from 62% to 83%), and as a self-healing and stretchable
conductor, it can also be used in flexible electronic devices.
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Figure 15. (a) (A) Photograph and schematic diagram of self-healable triboelectric nanogenerator
(SH-TENG) (FPU). (B) Schematic diagram of SH-TENG working mechanism. (C) Demonstration of
SH-TENG based on FPU driving LED lights. (D) Electrical output performance of the SH-TENG
based on FPU and PU before and after self-healing. (E) Self-cleaning performance of TENG based
on FPU and PU. (Reprinted with permission from Ref. [13]. Copyright 2022, copyright Elsevier).
(b) Relative human fibrinogen adsorption on phosphorylcholine FPU (P-HFPC) and poly (ether
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(Reprinted with permission from Ref. [122]. Copyright 2011, copyright WILEY).

Tan et al. [123]. blended FPU with ordinary PU and studied its blood compatibility to
obtain a high fluorinated surface to further improve the biocompatibility and biostability.
The results show that the migration of the fluorinated chain segments to the surface of
the material was easier in the blends. The surface fluorine content of FPU10% was about
121 times the theoretical bulk fluorine content, the ratio of the surface fluorine content
to the theoretical bulk fluorine content for FPU50% was 23, the water contact angle was
more than 109.3◦, and the CH2I2 contact angle was more than 92.5◦, showing excellent
water resistance. The blood compatibility of the blends was significantly higher than that
of typical PU in a platelet adhesion test, showing good applicational prospects.

5. Conclusions and Outlook

As a widely used polymer material with a low surface energy, excellent mechanical
properties, flexibility, and corrosion resistance and good biocompatibility, FPU has become
the focus of PU modification research in recent years. FPU can be precisely synthesized by
designing fluorochemicals including fluorinated isocyanates, fluorinated capping agents,
and fluorinated chain extenders as hard segments; designing semi-fluorinated polyester
polyols, semi-fluorinated polyether polyols, perfluorinated polyether polyols, or conven-
tional polyether/polyester blends via the above fluorinated compounds as soft segments;
designing fluorinated acrylates as additives, and changes to the production process to
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satisfy the needs of the coating, clothing textile, aerospace, and biomedical industries
for materials that are resistant to hydrophobicity, weathering, heat, and flames and with
good biocompatibility. Here, the synthesis, structure, properties, and applications of FPU
are comprehensively reviewed, with the aim to shed light on the design scheme, synthesis
method, structure, and properties of FPU synthesized from different kinds of fluorochemi-
cals including their products and applications in different fields. Furthermore, FPU has
not only occupied a place in modified PU but has also become an independent research
direction of fluoropolymers.

Although FPU research has made some progress, it still faces challenges in practical
applications. Firstly, the preparation process of fluorinated compounds for synthesizing
FPU is complicated, and the synthesis conditions are harsh, and the price is high, which
makes it difficult to realize large-scale industrialized applications. Secondly, there are
still shortcomings in the performance of fluorinated compounds currently developed. To
obtain FPU with excellent performance, it is necessary to accurately design the mechanism
and structure of fluorinated compounds, which is a challenging process. In short, high-
performance FPU will become a strong support for the development of new materials in
the world, with huge performance advantages and broad prospects.
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