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Abstract: Enhancing interfacial interactions in fiber-reinforced polymer composites (FRPCs) is crucial
for improving their mechanical properties. This can be achieved through the incorporation of nanoma-
terials or chemically functional agents into FRPCs. This study reports the tailoring of the fiber–matrix
interface in FRPCs using non-functionalized graphene nanoplatelets (GNPs) in combination with
a waterborne, highly branched, multi-functional polyurethane dispersion (HBPUD). A unique ul-
trasonic spray deposition technique was utilized to deposit aqueous mixtures of GNP/HBPUDs
onto the surfaces of carbon fiber fabrics, which were used to prepare epoxy-prepreg sheets and
corresponding FRPC laminates. The influence of the polyurethane (PU) and GNP content and their
ratio at the fiber–matrix interface on the tensile properties of resulting high-performance composites
was systematically investigated using stress–strain analysis of the produced FRPC plates and SEM
analysis of their fractured surfaces. A synergistic stiffening and toughening effect was observed when
as low as 20 to 30 mg of GNPs was deposited per square meter of each side of the carbon fiber fabrics
in the presence of the multi-functional PU layer. This resulted in a significant improvement in the
tensile strength from 908 to 1022 MPa, while maintaining or slightly improving the initial Young’s
modulus from approximately 63 to 66 MPa.

Keywords: highly branched functional waterborne polyurethane; carbon fiber-reinforced composites;
graphene nanoplatelets; fiber sizing; interfacial properties; ultrasonic spray coating

1. Introduction

Carbon fiber-reinforced polymer composites (CFRPCs) continue to replace traditional
materials due to their distinctive features such as high strength, stiffness, and long service
life for lightweight structural composites [1–3]. CFRPCs are increasingly used in aerospace,
automotive, electronics, and other applications. Interfacial properties between the fiber and
polymer matrix are an important factor determining the performance of CFRPCs in both
thermosetting and thermoplastic resin-based systems [4]. Typically, while the surface of
the virgin fiber is non-polar, the polymer matrix in CFRPCs tends to have a polar character.
This inherent difference in polarity necessitates the enhancement of the naturally weak in-
terfacial interaction between the fiber and the matrix to meet the performance requirements
expected from composite materials. The effectiveness of load transfer is often ascribed
to the interaction between the fiber and the matrix. If this interaction is too weak, stress
transfer becomes limited in composite structures, leading to a compromise in performance.
Consequently, poor interfacial adhesion diminishes the magnitude of load transfer between
the matrix and fibers. Conversely, when the interfacial interaction intensifies significantly,
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cracks tend to propagate diagonally in the matrix, breaking the fibers. Striking a balance in
interfacial adhesion is crucial as overly weak or overly strong interactions can adversely
impact the load transfer phenomenon and, consequently, the overall structural integrity of
the composite material. Achieving an optimal level of interfacial interaction is imperative
for maximizing the performance and mechanical properties of CFRPCs. As a result, the
stress concentration tends to be higher around these breakages [5–7]. The load-carrying
capacity of composite materials hinges predominantly on the nature of the fiber–matrix
bonding, encompassing both chemical and frictional interactions [8,9]. Extensive studies
in the literature have elucidated diverse methodologies for the surface modification of
carbon fibers, including wet chemical or electrochemical treatments, polymer coating, and
plasma treatment [10–17]. These techniques aim to introduce various functional groups
onto the carbon fiber surface, fostering robust adhesion between the fiber and the ma-
trix. Through such modifications, researchers strive to optimize the interface, ensuring
enhanced compatibility and, consequently, bolstering the composite material’s overall
mechanical performance.

Carbon fibers inherently exhibit brittleness and low elongation, resulting in challenges
such as yarn breakage and fluffiness during the manufacturing of CFRPCs. This inherent
fragility necessitates surface treatment interventions. An effective sizing component be-
comes crucial, not only for enhancing chemical interactions between the fiber and the matrix
to elevate interfacial adhesion properties but also for improving fiber bundling and overall
performance characteristics [18]. Various functional groups, such as alcohol, carbonyl, and
carboxylic acid, can be strategically incorporated onto the fiber surface through diverse
sizing methods [19]. Furthermore, sizing facilitates the modification of the surface free
energy of carbon fibers, thereby refining the interfacial features of composites. This, in
turn, contributes to heightened mechanical characteristics in comparison with composites
produced with untreated carbon fibers.

In contemporary fiber sizing applications, waterborne polyurethane dispersions
(PUDs) have garnered significant attention owing to their exceptional coating behavior and
multi-functionality. PUDs also stand out for their environmental friendliness, non-toxicity,
low viscosity, and remarkable adhesion capabilities with diverse polymeric matrices in com-
posites [20–22]. An especially attractive feature is their ability to establish robust adhesion
without requiring pretreatment of the fibers. This not only simplifies the sizing process but
also aligns with environmentally conscious practices, making PUDs a compelling choice in
fiber sizing for their versatile and eco-friendly attributes. PUDs emerge as highly suitable
sizing agents also for carbon fibers in CFRPCs [23]. This suitability is attributed to their
inherent polarity, marked by an ability to form effective bonds with the carbon fiber surface.
Furthermore, the high elasticity and ductility of polyurethanes present an advantageous
combination, offering the flexibility to tailor these properties based on the specific hard and
soft segment structures within the backbone. This tailoring capability enables one to match
the requirements of the carbon fiber reinforcement, contributing to enhanced compatibility
and overall performance in CFRPCs [24,25]. Zhang et al. [26] previously documented
that the treatment of carbon fibers with PUDs resulted in an elevation of surface energy.
This increase was attributed to the introduction of nitrogen (N) atoms on the fiber surface
through the treatment with PUDs. Consequently, the carbon fibers exhibited heightened
wettability when combined with epoxy resin in CFRPCs. Such enhanced wettability is a
key factor in promoting a more effective and intimate bonding between the carbon fibers
and the epoxy resin matrix, contributing to improved overall performance in the resulting
composite materials. Li et al. [27] conducted a study wherein waterborne PUDs based
on a tartaric acid polyol were synthesized specifically for carbon fiber sizing. CFRPCs
incorporating carbon fibers sized with PUDs demonstrated a remarkable improvement,
exhibiting a 14.3% increase in tensile strength, a 24.4% increase in flexural strength, and an
impressive 119.6% increase in impact strength when compared with CFRPCs from pristine
carbon fibers. Fazeli et al. [28] conducted a study on the surface treatment of recycled
carbon fibers using a combination of PUDs and silane compounds, exploring its impact
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on the mechanical properties of ensuing composites. The application of a flexible coating
comprising PUDs crosslinked with silane coupling agents onto the recycled carbon fiber
surface yielded noteworthy enhancements in impact, tensile, and flexural strengths in
epoxy-based CFRPCs.

In addition to the use of linear PUDs, there is a growing interest in incorporating
hyperbranched polymers into fiber-reinforced polymer composites (FRPCs) as a means
to enhance interfacial properties. Hyperbranched polymers exhibit spherical dendritic
structures with cavities and numerous terminal functional groups. These distinctive fea-
tures allow hyperbranched polymers to contribute to both mechanical interlocking and
chemical bonding between the polymer matrix and carbon fibers. The incorporation of
hyperbranched polymers represents a versatile strategy for optimizing the interface in
composite materials based on carbon or glass fibers, which are typically supplied with
commercial sizings with limited information on their nature and functionality. Thus, the
incorporation of HBPs may broaden the range of materials and methodologies available
for advancing FRPC technology [29,30].

The incorporation of carbon nanomaterials into FRPCs, specifically on the fiber surface,
has been reported as a feasible approach to enhance the mechanical properties of such
composite structures [31]. For example, Zhang et al. [32] produced composites with
dispersed graphene oxide (GO) layers directly integrated onto the surface of individual
carbon fibers as part of the fiber sizing process. The incorporation of 5 wt% GO sheets
in this manner led to significant improvements in the interfacial and tensile properties of
the resulting CFRPCs, highlighting the potential of integrating GO into fiber sizing as an
effective strategy. Xiong et al. [33] introduced a novel strategy for enhancing the interface
and mechanical properties of CFRPCs by grafting GO onto carbon fibers with HBPs using
thiol-ene click chemistry and a vinyl-terminated hyperbranched polyester. The tensile and
flexural strengths of corresponding CFRPCs increased by 47.6% and 65.8%, respectively.

CFRPCs obtained from carbon fibers modified with graphene nanoplatelets (GNPs)
have been shown to exhibit enhanced mechanical and thermal properties [34]. A solution
comprising GNPs in acetone, along with a small amount of resin/hardener, was formulated
as a spraying solution for modifying dry fabrics suitable for the vacuum-assisted resin
transfer infusion (VARI) process. Through this method, GNP-reinforced FRPCs were suc-
cessfully fabricated, with GNPs uniformly distributed in the interlaminar regions. Analyses
revealed effective immobilization of GNPs on the surfaces of carbon fibers post-spray
coating. Moreover, significant enhancements were observed in the mechanical properties
and thermal conductivity of the resulting epoxy-based CFRPCs. Specifically, the incor-
poration of 0.3 wt% GNPs led to the highest levels of flexural strength and interlaminar
shear strength. Other studies have explored different matrices beyond epoxy in conjunction
with GNPs and GOs to enhance the mechanical properties of FRPCs. Li et al. [35] suc-
cessfully enhanced the interfacial properties of CF/copoly(phthalazinone ether sulfone)s
(PPBESs)-based composites by incorporating multi-scale hybrid carbon fiber/GO (CF/GO)
reinforcements. An optimized GO loading of 0.5% with a homogeneous distribution of
GO by coating the hybrid fiber surface led to significant improvements in the PPBES com-
posite’s interlaminar shear strength, reaching 91.5 MPa, and flexural strength, reaching
1886 MPa. These enhancements represented increases of 16.0% and 24.1%, respectively,
compared with the non-reinforced counterpart. Furthermore, a reduction in the interface
debonding in CF/GO (0.5%) composites suggested superior interface adhesion due to the
incorporation of GO into the interface. Choi et al. [36] investigated the influence of nano-
materials and fiber interface angles on the mode I fracture toughness of woven CFRPCs.
Three types of carbon nanomaterials—COOH-functionalized short multi-walled carbon
nanotubes (S-MWCNT-COOH), MWCNTs, and GNPs—were investigated. Specimens were
fabricated using the hand lay-up method, comprising 12 woven carbon fiber fabrics with or
without 1 wt% nanomaterials. The incorporation of nanomaterials led to a mode I fracture
toughness exceeding that of pure CFRP. Notably, the utilization of GNPs demonstrated
superior effectiveness in enhancing the fracture toughness compared with other nanomate-
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rials. Costa et al. [37] reported the improvement of the tensile strength of a high-density
polyethylene-based FRPC with natural fibers by incorporating GNPs into the matrix. An
increase of over 20% in the Young’s modulus was achieved compared with the high-density
polyethylene composite alone, reaching 1.63 ± 0.15 GPa.

Although the vast majority of the literature studies offer unique strategies for en-
hancing interfacial interactions between the matrix and the fiber surface in FRPCs by
the incorporation of various nanoparticles into this interface for improved mechanical
properties, it becomes increasingly difficult to demonstrate such enhancements and im-
provements, particularly in the tensile properties of high-performance FRPCs with tensile
strength (>900 MPa) and Young’s modulus (>60 GPa) values that are notably high to start
with. On the other hand, the individual use of PUDs as post-sizing agents and GNPs as
reinforcing agents has been separately demonstrated to effectively tailor the interface of
FRPCs in previous studies. However, the combined incorporation of carbon nanomaterials
in the presence of chemically functional PUDs into the fiber–matrix interface of FRPCs
remains an area worthy of investigation for potential synergistic effects in enhancing the
mechanical properties of high-performance FRPCs.

In this manuscript, the fiber–matrix interface of a high-performance CFRPC structure
was tailored with GNPs in the presence of a waterborne, multi-functional polyurethane
in an effort to improve the tensile properties of corresponding CFRPCs. GNPs were incor-
porated into the fiber–matrix interface of CFRPCs in the presence of a waterborne, highly
branched, multi-functional polyurethane dispersion (HBPUD). The in-house synthesized
HBPUD, possessing both amine and silane terminal groups in the backbone, was designed
to act as both a dispersing agent for GNPs in aqueous media during the spray deposition
and a reactive sizing agent for covalent bridging between the carbon fiber, epoxy matrix,
and GNPs at the interface of the corresponding composite structures upon curing. For this
purpose, aqueous dispersions containing various ratios of HBPUDs and GNPs were intro-
duced onto carbon fiber fabric surfaces via a novel ultrasonic spray deposition technique to
ensure a fine distribution of GNP particles and homogeneous surface coverage, followed
by the fabrication of prepreg laminates using hot melt epoxy films to obtain CFRPC plates
by stacking them and curing in an autoclave. In a comprehensive examination, the effects
of the presence of a multi-functional polyurethane layer at the interface, the ratio of the
polyurethane to GNPs, and the overall GNP content per unit area of the carbon fiber fabric
on the tensile strength and Young’s modulus of the corresponding CFRPC plates were
systematically investigated.

2. Materials and Methods
2.1. Materials

Hexamethylene diisocyanate (HDI), polyol of ethylene glycol/adipic acid/butane diol
(Mn = 2000 g/mole, Desmophen 1652), was purchased from Covestro (previously Bayer
MaterialScience AG, Leverkusen, Germany). Diethylenetriamine (DETA) and acetone
(99.5%) were purchased from Aldrich Chemical Corporation (Milwaukee, WI, USA). The
3-isocyanatopropyltriethoxysilane (IPTES) was kindly donated by Momentive Performance
Materials (Niskayuna, NY, USA). Sodium 2-[(2-aminoethyl) amino] ethanesulphonate (Ves-
tamin A-95, AEAS) was kindly donated by Evonik Industries (Essen, Germany). Graphene
nanoplatelets (purity: 99.9%) (GNPs) with 3 nm of thickness, 1.5 µ diameter, and 800 m2/g
specific surface area were purchased from Nanografi (Ankara, Turkey) [38]. Twill weave
carbon fiber fabric woven with 400 gsm DowAksa (Istanbul, Turkey) 12K yarns (TW400)
and uncured epoxy resin films with 145 gsm were provided by KordSA (Pendik, Turkey).
The 3M Scotch-Weld AF163-2K adhesive was used for bonding specimens for tensile tests.

2.2. Synthesis of Functional HBPUDs

Waterborne HBPUD samples with (i) only amino- (HBPUD-0) and (ii) both amino-
and silane-functional terminal groups (HBPUD-50) were designed and synthesized using
the oligomeric A2 + B3 approach based on the chemical compositions given in Table 1 as



Polymers 2024, 16, 828 5 of 20

previously reported [39]. The synthesis route (Figure 1) contained four steps: (a) prepa-
ration of the A2 oligomer, (b) branching by the reaction of the A2 oligomer with the B3
monomer, (c) functionalization, and (d) dispersion and distillation. A precalculated amount
of polyester polyol (Table 1) was charged into the dried 3 L four-necked round-bottom flask
equipped with an overhead stirrer, a reflux condenser, and a thermocouple that was con-
nected to a heating mantle to control the reaction temperature. The polyol was dewatered
by applying a vacuum (~2 mbar) for 15 min, at 75–85 ◦C. Upon the removal of the vacuum,
the temperature was set to 60 ◦C, HDI was slowly added into the reaction flask, and the
reaction was stirred for 3 h at 80 ◦C. The NCO content of the reaction mixture during the
prepolymer process was monitored by the back-titration method [40], and the comple-
tion of the reaction was verified when the measured NCO content reached the theoretical
NCO value. Upon the completion of the prepolymer reaction, the reaction temperature
was set to 55 ◦C, and acetone was added to obtain the NCO-terminated polyurethane
prepolymer with a concentration of 35–40 wt% in acetone at 48–50 ◦C. Following the pre-
polymer synthesis, 15% aqueous solution of a precalculated amount of the ionic monomer
AEAS was fed dropwise into the reaction mixture at 48 ◦C to form the NCO-terminated,
anionic A2 oligomer. The freshly prepared anionic A2 oligomer was then immediately
transferred into an addition funnel, which was then slowly added into the preweighed
DETA solution in acetone and water in a 5 L, four-necked round-bottom flask equipped
with a reflux condenser, a mechanical stirrer, and a thermocouple. Upon the completion
of the branching step by the slow addition of the ionic A2 oligomer into the B3 monomer
solution, amino-functional, branched polyurethane was obtained in acetone. Next, distilled
water was slowly added into the reaction mixture while vigorously stirring to disperse
polyurethane chains in water while cooling the mixture to 42 ◦C. Finally, acetone was
removed from the reaction mixture by vacuum distillation, and the complete removal of
the acetone was ensured at 42 ◦C, 50 mbar. The final product, amino-functional HBPUD
(denoted as HBPUD-0) with a solid content of 33 wt%, was collected by filtering through a
50-micron filtration medium.

Table 1. Chemical compositions of synthesized HBPUD samples.

Component Sample Name

HBPUD-0 HBPUD-50

Polyester polyol (g) 911.60 911.60

Diisocyanate (g) 144.62 144.65

AEAS (g) 109.74 109.74

DETA (g) 21.33 21.33

IPTES (g) 0 37.32

In order to attain silane functionality and obtain HBPUDs with both amino- and silane-
terminal groups, in a separate synthesis reaction, after the synthesis of amino-functional
polyurethane in acetone as described above, a precalculated amount of IPTES compound
was added dropwise into the reaction mixture immediately after the branching step at
48 ◦C to achieve a 50:50 ratio of amino–silane terminal groups, denoted as HBPUD-50.
Figure 2 shows the structure and terminal groups of HBPUD-50.

FT-IR spectroscopy was used to monitor the functionalization step, by ensuring the
absence of any NCO stretching vibration band (~2260 cm−1) from IPTES as shown in
Figure 3. Upon the completion of the functionalization step, the dispersion and acetone
distillation steps were applied as described above for the synthesis of amino-functional
HBPUD (HBPUD-0). The chemical compositions of the synthesized HBPUD samples are
given in Table 1.
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2.3. Characterization of HBPUDs and PU Films

HBPUD syntheses were monitored, and final solid PU films were analyzed using
a Nicolet IS10 Fourier Transform Infrared (FTIR) Spectrometer (Waltham, MA, USA)
equipped with an ATR system with a 4 cm−1 resolution over 120 scans and ASTM D2572-97
back-titration method.

The particle sizes and distributions of HBPUDs were determined using a ZetaSizer,
Malvern Instruments (Malvern, UK), provided with laser diffraction and polarized light of
three wavelength detectors. Approximately 0.1 mL of HBPUD was diluted with distilled
water to an adequate concentration in the cell and measured at room temperature. The
refractive indices of PU and water were 1.50 and 1.30, respectively. The HBPUD-50/GNP
mixtures were analyzed using a Partica LA-960V2 (Horiba, Kyoto, Japan) wet circulation
system equipped with a dispersant filling pump, liquid level sensor, circulation pump,
30 W in-line ultrasonic probe, and relief valve. The particle size analysis was conducted
by gauging the angular deviation of light scattered by particles when traversing a laser
beam. The machine employed the principles of Mie scattering and Fraunhofer diffraction
to ascertain precise measurements [41].

Tensile stress–strain tests of dried polyurethane films were performed on a universal
testing machine (Zwick Roell Z100 UTM, Ulm, Germany), with a load cell of 200 N, a
crosshead speed of 25 mm/min, and a grip-to-grip separation of 22 mm, and dog bone-
shaped samples were prepared and tested according to a standard test method [42]. Three
to five specimens were measured, and their average stress–strain values with standard
deviations were reported.

Gel content (%) tests were carried out using Soxhlet extraction with toluene. For the
gel content measurements, the dried polyurethane film (G1) and the thimble (G) were
precisely weighed, and the polyurethane film was put into the thimble and extracted with
toluene for 24 h. The thimble containing the film after the extraction was weighed again
(G2) after drying. To calculate the gel content (%) of each polyurethane film, Equation (1)
given below was used.

Gel content (%) = [(G2 − G)/G1] × 100 (1)

Scanning electron microscopy (SEM) was employed using a Leo Supra 35VP FEG-SEM
(Miami Beach, FL, USA) to examine the surface morphology of the dried HBPUD film
samples, which were coated with gold and palladium for enhanced conductivity and
imaging quality.
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2.4. Preparation of Aqueous HBPUD/GNP Mixtures and Their Deposition onto Carbon Fiber
Fabric Surfaces

The preparation of HBPUD-50/GNP mixtures in water and the deposition of this
mixture onto the carbon fiber surface is schematically given in Figure 4. First, 0.25 g of
GNPs was dispersed in 500 g of deionized water using probe ultrasonication (SONICA
Q700 equipment, Niles, IL, USA) for 15 min under 70% amplitude with 5 s pulse on and 5 s
pulse off. Then a predetermined amount of HBPUD-50 was mixed into this dispersion by
mechanical stirring such that two different HBPUD-50/GNP mixtures were obtained with
0.05 wt% GNP concentration and solid PU:GNP weight ratios of 0.33:1 and 1:1. In addition,
an aqueous dispersion of pure GNPs with 0.05 wt% and a pure HBPUD-50 dispersion
with 0.05 wt% solid PU were prepared, which corresponded to 0:1 and 1:0 solid PU:GNP
ratios, respectively.
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Freshly prepared aqueous HBPUD-50/GNP mixtures were sprayed onto each side
of 350 mm × 350 mm TW400 carbon fiber fabrics using a SONO-TEK Inc. (Milton, NY,
USA), Flexi Coat ultrasonic spray coater with a 48 kHz, impact-type ultrasonic spray
shaping nozzle. The spray was guided onto the substrate using jet air deflection aided by
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compressed air gas. At the end of the spray deposition, fabrics were dried on a heated
plate at 50 ◦C for 1 day. The amount of GNPs deposited per unit surface area of carbon
fiber fabric was controlled by the amount of HBPUD-50/GNP sample to be sprayed, such
that 10, 20, and 30 mg of GNPs was deposited per m2 of each side of the carbon fiber fabric
(denoted as 10, 20, and 30 mgsm) from each HBPUD-50/GNP sample, corresponding to
15 different carbon fiber fabrics in total, coated with HBPUD-50/GNP aqueous mixtures.

Samples of HBPUD-50/GNP mixtures with solid PU:GNP weight ratios of 0.33:1 and
1:1 dried in an oven overnight at 80 ◦C and pure GNPs (PU:GNP ratio of 0:1) were analyzed
using a Nicolet iS50 FTIR Spectrometer (Waltham, MA, USA) in transmission mode by
preparing KBr pellets containing approximately 0.05 wt% of each dried sample.

2.5. Fabrication of Prepregs and Manufacturing of CFRPC Plates

An in-house method was developed and used for the fabrication of prepreg materials
from ultrasonic spray-coated carbon fiber fabrics and hot melt epoxy resin films utilizing a
hot-press technique with optimized parameters. The detailed fabrication process and setup
are illustrated in Figure 5, while specifications of the desired prepreg materials are detailed
in Table 2, for which the production process was precisely tailored.
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Figure 5. In-house prepreg laminate fabrication: (a) TW400 carbon fiber fabric (330 × 330 mm),
(b) 145 gsm epoxy resin film (320 × 320 mm), (c) TW400 fabric sandwiched in between epoxy resin
film, (d) resin impregnation in hot press, (e) prepreg (initial form out of hot press), and (f) prepreg
after trimming the edges (300 × 300 mm, ready to lay up).

Table 2. Specifications of desired prepreg materials.

Test Standard Test Result Type Desired Range Average Result Unit

[43] Prepreg areal weight (PAW) 690 ± 27 708 g/m2

[43] Fiber areal weight (FAW) 400 ± 12 411 g/m2

[44] Glass transition temperature (Tg) −3.5 ± 3.5 −1.4 ◦C

[44] Curing enthalpy (∆H) 100 ± 50 81 (J/g)

[45] Gel time 15 ± 5 15 min

TW400 fabric layers that were either as is or spray coated with each aqueous HBPUD-
50/GNP mixture were cut into the precise dimensions of 330 mm × 330 mm (Figure 5a),
and a roll of 145 gsm epoxy resin film was accurately cut into preforms with dimensions
of 320 mm × 320 mm (Figure 5b) to ensure complete coverage without resin overflow.
Concurrently, two layers of epoxy resin film were strategically placed on both surfaces of
the TW400 carbon fiber fabric (Figure 5c) to promote an even resin distribution upon the
application of pressure and heat. Each carbon fiber fabric sandwiched between epoxy resin
films was placed in the hot press (Figure 5d) at 60 ◦C, under 0.1–0.2 ton-force pressure for
30–40 s ensuring the transformation of the sandwich structure into prepreg (Figure 5e). Last,
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prepregs out of the hot press were precisely trimmed to dimensions of 300 mm × 300 mm
(Figure 5f), rendering them suitable for use in the manufacturing of CFRPC test plates.

The carbon/epoxy prepregs prepared in house, as depicted in Figure 5f, were utilized
in the manufacturing of CFRPC laminates from five layers of prepregs with stacking
sequences of [0]5s for tensile tests. Subsequently, stacked prepreg laminates were bagged
for the autoclave manufacturing process with Teflon-coated glass fabrics (Fiberflon 828-25)
on the autoclave trays, facilitating the plates’ removal post-curing and peel ply material
application to both the top and bottom surfaces of all laminates. A vacuum blanket (Airtech
N10) (Airtech, Huntington Beach, CA, USA) was then carefully placed over the laminates,
and the assembly was sealed using leak-proof tape (AT 200Y) (Airtech) around the tray
edges. Two vacuum valves were positioned diagonally on each tray, and the setup was
enclosed with a vacuum bag (Airtech WL7400).

The autoclave curing cycle was conducted at 120 ± 3 ◦C, under a vacuum of
−0.2 ± 0.05 bar and a positive pressure of 7 ± 0.2 bar, sustained for 1 h. The cooling
phase ensued at a controlled rate of 3 ± 0.5 ◦C/min. Upon curing, the plates underwent
thickness verification via the non-destructive A-Scan inspection method. Plates that passed
this inspection that had thickness values of 2.30 ± 0.15 mm (fabricated from five layers
of prepreg sheets with individual cured ply thicknesses of 0.46 ± 0.03 mm) were then
subjected to the tab bonding process first, followed by the coupon cutting process. The
tensile specimens were then accurately sectioned using a water jet milling system equipped
with KUKA KR-16 Ultra F Robot (Kuka, Ausburg, Germany).

A reference CFRPC sample denoted as CFRPC-Ref was manufactured using TW400
carbon fiber fabric as is, while CFRPC samples manufactured using prepregs from each
spray-coated TW400 fabric were named as CFRPC-x-y:z, where x denoted the GNP deposi-
tion amount per meter square of TW400 fabric (mgsm), and y:z denoted the solid PU:GNP
ratio in each spray deposition.

2.6. Characterization and Testing of CFRPC Plates

The surface morphologies of spray-coated carbon fiber samples and fractured CFRP
sample surfaces were analyzed using a Leo SUPRA 35VP FEG-SEM. The images were taken
at varying accelerating voltages between 2 kV and 5 kV using secondary electron imaging.

The tensile properties of manufactured CFRPC plates were measured according to a
test standard [46]. Test samples were prepared from each CFRPC plate with dimensions of
250 mm (length) × 15 mm (width). Tension test plates were tabbed with [+45◦/−45◦]4s
glass fiber-reinforced epoxy prepregs using 3M Scotch-Weld AF163-2K adhesive film (3M,
St. Paul, MN, USA) and cured in the vacuum oven at 105 ◦C for 2 h. Tensile tests of the
CFRPC plates were performed using INSTRON 5982 100 kN Universal Testing Systems
(Norwood, MA, USA). A clip-on biaxial extensometer was initially attached to each tensile
test specimen, which was removed before 0.5% strain during each test.

3. Results and Discussion

An anionic, isocyanate-terminated prepolymer was synthesized as an A2 oligomer,
which was polymerized with DETA as the B3 monomer in dilute acetone solution to obtain
highly branched, amino-functional polyurethane as shown in Figure 1. The polymerization
was carried out in acetone medium, and the resulting polyurethane was dispersed in water
to obtain waterborne, amino-functional HBPUDs as reported previously [39]. In this study,
the reaction of amino-terminal groups with IPTES prior to the dispersion step enabled the
partial conversion of amine terminal groups to silane groups as shown in Figure 2. The
presence of both amine and silane terminal groups on the highly branched polyurethane
backbone was envisioned to enhance interactions between the carbon fiber, GNPs, and
the polymeric matrix both covalently and non-covalently when incorporated into the
interface of CFRPCs. In this context, while silane terminal groups of the polyurethane were
expected to react with residual hydroxyl groups present on the fiber and GNP surfaces,
amine terminal units on the same polyurethane backbone were expected to react with
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the epoxy resin during the curing stage of the prepreg laminates. For this purpose, the
HBPUD-50 sample was synthesized according to the composition given in Table 3, with an
amine–silane terminal group molar ratio of 50:50. This sample was successfully obtained
with a solid content of 33 wt% and an average particle size value of 84 nm (Table 3), which
was stable over prolonged shelf storage.

Table 3. Physical and mechanical properties of HBPU-0 and HBPU-50 (*: HBPUD-0 sample did not
form a self-standing film).

Sample Name

HBPUD-0 HBPUD-50

Particle size of dispersion (nm) 80 84

Film properties

Tensile strength at break (MPa) * 6.1 ± 1.1

Elongation at break (%) * 301.2 ± 15.6

Young’s modulus (MPa) * 3.2 ± 0.6

Gel content of film (wt%) 0 84

The presence and the effect of silane terminal groups in the HBPUD-50 sample
(Figure 2) were first evaluated in the pure polyurethane film as they were expected to
lead to the self-crosslinking of the corresponding film upon casting and drying. SEM
images of the surfaces of solid polyurethane films from the HBPUD-0 and HBPUD-50
samples are presented in Figure 6. Both samples formed continuous films. The amino-
functional polyurethane had a smooth surface, yet it did not form a self-standing film
with a mechanical integrity. The polyurethane film from the silane functional HBPUD-50
sample was self-standing, and its SEM images revealed a rougher surface with micro-voids,
possibly due to the hydrolysis and self-condensation of silane terminal groups.
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In order to assess the effects of silane terminal groups on the physical properties
of the resulting polyurethane films, the gel content and tensile properties of standalone
polyurethane films from HBPUD-0 and HBPUD-50 were compared as summarized in
Table 3. While the HBPUD-0 sample resulted in a fully soluble film in toluene with 0 wt%
gel content, the HBPUD-50 sample had >80 wt% gel content, which was attributed to the
hydrolysis, self-condensation, and crosslinking of silane terminal groups (Figure S1) in the
highly branched polyurethane backbone from the HBPUD-50 sample. While the HBPUD-
0 sample did not form a self-standing film with mechanical integrity, the crosslinking
mechanism resulted in self-standing polyurethane films from HBPUD-50 with the tensile
stress–strain behavior shown in Figure 7 and tensile properties given in Table 3. Last, the
presence of Si-O-Si groups in the polyurethane film from the HBPUD-50 sample was also
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verified by the peaks observed around 1200, 1050, and 750 cm−1 in the FT-IR spectrum of
the film as shown in Figure 8.
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Upon the synthesis and characterization of the HBPUD-50 sample, aqueous mixtures
of GNPs and HBPUD-50 with different weight ratios were prepared for their deposition
onto the carbon fiber fabric surface by ultrasonic spray deposition as depicted in Figure 4.
The GNPs used in this study were formed of individual platelets with an average particle
diameter of approximately 1.5 µm and a thickness less than 5 nm as previously analyzed
using transmission electron microscopy (TEM) in the literature [47]. Considering the
fact that these platelets were expected to form agglomerations rapidly in water, HBPUD
was expected to enhance the stability and dispersibility of GNPs in water, which was a
critical factor during their ultrasonic spray deposition onto the carbon fiber surface. As
demonstrated in Figure S2, freshly prepared HBPUD-50/GNP mixtures with different
weight ratios had relatively broad, uniform particle size distributions in water. Such broad
distributions demonstrate the fact that GNPs are agglomerated in water, and ultrasonic
spray deposition could play a key role in depositing them onto carbon fiber surfaces
in smaller forms. When these mixtures were allowed to sit on the shelf for 24 h and
shaken gently, an HBPUD-50/GNP mixture with a 1:1 solid PU:GNP weight ratio was
observed to retain its original particle size distribution. The other two mixtures with less
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(0.33:1 ratio of solid PU:GNP) and no HBPUD-50 (0:1 ratio of solid PU:GNP) showed new,
larger particle size shoulders, indicating that an adequate amount of HBPUD may assist
in obtaining homogeneous, stable GNP dispersions in water. Dried samples of HBPUD-
50/GNP mixtures were analyzed using FT-IR spectroscopy as shown in Figure S3. Pure
GNPs (HBPUD-50/GNP 0:1) were characterized by a broad peak around 3400 cm−1 due to
hydroxyl groups around the edges of the GNP sheets, small C–H stretching peaks below
3000 cm−1 presumably due to imperfections in the graphitic structure, and the main peak
around 1615 cm−1 due to C=C bond stretching. On the other hand, pure polyurethane
film was characterized by a strong C=O bond stretching peak around 1730 cm−1, along
with C–H stretching peaks below 3000 cm−1 and a small peak arising from amine groups
around 3300 cm−1. The FT-IR spectra of the HBPUD-50/GNP mixtures with 0.33:1 and
1:1 ratios of solid PU:GNP verified the presence of both polyurethane and GNPs in these
mixtures by the presence of C=C bonds arising from GNPs and both C=O and C–H bonds
increasing parallel with the polyurethane content.

After the preparation of the HBPUD-50/GNP mixtures with different solid PU:GNP
ratios, they were introduced onto carbon fiber fabric surfaces using a novel ultrasonic spray
deposition method as demonstrated in Figure 4. The ultrasonic shaping nozzle of the spray
equipment was expected to break up the agglomerates of GNPs in the aqueous medium
immediately prior to the deposition of GNPs and enable uniform distribution of them on
the coated carbon fiber surface. In this study, HBPUD-50/GNP mixtures with 0:1, 0.33:1, 1:1,
and 1:0 ratios of solid PU:GNP were sprayed onto each side of 350 mm × 350 mm carbon
fiber fabrics by ultrasonic spray deposition. While the samples with 0:1 and 1:0 weight
ratios of PU:GNP corresponded to the deposition of pure GNPs and pure PU, respectively,
samples with 0.33:1 and 1:1 weight ratios allowed the investigation of the presence of both
PU and GNPs with two different ratios at the fiber–matrix interface. Each HBPUD-50/GNP
mixture, as well as the pure HBPUD-50 (1:0 ratio) and GNP dispersion (0:1 ratio), was
spray deposited in specific amounts to achieve depositions of 10, 20, and 30 mg of GNPs
per m2 (mgsm) of each side of the carbon fiber fabric. The amount of the pure HBPUD-50
sample was adjusted to deposit a solid PU amount the same as that of the 1:1 solid PU:GNP
sample for each mgsm deposition series. It should be noted that the depositions of 10, 20,
and 30 mgsm GNPs corresponded to approximately 0.003, 0.006, and 0.009 wt% GNPs
in the overall composite structure, respectively, when calculated based on the average
areal weight of each prepreg sheet given in Table 2. Upon the spray deposition of HBPUD-
50/GNP mixtures with different ratios in each deposition series, each sprayed carbon fiber
fabric sample underwent an overnight drying process, during which water was removed
and a nanocomposite film layer was formed by facilitating the self-crosslinking or reaction
of silane terminal groups with GNP and carbon fiber surfaces. SEM images of the uncoated
carbon fiber surface and the ones coated with 20 mgsm GNP from pure GNP dispersion
and from HBPUD-50/GNP mixtures with 1:1 PU:GNP ratios are shown in Figure 9. The
successful deposition of pure GNPs onto the originally smooth carbon fiber surfaces is
visible in Figure 9b, showing a significant change in the surface morphology of fibers with
the aid of the ultrasonic spray deposition. Visually, the surface of fibers coated with the
HBPUD-50/GNP sample (with a 1:1 ratio of solid PU:GNP) appears similar to that of the
pure GNP-coated one (Figure 9c), while a better attachment of GNP particles onto the fiber
surface is expected due to the presence of a polyurethane layer, although it is not visible in
the SEM images. A chemical bond is expected to develop between silane terminal groups
of polyurethane and GNP or carbon fiber surfaces while retaining amine terminal groups,
resulting in the establishment of an intricate interface between the fiber and the matrix to
be introduced.
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Following the ultrasonic spray deposition of each HBPUD-50/GNP, as well as pure
HBPUD-50 and GNP dispersions onto carbon fiber fabrics with 10, 20, and 30 mgsm
GNP depositions from each dispersion, prepreg laminates were fabricated by sandwiching
each carbon fiber fabric in between epoxy resin films with standard gsm values. The
optimized parameters used in the in-house process depicted in Figure 5 ensured the robust
adhesion of the resin to the fiber without resin overflow, while maintaining the fiber fabric’s
integrity without causing damage, ensuring the transformation of the sandwich structure
into prepreg form. The carbon/epoxy prepregs prepared in house were utilized in the
manufacturing of CFRPC test plates by stacking laminates in [0]5s orientation, followed
by autoclave curing in vacuum bags. Fifteen different CFRPC test plates, each formed of
five prepreg layers, with varying GNP amounts or PU:GNP ratios, were manufactured,
along with a reference CFRPC manufactured from TW400 carbon fiber fabric without any
HBPUD-50 and/or GNP deposition.

The fabrication and testing of the CFRPC series with 10, 20, and 30 mgsm GNP
deposition on the carbon fiber surface allowed a systematic investigation of the influence
of varying the content of GNPs and/or solid PU at the fiber–matrix interface on the tensile
properties of CFRPCs. In Figure 10a, representative stress–strain curves of the CFPRC-10
series are shown, while Figure 10b displays the variation of the average tensile strength
at break and the Young’s modulus values of the CFRPC samples with a GNP content of
10 mgsm and varying PU:GNP ratios at the interface. The deposition of 10 mgsm GNPs in
the CFRPC-10-0:1 sample resulted in a slight increase in the tensile strength and modulus;
however, a relatively large standard deviation especially in the modulus value indicated
that GNPs alone may not have been homogeneously distributed at the interface. On
the other hand, by the incorporation of 10 mgsm PU only from HBPUD-50, the CFRPC-
10-1:0 sample showed an approximately 12% increase in the tensile strength reaching
1014.6 MPa, albeit with a slight decrease in the Young’s modulus value. Furthermore, the
CFRPC-10-0.33:1 with both PU and GNPs showed similar tensile properties to those of
the CFRPC-10-1:0 sample, whereas an increased amount of PU in the HBPUD-50/GNP
mixture corresponding to the CFRPC-10-1:1 sample resulted in a slight decrease in the
tensile strength value reaching 982.2 MPa, still remaining above the reference CFRPC. In
conclusion, although a clear trend was not observed as a function of the PU:GNP ratio,
the incorporation of PU only or GNPs in the presence of PU resulted in increased tensile
strength values with no change in the Young’s modulus.

Stress–strain curves of the CFRPC-20 series with 20 mgsm GNPs deposited alone or in
the presence of HBPUD-50 are plotted in Figure 11a, and the variation in tensile properties
as a function of PU:GNP ratios is given in Figure 11b. The increased amount of incorporated
GNPs from 10 mgsm to 20 mgsm resulted in a significantly increased Young’s modulus but
reduced tensile strength compared with the reference CFRPC sample. This suggested that
a certain amount of GNPs at the interface without any attachment purely contributed to
an increase in the modulus values. On the other hand, the incorporation of 20 mgsm PU
only from HBPUD-50 in CFRPC-20-1:0 resulted in a significantly increased tensile strength
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value reaching above 1000 MPa and a slightly decreased Young’s modulus value compared
with both the CFRPC-Ref and CFRPC-20-0:1 samples. Interestingly, the incorporation of
a combination of PU and GNPs at weight ratios of 0.33:1 and 1:1 resulted in a synergistic
effect. In the CFRPC sample having a combination of PU and GNPs at a weight ratio
of 0.33:1 (CFRPC-20-0.33:1), the tensile strength value was moderately increased above
950 MPa, while the Young’s modulus value remained similar to that of the 20 mgsm pure
GNPs incorporated CFRPC sample (CFRPC-20-0:1). In the case of the CFRPC-20-1:1 sample
with increased PU content in combination with GNPs, the tensile strength value further
increased compared with the CFRPC-20-0.33:1 sample, reaching the tensile strength value
of the CFRPC-20-1:0 sample with pure PU, with a Young’s modulus value in between those
of the CFRPC-pure and CFRPC-20-0:1 samples.
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Figure 11. (a) Tensile stress–strain curves of CFRPC-20 series and (b) variation in tensile properties
of CFRPC-20 series as a function of PU:GNP ratio.

Figure 12 shows the tensile properties of CFRPC samples with 30 mgsm GNPs at the
interface alone or in combination with amine and silane functional polyurethane. The
increased content of pure GNPs at the fiber–matrix interface resulted in a drastic decrease in
not only the tensile strength but also the Young’s modulus value, contrary to the 20 mgsm
pure GNPs incorporated CFRPC sample. On the other hand, 30 mgsm incorporation of
only PU at the interface showed a slight improvement in the tensile strength without any
changes in the Young’s modulus compared with the reference CFRPC. The incorporation
of a combination of PU and GNPs at different weight ratios resulted in a visible trend
of improved tensile strength and Young’s modulus behavior such that while the CFRPC-
30-0.33:1 sample was similar to the CFRPC-30-1:0 sample with only PU at the interface,
the CFRPC-30-1:1 sample containing equivalent weights of solid PU and GNPs stood out
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among all samples with a significantly improved average tensile strength value above
1000 MPa and a moderately increased Young’s modulus value around 65 MPa. It should be
noted that our preliminary studies on increasing the incorporated GNP and/or PU content
beyond 30 mgsm did not show any significant changes in the mechanical properties of the
corresponding CFRPC laminates. Yet, the incorporation of high amounts of GNPs or other
nanomaterials onto fiber fabric surfaces by ultrasonic spray deposition can be a promising
approach in improving the thermal or electrical conductivity of FRPCs.
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A comprehensive analysis of the tensile behavior of all samples clearly indicated that
the incorporation of relatively rigid GNPs alone into the interface without any attachment
or chemical interactions solely improved the stiffness of corresponding samples up to
20 mgsm GNP incorporation, above which all tensile properties significantly decreased
presumably due to an agglomeration effect of GNPs. On the other hand, the incorporation
of a chemically functional PU layer alone into the fiber–matrix interface resulted in the
improvement of mechanical properties through the enhancement of interfacial interactions,
which was reflected as a significant increase in the tensile properties and clearly evidenced
in the stress–strain curves of corresponding samples. In the case of the combined use
of GNPs and a functional PU, a stiffening effect with the aid of GNPs and enhancement
of interfacial interactions with the aid of a multi-functional PU layer through chemical
bonding and interactions resulted in the improvement of tensile strength while maintaining
or improving the initial Young’s modulus with the optimum content of PU and GNPs, such
as in the CFRPC-20 series.

The presented enhancement of interfacial interactions with the use of GNPs and
multi-functional PU has been further assessed by SEM analysis of selected CFRPC samples
after fracture. As illustrated in Figure 13, the reference CFRPC sample’s failure occurred
predominantly through progressive interfacial debonding and fiber pullout, leading to
arbitrary fiber breakage at multiple levels along the fiber direction and voids in the matrix.
In contrast, when one of the best performing CFRPC samples’ (CFRPC-20-1:1) fractured sur-
face was analyzed, the interface between the fiber and matrix remained almost intact after
the failure, showing fewer fiber pullouts and more uniform fiber breakage, which provided
evidence of strong interfacial bonding and contribution to improved tensile properties.

Here, we demonstrated a novel approach to enhance the interfacial interactions and
improve the tensile properties of fiber-reinforced polymer composites (FRPCs) by combin-
ing graphene nanoplatelets (GNPs) and a multi-functional polyurethane at the fiber–matrix
interface using ultrasonic spray deposition. This method resulted in significant improve-
ments in the tensile properties of FRPCs with as little as 20 to 30 mg of GNPs and PU/m2

of carbon fiber fabric, corresponding to approximately 0.006 to 0.009 wt% of each compo-
nent in the overall composite structure. Notably, our study achieved these improvements
with much lower amounts of carbon nanomaterials compared with previous studies. For
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instance, a prior study with a similar approach and composition of composite structure
reported a notable increase in the tensile strength of CFRPCs from approximately 700 MPa
to 850 MPa with the interfacial incorporation of 0.3 wt% GNPs, which is over 30 times
higher than the GNP content used in our study [34]. It is important to point out that the
waterborne, multi-functional polyurethane described in our study shows promise as a
chemical compatibilizer and sizing agent, potentially enhancing interfacial interactions
between dissimilar surfaces in composite materials synergistically when combined with
various nanoparticles.
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4. Conclusions

The incorporation of GNPs in the presence of a multi-functional polyurethane via
their deposition onto the carbon fabric surface from an aqueous dispersion using an
ultrasonic spraying deposition technique was systematically investigated. The synthesis
and characterization of HBPUDs possessing only amine or both amine and silane terminal
groups were carried out, aiming to understand the role of silane terminal groups on the
polyurethane backbone. The presence of silane terminal groups on the polyurethane
backbone led to a very high gel content and decent mechanical properties in resulting
films from the HBPUD-50 sample, whereas the solid PU film from the HBPUD-0 sample
with only amine terminal groups did not form a self-standing film. The subsequent
preparation of GNPs with HBPUD-50 at different ratios assisted in keeping a homogeneous
dispersion for the ultrasonic spray deposition of these mixtures onto carbon fiber fabrics
to incorporate both GNPs and multi-functional polyurethane chains at the fiber–matrix
interface of CFRPCs by the preparation of their prepreg laminates, stacking, and autoclave
curing. A systematic study on the relative content of GNPs and the PU:GNP weight
ratio at the fiber–matrix interface showed that a synergistic effect of both stiffening and
enhancement of interfacial interactions was achieved, resulting in the improvement of
the tensile strength values from approximately 908 MPa up to 1022 MPa and Young’s
modulus values from 63 MPa up to 66 MPa. This study underscored the importance of
carefully tuning the GNP content and PU:GNP ratio in tailoring these tensile properties in
high-performance CFRPCs.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/polym16060828/s1: Figure S1: Self-crosslinking mechanism of HBPUD-
50 upon film formation; Figure S2: Particle size analyses of HBPUD-50/GNP dispersion mixtures
(a) freshly prepared and (b) gently shaken after one day of storage (all measurements were performed
at 0.05 wt% concentration); Figure S3: FT-IR spectra of dried HBPUD-50/GNP samples.
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