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Abstract: Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are versatile drug nanocarriers with
a wide spectrum of applications owing to their extensive advantages, including biodegradability, non-
toxic side effects, and low immunogenicity. Among the numerous nanoparticle preparation methods
available for PLGA NPs (the hydrophobic polymer), one of the most extensively utilized preparations
is the sonicated-emulsified solvent evaporation method, owing to its simplicity, speed, convenience,
and cost-effectiveness. Nevertheless, several factors can influence the outcomes, such as the types of
concentration of the surfactants and organic solvents, as well as the volume of the aqueous phase.
The objective of this article is to explore the influence of these factors on the properties of PLGA
NPs and their drug release behavior following encapsulation. Herein, PLGA NPs were fabricated
using bovine serum albumin (BSA) as a surfactant to investigate the impact of influencing factors,
including different water-soluble organic solvents such as propylene carbonate (PC), ethyl acetate
(PA), and dichloromethane (DCM). Notably, the size of PLGA NPs was smaller in the EA group
compared to that in the DCM group. Moreover, PLGA NPs showed excellent stability, ascribed to the
presence of the BSA surfactant. Furthermore, PLGA NPs were co-loaded with varying concentrations
of hydrophilic drugs (doxorubicin hydrochloride) and hydrophobic drugs (celecoxib), and exhibited
pH-sensitive drug release behavior in PBS with pH 7.4 and pH 5.5.

Keywords: PLGA NPs; organic phase; hydrophilic drug; hydrophobic drug; BSA

1. Introduction

Owing to its commendable biodegradability, biocompatibility, and minimal toxicity,
poly lactic-co-glycolic acid (PLGA) has received approval from the US Food and Drug
Administration (FDA) for its utilization as a drug carrier, as well as for surgical sutures and
cardiovascular stents [1,2]. PLGA nanoparticles (PLGA NPs) as drug carriers offer notable
benefits in the pharmaceutical industry [3,4]. Numerous techniques have been employed
for the synthesis of PLGA NPs, wherein the emulsification method is the most widely used
preparation method [5,6]. The particle size of PLGA NPs produced through emulsification–
solvent evaporation is influenced by various factors, such as the emulsifier type and
the volume ratio between the organic and aqueous phases [7,8]. Indeed, its primary
determinants are the characteristics of the emulsion droplets [9–12]. Surfactants, such as
bovine serum albumin (BSA) [13] and polyvinyl alcohol (PVA) [14,15], are incorporated into
the continuous phase to inhibit the polymerization of emulsion droplets. This is equivalent
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to partially eliminating the interface between the two phases, which lowers the surface
tension and surface free energy. The size of nanoparticles may diminish as the concentration
of surfactant or stabilizer increases [16,17]. Numerous studies have examined the impact of
individual factors on the synthesis of PLGA NPs, yet there is a paucity of research on the
collective influence of multiple factors on PLGA NPs. To elucidate the multifactorial effects
on PLGA NPs, researchers must conduct comprehensive investigations. Furthermore,
while PLGA is commonly utilized for encapsulating hydrophobic drugs, the significance of
loading two drugs with contrasting properties (hydrophilia and hydrophobicity) should
not be overlooked.

Typically, the emulsification–solvent evaporation method involves dispersing and
dissolving drugs in a polymer organic solution or continuous phase, with the addition of a
surfactant as a stabilizer, resulting in the formation of an emulsion. Next, this drug-added
polymer emulsion is combined with an aqueous solution of a surfactant to form a water-in-
oil (W/O) emulsion. Nanoparticles are subsequently created using an ultrasound-breaking
apparatus. Finally, a drug-containing polymer solution is introduced into the continuously
stirred phase to create a stable emulsion. The solvent in the dispersed phase is initially
diffused into the continuous phase, followed by complete evaporation at the water/gas
interface and, ultimately, solidification into nanoparticles [18,19].

Doxorubicin hydrochloride, an anti-tumor antibiotic, exerts its inhibitory effects on
RNA and DNA synthesis. It demonstrates a potent inhibitory effect on RNA, possesses
a broad spectrum of anti-tumor activity, and is associated with significant side effects.
This compound is characterized by its orange-red loose lump or powder form and high
solubility in water. Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, is utilized
as an anti-inflammatory and analgesic agent in the management of osteoarthritis and
rheumatoid arthritis, which is not easily soluble in water. PLGA NPs facilitate the gradual
release of drugs, thereby extending the duration of drug action and eliminating the need
for frequent administration [20–24]. The utilization of PLGA NPs enhances the stability
and bioavailability of drugs [25,26]. PLGA undergoes complete degradation within the
living organism, resulting in the production of lactic acid and glycolic acid, which are
subsequently eliminated through the tricarboxylic acid cycle in the form of water and
carbon dioxide [27,28]. Moreover, the metabolic rate of PLGA can be regulated to achieve a
satisfactory half-life period. Additionally, PLGA containing a higher proportion of lactic
acid exhibits reduced hydrophilicity, lower water absorption, and, consequently, slower
degradation rates [29]. Consequently, PLGA has garnered extensive attention as a carrier
of pharmaceutical substances in recent years.

Herein, the effects of three types of organic solvents, various concentrations of surfac-
tant, and volumes of aqueous phase on PLGA NPs were investigated using the sonicated-
emulsified solvent evaporation method. Initially, the organic phase containing PLGA was
dropwise added into the aqueous phase containing the surfactant (bovine serum albumin,
BSA). BSA is an ionic surfactant and is very stable in the physiological environment, so
it is suitable for use in the biomedical field. In addition, there are many chemical groups
on BSA, and the use of modification is also more conducive to the loading of hydrophilic
drugs. Then, the emulsion acquired via sonication was diluted and mixed to obtain a
volatilizing organic solvent (Figure 1a). The size, zeta potential, and other physiochemical
characteristics of PLGA NPs were determined to confirm the relevant parameters for the
sonicated-emulsified solvent evaporation method. Afterward, to co-load hydrophilic and
hydrophobic drugs, celecoxib (Ceb) was dissolved in the organic phase, whilst doxorubicin
hydrochloride (Dox) was dissolved in the aqueous phase during the preparation of PLGA
NPs. Ceb was physically mixed with PLGA and loaded into the nanoparticles, while
Dox was loaded into the nanoparticles via electrostatic interactions and π-π conjugation
with BSA (Figure 1b). Moreover, the oil–water partition coefficients of Dox and Ceb were
1.50 and 4.21, respectively. Following this, drug release behaviors were monitored un-
der different acidic conditions to simulate the physiological and lysosomal environments.
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Moreover, the physiochemical characteristics of drug-loading PLGA nanoparticles were
also examined.
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Figure 1. (a) Schematic illustration of (a) the step-by-step preparation of PLGA NPs at different
synthetic factors and (b) the drug loading process including PLGA NPs loaded with Dox (PD NPs),
PLGA NPs loaded with Ceb (PC NPs), and PLGA NPs loaded with Dox and Ceb (PDC NPs).

2. Materials and Methods
2.1. Materials

The materials used were poly lactic-co-glycolic acid (PLGA, lactide:glycolide 75:25,
Mw 4000–15,000, Sigma Aldrich, Shanghai, China, ≥99.9% purity), Bovine serum albumin,
(BSA, Aladdin, Shanghai, China, 96% purity), ethyl acetate (EA, Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China, analytically pure), propylene carbonate (PC, Aladdin,
99.7% purity), dichloromethane (DCM, Sinopharm Chemical Reagent Co., Ltd., analyt-
ically pure), doxorubicin hydrochloride (Dox, milunbio, Dalian, China, ≥98% purity),
Celebrex (Ceb, milunbio, ≥98% purity), sodium hydroxide (Sinopharm Chemical Reagent
Co., Ltd., analytically pure), Sodium dodecyl sulfate (SDS, Sigma Aldrich, ≥99.9% purity),
methanol (Sinopharm Chemical Reagent Co., Ltd., analytically pure), and Methyl sulfoxide
(Sinopharm Chemical Reagent Co., Ltd., analytically pure).

2.2. The Synthesis of PLGA NPs and Loading with Dox and Ceb

Firstly, PLGA NPs were synthesized by applying the emulsified solvent evaporation
method, as described in previous studies [30] (Fan et al., 2017). Briefly, 20 mg of PLGA was
dissolved in 1 mL of different organic solvents (EA, PC, or DCM) to compare the effects
of the solvents on nanoparticles. BSA aqueous solution (concentration listed in Table 1)
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was then introduced, and the mixture was sonicated for 60 s. Thereafter, the emulsion was
added dropwise to 30 mL ultrapure water and stirred at 800 rpm for 6 h. Finally, PLGA
NPs were collected using centrifugation at 10,000 rpm for 10 min and washed for 3 times,
lyophilized, and stored at 4 ◦C for the ensuing analyses.

Table 1. Concentration of BSA aqueous solution.

Concentration of BSA 0.5% 1% 2% 3%

BSA/mg 20 40 80 120
Water/mL 4 4 4 4

The oil phase of PLGA was supplemented with 1 mg Dox for preparing PLGA NPs
loaded with Dox (PD NPs), and sonicated for 30 s with the power of 1000 W (Scientz IID,
Scientz, Suzhou, China). Similarly, PLGA NPs loaded with Ceb (PC NPs) were prepared
by dissolving the polymer in an organic solvent with 1 mg Ceb. To prepare PLGA NPs
co-loaded with Dox and Ceb (PDC NPs), the oil phase of PC NPs was added to 50 µL of
20 µg/mL Dox solution. The remaining procedures were identical.

2.3. Physiochemical Characterizations

The structure and morphology of PLGA NPs, PD NPs, PC NPs, and PDC NPs
were characterized under a transmission electron microscope (TEM, H-7650, Hitachi,
Tokyo, Japan). The particle size and zeta potential of the three kinds of nanoparticles dis-
persed into water and PBS were measured using a Zetasizer (NanoBrook Omni, Brookhaven,
GA, USA). The samples were qualitatively analyzed using a Fourier-Transform Infrared
Spectrometer (FTIR, Nicolet iS 50, Thermo Fisher Scientific, Waltham, MA, USA). The
crystal structures of PD NPs, PC NPs, and PDC NPs were evaluated using X-ray diffraction
(XRD, D8 Advance, Bruker AXS, Karlsruhe, Germany). The residue of organic solvent was
determined using a gas chromatograph (GC-2014C, Shimadzu, Kyoto, Japan).

2.4. The BSA Assay by BCA Kit

To examine the residual amount of BSA in PLGA NPs prepared with different organic
phases and concentrations, 3 mg of PLGA NPs was dissolved in 1 mL of DMSO using
sonication. Then, the solution was diluted in 10 mL water using a colorimetric tube. The
residual amount of BSA was thereupon measured based on the calibration curve of BSA
using a BCA protein assay kit from KeyGen Biotechnololy Co., Ltd. (Nanjing, China). In
short, 200 µL BCA reagent and 20 µL sample solution were incubated in a 96-well plate at
45 ◦C for 1 h. Absorbance was detected using a microplate reader (Infinite 200 Pro, Tecan,
Grödig, Austria) at 562 nm.

2.5. The Measure of the Drug Loading and Encapsulation Efficiency and In Vitro Drug Release

Initially, the drug loading content and encapsulation efficiency were determined using
ultraviolet absorption spectrophotometry. Briefly, after the preparation of PD NPs, PC
NPs, and PDC NPs, the residual content of the drug molecule in the supernatant was
measured. The absorption values of the sample solution were measured at a wavelength
of 480 nm for Dox, using an ultraviolet–visible (UV–Vis) spectrophotometer (V-670, Jasco,
Tokyo, Japan), and at 254 nm for Ceb, using high-performance liquid chromatography
(HPLC, 1260 Infinity II, Agilent Japan, Tokyo, Japan). The column was Hypersil ODS C18
(250 mm × 4.6 mm, 5 µm) and the mobile phase was methyl alcohol–water (85:15). The
drug loading and encapsulation efficiency were calculated based on the standard curve:

Loading content =
m1 − m2

m
× 100% (1)

Encapsulation efficiency =
m1 − m2

m1
× 100% (2)
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where m1 represents the mass of the total drug, m2 denotes the mass of the drug in the
centrifugal supernatant, and m stands for the total mass of the sample.

Then, the 5 mg samples dispersed into 5 mL PBS with 1% tween 80 were placed into
dialysis bags (interception molecular weight: 8000 Da), which were then immersed in
25 mL PBS (pH = 5.5, pH = 7.4) at 37 ◦C with continuous shaking at 100 rpm in an orbital
shaker. At predetermined intervals (0.5, 1, 2, 4, 8, 12, 24. . . h), 3 mL buffer solution was
discarded and replaced with fresh buffer solution. Lastly, the ultraviolet absorption values
of the obtained samples were detected using HPLC and a UV–vis spectrophotometer at
wavelengths of 480 nm and 254 nm. The standard plots of Dox and Ceb were constructed
under identical conditions. The in vitro drug release curves of PD NPs, PC NPs, and PDC
NPs were plotted using standard curve calculation.

2.6. Statistical Analysis

All data were expressed as the mean ± standard deviation (n ≥ 3). The statistical
significance of the data was calculated via a one-way analysis of variance (ANOVA) fol-
lowed by Tukey’s test. A p-value of <0.05 was considered statistically significant (* p < 0.05,
** p < 0.01, *** p < 0.001).

3. Results and Discussion
3.1. Size of PLGA NPs

To observe the effects of different types of organic phase solvents, surfactant concen-
trations, and rates between the organic and aqueous phases, the size and zeta potential
of PLGA NPs were detected using Zetasizer through dynamic light scattering following
their preparation via the ultrasonic emulsification and solvent evaporation method, as
illustrated in Figures 2 and S1. Evidently, the size of PLGA NPs was obviously different in
the three types of organic solvents (DCM, EA, and PC) (Figure 2a). The results showed that
there was little effect on the size of PLGA NPs when the BSA concentration ranged from
0.5% to 3% in DCM. Nevertheless, there is a large deviation in the preparation of PLGA
NPs using DCM, indicating that the stability of the DCM preparation of PLGA NPs is not
as good as the other two organic solvents. In addition, the size of PLGA NPs remained
relatively consistent using different BSA concentrations, indicating that the concentration
of the surfactant might be saturated and consequently had no impact on PLGA NP synthe-
sis [31]. Moreover, the sizes of PLGA NPs when using DCM as the organic solvent were
about 160 nm at various concentrations of BSA, revealing that the concentration of BSA has
minimal effect on particle size in the DCM group. This may be attributed to the low water
solubility of the organic phase, where the concentration of the surfactant (BSA) has limited
influence on particle size, or when concentrations vary significantly to yield noticeable
differences. Contrastingly, the sizes of PLGA NPs using EA and PC as organic solvents
were roughly 100 nm and 160 nm at a BSA concentration of 0.5% and about 80 nm and
100 nm at the other BSA concentrations, respectively. It is worthwhile pointing out that the
size of nanoparticles obtained from the organic phase of propylene carbonate was not the
smallest, which contradicts the findings of other reports. It was reported that nanoparticles
prepared from PC with partial water solubility were smaller than those prepared from EA
due to the slightly higher water solubility of PC [17]. However, in our study, nanoparticles
prepared using EA as the organic solvent exhibited a smaller size. This can be ascribed
to the relatively high viscosity of PC, which consequently increases the system viscosity
during the preparation process, leading to the larger particle sizes of PLGA NPs.

On the one hand, the size of PLGA NPs using DCM also fluctuated with varying
volumes of aqueous phase at a BSA concentration of 2% (Figure 2b). On the other hand,
the size of PLGA NPs using EA as the organic solvent decreased but consistently increased
with increasing volumes of the aqueous phase when PC was used. As depicted in Figure 2,
the EA organic phase yielded nanoparticles with a smaller particle size compared to the
other two organic phases. Specifically, the smallest nanoparticles were obtained using
1% BSA and 5 mL water, 2% BSA and 4 mL water, and 3% BSA and 4 mL water, measuring
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122.22 ± 0.47 nm, 126.32 ± 0.75 nm, and 117.22 ± 0.42 nm, respectively. Consequently,
2% BSA and 4 mL water were selected for the formulation of PLGA NPs. We hypothesized
that an increase in the proportion of the water phase would result in a corresponding
decrease in the particle size of PLGA NPs. This assumption was based on the notion
that a greater amount of aqueous phase would prevent contact with the organic phase,
thereby leading to smaller particle sizes [25,28]. Nevertheless, the results are different.
One potential explanation is that DCM, being a non-water-soluble organic phase, is not
significantly affected by alterations in water phase volume, resulting in minimal impact on
particle size [32,33]. The primary factors influencing particle size alteration are ultrasonic
intensity and BSA concentration. In contrast, EA and PC exhibit solubility in water at
approximately 10% and 20%, respectively. Consequently, an increase in water phase volume
led to the enhanced dissolution of EA, thereby resulting in a smaller PLGA NP particle size
following ultrasound treatment. However, the solubility of PC surpassed that of EA. The
reason behind the increase in particle size with the expansion of the water phase volume
primarily lies in the elevated viscosity of PC when dissolved in water, leading to a rise in
the overall system viscosity, consequently resulting in larger particle sizes.
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the emulsified solvent evaporation method under (a) various BSA concentrations and (b) various
volumes of water phase.

3.2. Zeta Potential of PLGA NPs

To further evaluate surface characterization, PLGA NPs were not dispersed only
in water but also in PBS to mimic the physiological (high-electrolyte) environment. As
displayed in Figure 3a,b, the zeta potentials of PLGA NPs were investigated in an aqueous
solution. It is evident that the absolute value of the zeta potential of PLGA NPs prepared in
DCM, which was below 30 mV, was lower than in EA and PC. This discrepancy suggests
that the surface potential of PLGA nanoparticles prepared using DCM was significantly
smaller and influenced interparticle interactions. The significance of zeta potential is that
its value is related to the stability of colloidal dispersion. The smaller the dispersed particle
and the higher the absolute value (positive or negative) of the Zeta potential, the more
stable the system, that is, the dissolution or dispersion can resist aggregation [34].

In addition, to further observe the stability of PLGA NPs in high-salt solutions, PLGA
NPs were dissolved in PBS to measure zeta potentials (Figure 3c,d). The results revealed
that the magnitude of the zeta potential of PLGA NPs in PBS was significantly lower
compared to that in the aqueous solution. Conversely, the zeta potential of PLGA NPs
synthesized using EA was considerably higher than that of the other two organic solvents
(DCM and PC), showcasing a disparity from the outcomes observed in water. However, this
discrepancy also suggested that PLGA NPs prepared using EA exhibited favorable stability.
Nanoparticles possessing a smaller overall charge and a low absolute zeta potential tend to
attract other nanoparticles, thereby inducing instability within the entire system.
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3.3. The Residual Amount of BSA in PLGA NPs

Residual BSA is a key obstacle to the stability of PLGA NPs and the loading content of
hydrophilic drugs. To detect the BSA rate, PLGA NPs were dissolved in DMSO and then as-
sayed using a BCA kit. The calibration curve of BSA was calculated as y = 0.0023x − 0.0032,
R2 = 0.9994 (Figure S2), demonstrating its excellent linear relationship with the regression
equation. As delineated in Figure 4a,b, the EA group had the highest residual amount
of BSA, exceeding 10%, followed by the DCM group, while the PC group had the lowest
residual amount. Notably, the residual amount of BSA varied among PLGA NPs prepared
using different organic phases. Specifically, the EA group exhibited the highest residual
amount, whereas the PC group displayed the lowest residual amount. This discrepancy
could be attributed to the smaller size and larger surface area of nanoparticles, which
facilitate the adsorption of BSA. One potential explanation for this phenomenon is the high
polarity and water solubility of PC, resulting in interactions between PC and BSA during
the nanoparticle preparation process. In this scenario, BSA dissolves in PC, and its ionic
surfactant properties contribute to a lower BSA concentration within PC, consistent with
the aforementioned outcomes.

As the concentration of BSA increased, the residue of BSA in group EA increased,
whereas that in the remaining two groups decreased (Figure 4a). Interestingly, the particle
size of PLGA NPs in the DCM and PC groups remained relatively stable. This could
potentially be ascribed to the excess concentration of BSA, which consequently promoted
electrostatic repulsion between BSA and PLGA NPs, thereby resulting in a notable reduction
of BSA absorbed on the coating of PLGA NPs. The amount of BSA residue in group EA
increased with an increase in water phase volume, whereas that of the other two groups
decreased (Figure 4b). Additionally, the particle size in the EA group decreased, so the
specific surface area increased to increase the residual amount of BSA, whereas that in the
DCM group remained relatively unchanged, and that in the PC group increased.
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3.4. TEM Images of PLGA NPs

The analysis presented in Figure 5 demonstrates that the nanoparticles exhibit a solid
spherical structure with a continuous distribution and no signs of aggregation, signal-
ing that the prepared PLGA nanoparticles possess outstanding dispersion characteristics.
Furthermore, the particle size, approximately 100 nm, was in agreement with the results
obtained from both TEM observation and DLS measurement, ensuring consistency be-
tween the two techniques. After freeze-drying, the presence of DCM and EA in PLGA
NPs was undetectable owing to their low boiling points in the organic solvent residing
assays. Conversely, a residual quantity of PC, approximately 0.89%, was noted owing to its
elevated boiling point.
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3.5. The Characteristics of Drug-Loaded PLGA NPs

To observe the change in PLGA NPs after loading drugs (Dox and Ceb), the charac-
teristics of PD NPs, PC NPs, and PDC NPs were investigated. Figure 6a depicts the mean
particle size of nanocarriers containing Dox and Ceb. Nanocarriers co-loaded with Dox and
Ceb had an average particle size of 85.6 ± 7.8 nm. The zeta potential of PD NPs, PC NPs,
and PDC NPs were measured as −30.8 ± 1.2 mV, −30.5 ± 0.3 mV, and −30.4 ± 0.5 mV,
respectively. These values fall within the range of −20 to −40 mV (Figure 6b), signifying
that the nanocarriers possessed a higher surface potential and electrostatic potential energy
between particles. Overall, these findings suggested that the prepared nanomedical carrier
system demonstrated favorable stability. As shown in Figure 6c, the FTIR spectrum of PDC
NPs reveals the presence of characteristic peaks, including the carbonyl group at 1750 cm−1

representing PLGA, peaks at 3300 cm−1 and 1580 cm−1 corresponding to BSA, and peaks
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at 3300 cm−1, 1725 cm−1 and 1250 cm−1 associated with Dox, indicating the successful
preparation of PD NPs and PC NPs. The X-ray diffraction (XRD) spectrum of nanoparticles
is depicted in Figure 6d. Comparing the XRD spectra uncovered significant alterations,
with numerous peaks in Dox and Ceb absent in PD NPs, PC NPs, and PDC NPs. This dis-
crepancy suggests a modification in the crystal structure subsequent to drug loading. The
baseline in PC NPs demonstrated irregularities, indicating a mixed crystal composition.
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The TEM observation of PD, PC, and PDC nanoparticles showed the following mor-
phological characteristics. From the TEM images (Figure 7), the fabricated PLGA NPs
loaded with Dox and Ceb through physical embedding and electrostatic adsorption pos-
sessed a spherical structure with a size of about 100 nm. Moreover, the hydrophilic and
hydrophobic drugs (Dox and Ceb) had no impact on the morphological characteristics of
PLGA NPs, including their size (≈100 nm). Additionally, the presence of BSA, a surfac-
tant with strong electrostatic repulsion properties, did not induce PDC NP agglomeration
(Figure 7c). Overall, our nanoformulation resulted in excellent dispersibility, a critical index
in the field of nanobiomaterials for biomedical applications.
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3.6. In Vitro Drug Release Investigation

To measure the cumulative release rate of drugs, the drug contents and encapsulation
efficiency were calculated (Figures 8a and S3). The drug contents and encapsulation
efficiency of Dox in PD NPs, Ceb in PC NPs, Dox and Ceb in PDC NPs were about 4%
and 85%, 1.8% and 57%, about 4% and 80%, and 1% and 41%, respectively, according to
the calibration curve for Dox and Ceb. The drug loading of Ceb was significantly lower
than that of Dox, possibly attributable to the hydrophobicity of Ceb in the aqueous phase.
Additionally, the fed dosages of Dox and Ceb were limited to load into PLGA NPs to
preserve the physiochemical properties and structures of PLGA-based nanoparticles, which
was the reason of the low drug contents for PD NPs, PC NPs, and PDC NPs.
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To further investigate the release of Dox and Ceb at different conditions, PBS with
pH 7.4 and 5.5 was chosen to stimulate the physiological condition and lysosomal condition.
The results highlighted that PD NPs only loaded with Dox presented a sustainable and
controlled release (Figure 8b). The cumulative release rate of Dox was approximately
20% higher in PBS with pH 7.4 than 5.5 within 72 h, which could be attributed to the
neutralization of H+ from doxorubicin hydrochloride under a mildly alkaline environment,
with the deficiency of H+ facilitating its release from PD NPs. However, it is worth noting
that Ceb, unlike Dox (a water-soluble drug), lacks any acidic-reactive functional groups. On
the contrary, the sustained release of Ceb (neutral drug) from PC NPs in PBS with pH 7.4
and pH 5.5 was parallel (Figure 8c). The cumulative release of Ceb (hydrophobic drug)
was approximately 50% for 72 h through the diffusion process, detected using HPLC with
a peak time of 4.5 min at an absorption peak of 254 nm. Further, the cumulative release
of hydrophilic and hydrophobic drugs (Dox and Ceb) within PDC NPs under different
conditions (pH 7.4 and 5.5) was examined (Figure 8d). Intriguingly, the release of Ceb
presented pH-sensitive prosperity in PDC NPs, different from PC NPs. Conversely, when
Ceb was independently loaded in PC NPs, no pH-responsive drug release was observed,
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indicating that the release of Dox accelerated the release of Ceb. In other words, the release
of Dox might induce a structural collapse in PDC NPs, thereby expediting the release
of Ceb. The results demonstrated that the release rate of Dox was the highest at pH 7.4,
whereas Ceb displayed the slowest release rate at pH 5.5.

4. Conclusions

In summary, the optimal conditions for manufacturing PLGA NPs via the sonicated-
emulsified solvent evaporation method were successfully assayed herein, including the
type of organic solvent, surfactant concentration, and the volume of the aqueous phase. Our
observations uncovered that the size of PLGA NPs was significantly impacted by the type
of organic solvent, with remarkably smaller sizes in water-soluble organic solvents (EA and
PC) compared with a water-insoluble organic solvent (DCM). The size of PLGA NPs was
the smallest in the EA group, which may be due to its favorable solubility, low viscosity, and
boiling point. Nevertheless, variations in BSA concentration and the volume of the aqueous
phase had minimal impact on PLGA NP sizes. The ultimate choice for our designed PLGA
NPs was 2% BSA concentration, 4 mL aqueous solution, and EA as an organic solvent.
All parameters conjointly demonstrated excellent stability in water and PBS, maintained a
nanosphere structure, and retained the highest residual amount of BSA, thereby ensuring
stability and drug content. Furthermore, a hydrophobic drug (Ceb) and a hydrophilic drug
(Dox) were co-loaded to address clinical demands for multi-drug applications. Notably,
the drug-loading content of Dox were higher than that of Ceb, suggesting a significant
interaction between BSA and Dox. Moreover, PDC NPs exhibited stimuli-responsive drug
release in different acidic solutions, making them suitable for various clinical scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16070865/s1, Figure S1: Size distribution of PLGA NPs
prepared in different organic phases (a) DCM, (b) EA and (c) PC under 2% BSA concentration and
4 mL water phase; Figure S2: Standard curve of BSA; Figure S3: The encapsulation efficiency of PD
NPs, PC NPs and PDC NPs. *** p < 0.001.
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