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Abstract: In order to develop flexible thermoelectric materials with thermoelectric and mechanical
properties, in this study, we designed and synthesized polythiophene derivatives with branched
ethylene glycol polar side-chains named P3MBTEMT, which were used in combination with single-
walled carbon nanotubes (SWCNTs) to prepare composite thin films and flexible thermoelectric
devices. A comparison was made with a polymer named P3(TEG)T, which has a polar alkoxy linear
chain. The UV-vis results indicated that the larger steric hindrances of the branched ethylene glycol
side-chain in P3MBTEMT could inhibit its self-aggregation and had a stronger interaction with
the SWCNTs compared to that of P3(TEG)T, which was also confirmed using Raman spectroscopy.
When the mass ratio of SWCNTs to P3MBTEMT was 9:1 (represented as P3MBTEMT/SWCNTs-
0.9), the composite film exhibited the highest thermoelectric properties with a power factor of
446.98 µW m−1 K−2, which was more than two times higher than that of P3(TEG)T/SWCNTs-0.9
(215.08 µW m−1 K−2). The output power of the thermoelectric device with P3MBTEMT/SWCNTs-
0.9 was 2483.92 nW at 50 K, which was 1.66 times higher than that of P3(TEG)T/SWCNTs-0.9
(1492.65 nW). Furthermore, the P3MBTEMT/SWCNTs-0.5 showed superior mechanical properties
compared to P3(TEG)T/SWCNTs-0.5. These results indicated that the mechanical and thermoelectric
performances of polymer/SWCNT composites could be significantly improved by adding polar
branched side-chains to conjugated polymers. This study provided a new strategy for creating
high-performing novel flexible thermoelectric materials.

Keywords: composites; polythiophene; carbon nanotube; thermoelectric; polar side-chain

1. Introduction

Thermoelectric (TE) materials, a sort of green energy material that has the ability to
convert “thermal energy” into “electrical energy” without the need for external power,
have received a significant attention in the field of materials science [1–3]. Flexible and
wearable thermoelectric devices represent a hot research area within the realm of thermo-
electric materials [4–7]. These devices can generate a voltage difference from the variation
in temperature between the device and the environment alone, thereby achieving signal
transmission without the need for an external power source. Moreover, they can operate
normally on heat source surfaces with complex curvature changes. As such, flexible ther-
moelectric devices are required to have both an excellent TE performance and outstanding
mechanical properties [7,8]. Due to their inherent flexibility and low thermal conductivity,
polymeric materials are suited for application in the manufacturing of these flexible TE
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devices. [9]. Their TE performance is usually assessed by the power factor PF (PF = S2σ,
where S = Seebeck coefficient and σ = conductivity). However, polymers tend to have a
low conductivity, and one strategy for enhancing their thermoelectric performance is to
combine them with high-conductivity materials such as single-walled carbon nanotubes
(SWCNTs) [10].

With their exceptional conductivity, stable Seebeck coefficient, and good flexibil-
ity, SWCNTs have become a star material in TE research. However, their high thermal
conductivity is a problem that needs to be urgently resolved [11]. In order to create
organic/inorganic composite TE materials with a high conductivity, a large Seebeck coeffi-
cient, and a relatively low thermal conductivity, SWCNTs are frequently utilized as an inor-
ganic filler in combination with low thermal conductive polymers in the field of thermoelec-
tric materials. A win–win situation is thereby achieved [12]. Research on conjugated poly-
mer/SWCNT composite materials has been widely reported [13], with the most common
examples being poly(3-hexylthiophene) (P3HT) [14,15], polypyrrole (PPy) [16,17], poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) [18,19], and polyaniline
(PANI) [20,21]. The π-π interactions between conjugated polymers and SWCNTs can
facilitate the interface interaction between nanoparticles and polymers, greatly enhancing
their carrier mobility [22].

When designing conjugated polymers with a high TE performance, the role of side-
chains is as important as that of the conjugated backbone. In the past few years, a growing
number of reports have suggested that the introduction of polar side-chains can enhance
the TE performance of polymer/SWCNT composites to varying degrees [23–25]. Hao et al.
synthesized a polythiophene derivative with polar alkoxy linear chains, named PMEET.
Compared to P3HT, they found that PMEET could interact more strongly with SWCNTs,
with the power factor of PMEET/SWCNTs (121 µW m−1 K−2) being twice as large as
that of P3HT/SWCNTs (65 µW m−1 K−2) [23]. By introducing alkoxy linear chains or
macrocyclic side-chains into benzodithiophene (BDT), Wu et al. found that the latter could
inhibit the self-assembly of polymers, promote the π-π interactions between polymers
and SWCNTs, and enhance the TE performance (137.7 µW m−1 K−2) by 1.8 times [25].
Furthermore, the branching of the side-chains could aid in plasticizing and softening [26],
which are of great significance for the development of flexible materials. Currently, in
the field of organic TE materials, studies on branched polar side-chains mainly involve
chemical doping [27,28]. The introduction of side-chains can enhance the TE performance
by increasing the compatibility between polymers and dopants. However, studies on the
influence of polar branched side-chains on the thermoelectric and mechanical properties of
polymer/SWCNT composites have not yet been reported.

In the present study, we designed and synthesized two polythiophene derivatives with
similar number average molecular weights (Mn) using side-chain engineering: poly(3-(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)methylthiophene) (P3(TEG)T) (containing polar alkoxy linear
chains) and poly(3-(1,3-bis(triethoxymethoxy)propan-2-yloxy)methylthiophene) (P3MBTEMT)
(containing polar ethylene glycol branches). We combined these derivatives with SWCNTs
to prepare TE thin film materials and flexible TE-based devices. At the optimal compos-
ite mass ratio of P3MBTEMT to SWCNTs, which was 1:9, the power factor (PF) of the
P3MBTEMT/SWCNT composite thin film was 446.98 µW m−1 K−2, which was 2.07 times
larger than that of P3(TEG)T/SWCNTs (215.08 µW m−1 K−2) and superior to the pure SWC-
NTs (344.97 µW m−1 K−2). The TE-based device P3MBTEMT/SWCNTs had a maximum
output power of 2481.97 nW at a temperature difference (∆T) of 50K, which was 1.66 times
larger than that of P3(TEG)T/SWCNTs (1492.65 nW). The mechanical performance of
P3MBTEMT/SWCNTs was superior to that of P3(TEG)T/SWCNTs for a composite mass
ratio of 1:1. This demonstrated that it is feasible to use side-chain engineering and the
introduction of polar branched structures to enhance the thermoelectric and mechanical
properties of conjugated polymers.



Polymers 2024, 16, 943 3 of 11

2. Experimental Section
2.1. Polymer/SWCNT Composite Film Preparation

The SWCNTs were dissolved in chlorobenzene (1 mg/mL) and, thereafter, were treated
ultrasonically for 5 h at room temperature (the water in the ultrasonic cleaning machine
was changed every hour). The solution was then stirred overnight to obtain a uniformly
dispersed SWCNT solution. Glass bottles were used to prepare the composite solutions
with the polymer. The polymer-to-SWCNTs mass ratios were 3:7, 5:5, 7:3, and 9:1. The
preparation of the solutions was followed by an additional 2 h of ultrasonical treatment to
ensure the uniform mixing of the polymer and the SWCNTs. A pipette was used to add
120 uL of the solution to a 1 cm × 1 cm glass slide, which was left to dry naturally at room
temperature. This resulted in a composite film with a thickness of approximately 2 µm.
In this study, the polymer/SWCNT composite films were labeled according to the mass
percentage of the SWCNTs. For example, when the mass ratio of P3(TEG)T-to-SWCNTs
was 1:9, it was labeled as P3(TEG)T/SWCNTs-0.9.

2.2. Fabrication of p-Type Polymer/SWCNTs TE Devices

The flexible polyimide (PI) film was cut into 1 cm × 4 cm strips. A pipette was,
thereafter, used to spread 300 µL of the well-dispersed polymer/SWCNTs composite
solution on the PI film, which was left to dry at room temperature. Ten 1 cm × 4 cm
composite films were then attached to a 8 cm × 24 cm PI film surface in sequence with
double-sided tape, leaving a 1 cm spacing between each pair. Subsequently, copper foil
tape was used to join the films in series, and conductive silver glue was used to ensure a
solid connection at the point where the copper foil tape and the composite film met. The
fabricated thermoelectric film device is shown in Figure S11 in the Supporting Information.

3. Results and Discussion
3.1. Synthesis and Characterization of Polymers

Two polymers with similar molecular weights (Mn), P3(TEG)T and P3MBTEMT (Figure 1a),
were prepared using a simple Grignard metathesis polymerization (GMIR) method. The Mn
of the polymers, P3(TEG)T and P3MBTEMT, were determined as 18.4 kDa and 18.9 kDa, re-
spectively, using gel permeation chromatography (GPC). Their polydispersity indices (PDI)
were 1.53 and 1.84, respectively (Figure S8 and Table S1 in the Supporting Information). Fur-
thermore, the structures of the polymers were characterized using proton nuclear magnetic
resonance spectroscopy (1H NMR) (Figures S6 and S7 in Supporting Information). The
combination of the 1H NMR and GPC results validated that the synthesized polymers met
the research requirements. A thermogravimetric analysis (TGA) demonstrated that the
decomposition temperatures of P3(TEG)T and P3MBTEMT (defined as the temperature
at which the sample’s weight dropped to 95% of its original weight) were 247.74 ◦C and
255.20 ◦C, respectively (Figure S9 in the Supporting Information), which indicated that the
polymers had a good thermal stability. Figure 1b shows the normalized ultraviolet-visible
(UV-vis) spectra of P3(TEG)T and P3MBTEMT. The strongest absorption peaks of P3(TEG)T
and P3MBTEMT in the solvent-free state were at 431 nm and 447 nm, respectively. Both
of these peaks resulted from π-π* transitions in the polythiophene main-chain backbone.
There was no significant change in P3MBTEMT in either the tetrahydrofuran (THF) solution
or the solvent-free state, which was due to the large branched alkoxyl side-chains that were
wrapped around the thiophene backbone. The significant sterical hindrances could inhibit
the self-assembly of P3MBTEMT, which was beneficial for the homogeneous blending
with SWCNTs.
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coincided with the absorption peak at around 1185 cm−1. The strong absorption peak at 
around 1590 cm−1 and weak absorption peak at around 1570 cm−1 constituted the typical 
G band of the semiconducting SWCNTs (i.e., G+ and G−, respectively). They were formed 
by thesp2 hybridized carbon atoms vibrating within the SWCNTs� hexagonal lattice 
[30,31]. Thus, there was a significant amount of carbon atoms that were sp2 hybridized, 
which facilitated the charge transport. There was no noticeable D band at around 1350 
cm−1 for the pure SWCNTs, which indicated that the SWCNTs used here were of a high 
quality. They were free from defects due to the carbonized tube walls and particles. 
Similarly, there were no obvious defects in the polymer/SWCNT composite films. This 
indicated that no significant structural defects were formed during the mixing procedure, 
and that the components were fully blended [32,33], which facilitated the charge transport 
and improved the thermoelectric performance. Furthermore, the position of the G band 
for P3MBTEMT/SWCNTs-0.5 (1589.29 cm−1) showed a blue shift in relation to the pure 
SWCNTs (1591.28 cm−1). However, there was no change for P3(TEG)T (1591.28 cm−1), 
which suggested a stronger interaction between P3MBTEMT and the SWCNTs. As can be 
seen in Figure 2b, the content of the SWCNTs increased in the P3MBTEMT/SWCNT 
composite films, the symmetric stretching vibration peak of the Cα = Cβ double bond had 
a slight red shift, and the G band peak intensity increased and showed a slight blue shift 
relative to the SWCNTs. This could be attributed to the impact of the π-π interactions in 
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3.2. Raman Spectroscopy

Figure 2 shows the Raman spectra of the polymer/SWCNT composite films with
various SWCNT contents. The symmetric stretching vibration peak of the Cα = Cβ double
bond of the thiophene group in the polymer backbone was the absorption peak at around
1450 cm−1 [29]. Furthermore, the stretching vibration peak of C-O-C on the side-chain
coincided with the absorption peak at around 1185 cm−1. The strong absorption peak at
around 1590 cm−1 and weak absorption peak at around 1570 cm−1 constituted the typical
G band of the semiconducting SWCNTs (i.e., G+ and G−, respectively). They were formed
by thesp2 hybridized carbon atoms vibrating within the SWCNTs’ hexagonal lattice [30,31].
Thus, there was a significant amount of carbon atoms that were sp2 hybridized, which
facilitated the charge transport. There was no noticeable D band at around 1350 cm−1 for
the pure SWCNTs, which indicated that the SWCNTs used here were of a high quality.
They were free from defects due to the carbonized tube walls and particles. Similarly,
there were no obvious defects in the polymer/SWCNT composite films. This indicated
that no significant structural defects were formed during the mixing procedure, and that
the components were fully blended [32,33], which facilitated the charge transport and
improved the thermoelectric performance. Furthermore, the position of the G band for
P3MBTEMT/SWCNTs-0.5 (1589.29 cm−1) showed a blue shift in relation to the pure
SWCNTs (1591.28 cm−1). However, there was no change for P3(TEG)T (1591.28 cm−1),
which suggested a stronger interaction between P3MBTEMT and the SWCNTs. As can
be seen in Figure 2b, the content of the SWCNTs increased in the P3MBTEMT/SWCNT
composite films, the symmetric stretching vibration peak of the Cα = Cβ double bond had
a slight red shift, and the G band peak intensity increased and showed a slight blue shift
relative to the SWCNTs. This could be attributed to the impact of the π-π interactions in
the interface formed by P3MBTEMT and the SWCNTs in the composite films.



Polymers 2024, 16, 943 5 of 11

Polymers 2023, 15, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 1. (a) Chemical structures and ambient states of P3(TEG)T and P3MBTEMT. (b) Normalized 
UV–vis absorption spectra of P3(TEG)T and P3MBTEMT in the THF solution and in the thin film 
states. 

3.2. Raman Spectroscopy 
Figure 2 shows the Raman spectra of the polymer/SWCNT composite films with 

various SWCNT contents. The symmetric stretching vibration peak of the Cα = Cβ double 
bond of the thiophene group in the polymer backbone  was the absorption peak at around 
1450 cm−1 [29]. Furthermore, the stretching vibration peak of C-O-C on the side-chain 
coincided with the absorption peak at around 1185 cm−1. The strong absorption peak at 
around 1590 cm−1 and weak absorption peak at around 1570 cm−1 constituted the typical 
G band of the semiconducting SWCNTs (i.e., G+ and G−, respectively). They were formed 
by thesp2 hybridized carbon atoms vibrating within the SWCNTs� hexagonal lattice 
[30,31]. Thus, there was a significant amount of carbon atoms that were sp2 hybridized, 
which facilitated the charge transport. There was no noticeable D band at around 1350 
cm−1 for the pure SWCNTs, which indicated that the SWCNTs used here were of a high 
quality. They were free from defects due to the carbonized tube walls and particles. 
Similarly, there were no obvious defects in the polymer/SWCNT composite films. This 
indicated that no significant structural defects were formed during the mixing procedure, 
and that the components were fully blended [32,33], which facilitated the charge transport 
and improved the thermoelectric performance. Furthermore, the position of the G band 
for P3MBTEMT/SWCNTs-0.5 (1589.29 cm−1) showed a blue shift in relation to the pure 
SWCNTs (1591.28 cm−1). However, there was no change for P3(TEG)T (1591.28 cm−1), 
which suggested a stronger interaction between P3MBTEMT and the SWCNTs. As can be 
seen in Figure 2b, the content of the SWCNTs increased in the P3MBTEMT/SWCNT 
composite films, the symmetric stretching vibration peak of the Cα = Cβ double bond had 
a slight red shift, and the G band peak intensity increased and showed a slight blue shift 
relative to the SWCNTs. This could be attributed to the impact of the π-π interactions in 
the interface formed by P3MBTEMT and the SWCNTs in the composite films. 

 
Figure 2. (a) Raman spectra of SWCNTs, P3(TEG)T/SWCNTs-0.5, and P3MBTEMT/SWCNTs-0.5. (b) Ra-
man spectra of SWCNTs, P3MBTEMT/SWCNTs-0.9, P3MBTEMT/SWCNTs-0.7, P3MBTEMT/SWCNTs-
0.5, and P3MBTEMT/SWCNTs-0.3.

3.3. X-ray Diffraction

The X-ray diffraction (XRD) spectra of the polymer/SWCNT composite films with
different SWCNT contents are shown in Figure 3. P3(TEG)T and P3MBTEMT only had a
diffuse peak at 25◦, which indicated that they were amorphous polymers without a long-
range ordered structure. This was reasonable, since P3MBTEMT had larger alkyl–oxygen
side-chains. This side-chain structure would most probably have affected the interactions
of the P3MBTEMT backbone, preventing the formation of a closely packed structure.
Furthermore, the SWCNTs showed a typical weak diffraction peak at 26.7◦, which most
probably originated from the catalyst added in the preparation of the SWCNTs [34]. For the
P3MBTEMT/SWCNT composite, new peaks appeared at 12.7◦, 17.6◦, 19.6◦, 20.7◦, 21.4◦,
23.6◦, and 26.5◦. The diffraction peak of the SWCNTs moved to 26.5◦, which indicated that
the strong interfacial interaction between the P3MBTEMT polymer and the SWCNTs in the
composite material allowed for P3MBTEMT to be evenly coated on the SWCNT bundle.
An ordered structure was thereby formed, which was beneficial for the charge transfer at
the interface.
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3.4. Microscopic Morphology Studies

Figure 4 shows the surface morphologies of the polymer/SWCNT composite films
with different SWCNT contents. The surfaces of the P3(TEG)T and P3MBTEMT films
exhibited an aggregation-like morphology (Figure 4a,b). On the other hand, the SWCNT
sample showed a uniform distribution without any aggregation (Figure 4g), indicating
a good dispersion of SWCNTs in the source solution. As shown in Figure 4c–f, with
an increase in the SWCNT content, the P3MBTEMT/SWCNTs film became uniformly
distributed, without any aggregation on its surface [35]. The composite film exhibited
a network structure of SWCNTs, with apparent fibrous structures. This was due to the
wrapping of the polymer around the SWCNT bundles, causing the diameter of the SWCNT
bundles to increase and the connections between the bundles to become more numerous.
Thus, neighboring SWCNT bundles became closely connected via strong π-π interactions,
thereby forming a conductive network that was favorable for charge transmission. This
could effectively enhance the conductivity of the composite material, thereby improving
the thermoelectric performance of the composite film.
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Figure 4. SEM images of surface morphologies for (a) pristine P3(TEG)T, (b) pristine
P3MBTEMT, (c) P3MBTEMT/SWCNTs-0.3, (d) P3MBTEMT/SWCNTs-0.5, (e) P3MBTEMT/SWCNTs-
0.7, (f) P3MBTEMT/SWCNTs-0.9, (g) SWCNTs, and (h) P3(TEG)T/SWCNTs-0.5.

3.5. Mechanical Properties

To compare the mechanical properties of the composite films, they were subjected to
mechanical tensile testing and bending testing. As shown in Figure 5a,b, the composite
films exhibited superior mechanical tensile properties compared to the pure carbon tubes.
This was due to the addition of the polymers, P3MBTEMT and P3(TEG)T, resulting in strong
π-π interfacial interactions between the SWCNT bundles and the polymers, thus enhancing
the effective stress of the composite films [36]. In addition, P3MBTEMT/SWCNTs showed
an improved tensile modulus, breakage stress, and breakage elongation, as compared to
P3(TEG)T/SWCNTs-0.5. The maximum tensile modulus reached as high as 6.11 MPa. This
large value could most probably be explained by the larger alkoxy side-chain structure of
P3MBTEMT, which could be altered during the tensile process to provide internal friction
in the composite film. These results demonstrated the superior mechanical properties of
the P3MBTEMT/SWCNTs-0.5 composite film. Furthermore, Figure 5c,d show that the
rate of change of the composite film resistance was small under bending for different
bending times and for different bending curvatures (i.e., radii), respectively. These find-
ings showed the excellent flexibility and durability of the P3MBTEMT/SWCNTs-0.5 and
P3(TEG)T/SWCNTs-0.5 composite films.
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3.6. Thermoelectric Properties

The TE properties of the P3(TEG)T/SWCNT and P3MBTEMT/SWCNT composite
films at room temperature were found (Figure 6a,b). The composite films’ Seebeck coeffi-
cients were all larger than 0, indicating that they were p-type TE materials with conducting
hole carriers. The electrical conductivity of the composite films increased with an increased
content of SWCNTs. The reason for this was that the addition of SWCNT bundles pro-
vided more channels for rapid electron transfer. Furthermore, the Seebeck coefficient of
P3MBTEMT/SWCNTs was generally larger than that of P3(TEG)T/SWCNTs. Notably,
P3MBTEMT/SWCNTs-0.9 had a higher conductivity than the pure SWCNTs. This could
be explained by the branched ethylene glycol polar side-chains of P3MBTEMT, which
could not only promote electron transfer, but also provide a better solution processability,
therefore fostering strong π-π interactions between P3MBTEMT and the SWCNTs at the
interfaces. Moreover, P3MBTEMT/SWCNTs had a slightly lower Seebeck coefficient than
the SWCNTs, which was most probably caused by the strong binding between the wrapped
P3MBTEMT and the SWCNT bundle. This strong interaction helped to achieve a lower con-
tact resistance [37], which, in turn, might have led to an increase in the charge concentration,
thereby causing a slight decrease in the Seebeck coefficient [38]. Finally, the calculated PF
value of P3MBTEMT/SWCNTs-0.9 was 446.98 µW m−1 K−2, which was higher than that
of the pure SWCNTs (344.97 µW m−1 K−2). The flexible p-type TE devices were fabricated
on a PI flexible film substrate with P3(TEG)T/SWCNTs-0.9 and P3MBTEMT/SWCNTs-0.9,
which had the highest power factor. As can be seen in Figure 6c,d, for a temperature
difference (∆T) of 50 K, the device reached its maximum output power and open-circuit
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voltage. The maximum power of P3MBTEMT/SWCNTs-0.9 was 2481.97 nW, which was
1.66 times larger than that of P3(TEG)T/SWCNTs-0.9 (1492.65 nW). Furthermore, the
maximum open-circuit voltage was 25.35 mV, which was higher than that for the device
P3(TEG)T/SWCNTs-0.9 (20.73 nV). Finally, a simple TE device consisting of three TE el-
ements was fabricated (Figure S12c in the Supporting Information). A change in human
body temperature was simulated by finger pressure. As different numbers of fingers were
in contact with the device surface, temperature differences were obtained at both ends of
the device (Figure S12d in the Supporting Information). Consequently, there was also a
change in the voltage at both ends of the device (Figure 6e).
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Figure 6. σ, S, and PF values of (a) P3(TEG)T/SWCNT composite films and (b) P3MBTEMT/SWCNT com-
posite films with various SWCNT mass ratios. Voltage–current (open shapes) and power density–current
(solid shapes) output curves of (c) P3(TEG)T/SWCNTs-0.9 device and (d) P3MBTEMT/SWCNTs-0.9 de-
vice at different temperatures. (e) Voltage–time graph of a simplified P3MBTEMT/SWCNTs-0.9
device after being touched with fingers.
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4. Conclusions

This work synthesized P3TEGT (containing polar alkoxy linear chains) and P3MBTEMT
(containing polar ethylene glycol branches) and combined them with SWCNTs to prepare
flexible TE materials. The branched ethylene glycol side-chain enhanced the π-π interactions
between the polymer and SWCNTs, achieving a higher electrical conductivity than that
of pure SWCNTs. The PF value of P3MBTEMT/SWCNTs-0.9 reached 446.98 µW m−1 K−2,
which was higher than that of P3(TEG)T/SWCNTs-0.9 (215.08 µW m−1 K−2) and the pure
SWCNTs (344.97 µW m−1 K−2). The larger alkoxy side-chain did not only promote electron
transmission, but also provided a larger flexibility to the polymer. P3MBTEMT/SWCNTs-
0.5 had a higher tensile modulus than P3(TEG)T/SWCNTs-0.5, with a value of 6.11 MPa.
In summary, the addition of polar branched side-chains to conjugated polymers could
improve the thermoelectric and mechanical properties of composite films. This type
of side-chain engineering has provided a strategy for the development of new flexible
thermoelectric materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16070943/s1, Scheme S1. Synthetic routes of (1), Scheme S2.
Synthetic routes of (2), Scheme S3. Synthetic routes of (3), Scheme S4. Synthetic routes of (4) and
(5), Scheme S5. Synthetic routes of P3(TEG)T and P3MBTEMT, Figure S1. 1H NMR of (1) in DMSO,
Figure S2. 1H NMR of (2) in CDCl3, Figure S3. 1H NMR of (3) in CDCl3, Figure S4. 1H NMR
of (4) in CDCl3, Figure S5. 1H NMR of (5) in CDCl3, Figure S6. 1H NMR of P3(TEG)T in CDCl3,
Figure S7. 1H NMR of P3MBTEMT in CDCl3, Figure S8. GPC curve of P3(TEG)T and P3MBTEMT,
Figure S9. TGA curve of P3(TEG)T and P3MBTEMT, Table S1. Molecular weights and thermal
stabilities of P3(TEG)T and P3MBTEMT, Figure S12. Curve of theoretical open circuit voltage (VTH),
actual open circuit voltage (VAC), theoretical output power (PTH) and actual output power (PAC)
for (a) P3(TEG)T/SWCNTs and (b) P3MBTEMT/SWCNTs at different temperature(∆T). (c) Physical
picture of simple P3MBTEMT/SWCNTs-0.9 device. (d) infrared imaging of contact device surface.
Table S2. Summary of thermoelectric parameters of reported poly(thiophene)s/SWCNTs composites.
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