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Abstract: Surface modification using hydrophilic polymer coatings is a sustainable approach for
preventing membrane clogging due to foulant adhesion to water treatment membranes and reducing
membrane-replacement frequency. Typically, both molecular descriptors and time-domain nuclear
magnetic resonance (TD-NMR) data, which reveal physicochemical properties and polymer-chain
dynamics, respectively, are required to predict the properties and understand the mechanisms of
hydrophilic polymer coatings. However, studies on the selection of essential components from high-
dimensional data and their application to the prediction of surface properties are scarce. Therefore,
we developed a method for selecting features from combined high-dimensional molecular descriptors
and TD-NMR data. The molecular descriptors of the monomers present in polyethylene tereph-
thalate films were calculated using RDKit, an open-source chemoinformatics toolkit, and TD-NMR
spectroscopy was performed over a wide time range using five-pulse sequences to investigate the
mobility of the polymer chains. The model that analyzed the data using the random forest algorithm,
after reducing the features using gradient boosting machine-based recursive feature elimination,
achieved the highest prediction accuracy. The proposed method enables the extraction of important
elements from both descriptors of surface properties and can contribute to the development of
new sustainable materials and material-specific informatics methodologies encompassing multiple
information modalities.

Keywords: hydrophilic coating materials; time-domain nuclear magnetic resonance; contact angle;
chemoinformatics descriptors; machine learning

1. Introduction

The bioeconomy [1] and circular economy [2] are the keys to realizing a sustainable
society. With the shift in focus toward the management of the life cycle of plastics [3],
understanding the interfaces of materials has become crucial. For example, understanding
the mechanisms underlying biological and chemical reactions, including microorganism
reactions that degrade polyethylene, polystyrene, and polypropylene [4,5], enzyme reac-
tions that degrade polyethylene terephthalate (PET) [6], and marine biofouling, which
occurs at the interfaces of materials, is crucial [7]. Therefore, methods based on wettability,
which indicates the hydrophilicity and hydrophobicity of a material, antifoulant release,
self-renewability, temperature and pH changes, and biomimetics have been developed [8].
Biocompatible 2-methacryloyloxyethyl phosphorylcholine, developed by introducing phos-
phatidycholine, which is a component present in biological membranes [9] has a hydration
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layer formed on the polymer imparts strong antifouling properties [10]. A hydration layer,
namely an intermediate water layer, formed on poly(2-methoxyethyl acrylate) (PMEA)
plays a critical role in preventing fouling [11,12]. Thus, polymer hydrophilicity as well as
hydrophobic coatings play crucial roles in controlling fouling. Superhydrophobic polymers
exhibit antifouling properties owing to their low surface free energies [13]. In addition,
elastomers based on silicone or polydimethylsiloxane are used to prevent fouling. However,
the adhesion between the coating material and substrates is weak, and thus, various studies
have been conducted to improve the adhesion using nanofiller mixtures [14].

The functionality of polymers are influenced by their microscopic molecular structures
as well as their intricate molecular dynamics, including the behavior of polymer chains
and their entanglement. Hence, comprehending and managing molecular dynamics is
pivotal for effectively understanding and harnessing polymer properties [15]. The surface
properties of materials, such as rigidity, affect their hydrophilicity [16]. Nuclear magnetic
resonance (NMR) is a powerful tool for analyzing molecular dynamics, and the corre-
sponding signals can be measured over a wide range of timescales, from picoseconds to
milliseconds (ms) [17]. Thus, NMR spectroscopy can be employed to study the relation-
ships between the functions and physical properties of materials and their structures [18].
Proton and carbon-13 nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopies
are frequently used in polymer development [18,19], and time-domain NMR (TD-NMR), a
highly promising analytical tool, is extensively utilized to explore the impact of internal and
external factors on the structure and properties of various materials, including polymers,
fresh foods, processed food products, and agricultural items [20].

Because NMR spectroscopy generates a large amount of high-dimensional data per-
taining to molecular dynamics, various measurement informatics technologies have been
simultaneously developed to streamline the associated measurement process [21]. To op-
timize machine learning (ML) performance, the extraction of optimal features from raw
data is crucial. Moreover, high-dimensional datasets often lead to overfitting issues [22]. To
address these challenges, approaches involving dimensionality reduction and/or feature
selection are employed. Methods such as principal component analysis [23], multidimen-
sional scaling [24], and linear discriminant analysis [25] are used for reducing feature space
dimensions owing to their high efficacy in identifying highly relevant descriptors, which
are commonly referred to as key features and are particularly beneficial for ML applica-
tions [26]. Additionally, non-negative matrix factorization (NMF), partial least squares [27],
and semi-supervised NMF have been used as dimension reduction methods [28], in which
genetic algorithms [29,30] are utilized to meaningfully reduce the relaxation component
to 10% [31]. Recursive feature elimination (RFE), a type of feature selection, is applied to
perform quality control of polylactic acid processing [32] and antibacterial peptide develop-
ment [33]. Recently, a new RFE approach that evaluates the “feature (variable) importance”
based on support vector machine (SVM), random forest (RF), and gradient boosting ma-
chine (GBM) models as well as selects and eliminates the least important features has been
proposed [34].

As mentioned before, analyzing microscopic molecular structures is also necessary for
assessing the surface properties of materials. For instance, in an antifouling membrane [8],
after the initial formation of conditioning films, microorganism adhesion occurs [35]. The
antifouling ability of PMEA originates from the interactions between the constituent car-
boxy and methoxy groups with water molecules [36]. Hence, controlling the intermolecular
interactions is crucial. Materials informatics (MI) involves the analysis of microscopic surfi-
cial molecular structures using informatics technology. To date, various MI models based
on molecular descriptors have been developed using open-source tools, such as RDKit,
which is widely utilized in chemoinformatics. These models aid in devising synthesis
strategies for molecules, including inorganic nickel (II) salts, organic photosensitizers [37],
and amphiphilic copolymers [38]. Although MI research is primarily focused on extracting
essential physicochemical components, progress in integrating these findings with molecu-
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lar dynamics has been limited. Specifically, studies on the application of diverse types of
RFE algorithms to NMR transition curves are scarce.

In the present study, we constructed an ML model that incorporates both molecular
and dynamics descriptors to predict the hydrophilicity of hydrophilic polymer coating
materials. The conceptual framework of the study is illustrated in Figure 1. We conducted
RF classification using a combination of RDKit descriptors, five distinct pulse sequences
from TD-NMR spectroscopy, and different ultraviolet (UV) wavelengths applied during the
manufacturing of the coating material. This study was focused on enhancing interpretability
through the application of RFE as a feature selection method.

Figure 1. Conceptual framework of the study, illustrating the pivotal role of molecular descriptors
and molecular dynamics in hydrophilicity development. The study encompassed calculations and
measurements of these elements. The dataset, comprising RDKit, TD-NMR, contact angle data, and
manufacturing process details, underwent feature selection via RFE. Preprocessed data were then
utilized by RF classifier to identify crucial factors for building predictive models of hydrophilicity
and investigating the underlying principles governing this trait.

2. Materials and Methods
2.1. Sample Preparation
2.1.1. Materials

N,N′-{[(2-acrylamide-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (oxy)]
bis(propane-1,3-diyl)}diacrylamide (FOM-3006), N,N′,N′′-triacryloydiethylenetriamine
(FOM-3007), N,N′-diacryloyl-4,7,10-trioxa-1,13-tridecanediamine (FOM-3008), N,N′,N′′,N′′′-
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tetraacryloyltriethylenetetramine (FOM-3009), and [3-(Methacryloylamino)propyl]dimethyl
(3-sulfobutyl)ammonium hydroxide inner salt (FOM-3010), N-tert-butylacrylamide (NTBA)
were used as hydrophilic monomers (Figure S1). 2-Hydroxy-4′-(2-hydroxyethoxy)-2-
methylpropiophenone (Irgacure 2959) was used as the photoinitiator. Methanol was used
as the solvent to dissolve the monomers. FOM-3006, FOM-3007, FOM-3008, FOM-3009,
FOM-3010, and methanol were obtained from Fujifilm Wako Pure Chemical Corporation
(Osaka, Japan). NTBA and Irgacure 2959 were purchased from Tokyo Chemical Industry
Co., Ltd. (Tokyo, Japan) and Sigma-Aldrich (Tokyo, Japan), respectively.

2.1.2. Surface Coating

Surface coatings were prepared by copolymerizing two types of hydrophilic monomers
on PET sheets, which were adopted owing to the strong affinity of PET with hydrophilic
polymers as well as a high recycling rate (approximately 85% in Japan) of PET [39]; owing
to its high recycling rate, PET is one of the most sustainable plastics.

Two monomers were randomly selected and dissolved in methanol, which contained
the photoinitiators listed in Table S1. Approximately 200 µL of each mixture was coated
onto a PET sheet, with dimensions of approximately 3.5 cm × 3.5 cm (Cosmoshine A4360,
TOYOBO, Osaka, Japan), using a micropipette. The mixing ratio of each monomer is listed
in Table S1. The coated sheets were dried at 50 ◦C for 10 min using a constant temperature
thermostatic dryer natural oven (NDO-420, TOKYO RIKAKIKAI CO., LTD., Tokyo, Japan).
Subsequently, the sheets were exposed to UV light, with a wavelength of either 254 nm or
365 nm, inside a box using a handy UV light (SLUV-4, AS ONE CORPORATION, Osaka,
Japan) for curing.

2.2. TD-NMR Measurements

TD-NMR measurements were conducted at 298 K using the Minispec mq20 NMR
spectrometer (Bruker, Billerica, MA, USA) to assess the dynamics of the polymer chains
within the hydrophilic coating. This equipment is equipped with Carr-Purcell Meiboom-
Gill (CPMG) [28], double quantum (DQ) filter [40], magic sandwich echo (MSE) [40], solid
echo (SE) [41], and magic and polarization echo (MAPE) [40]. The PET sheets were cut into
square shapes measuring approximately 1 mm × 10 mm and placed in measurement tubes
without any solvent. T2 relaxation curves were obtained using five pulse sequences, viz,
CPMG, DQ, MSE, SE, and MAPE. Because CPMG was a pulse sequence that could measure
long relaxation times in the order of ms, information on rapid molecular mobility was
obtained. SE could measure short relaxation times in the order of µs and was thus used to
measure high-order structures, such as crystalline and amorphous structures. However, the
application of SE was limited by its associated dead time. Thus, MSE, DQ, and MAPE pulse
sequences, which could overcome this dead time issue, were employed. MSE consisted of
DQ and MAPE, and DQ could measure extremely short relaxation times, whereas MAPE
could measure relaxation times longer than those measured by DQ. The relaxation curves
exhibited distinct time regions for the slow and fast mobile components of the polymers.
Specifically, the MAPE, DQ, MSE, and SE sequences depicted the slow mobile components,
while CPMG captured the fast mobile components in ms. MSE represented both slow and
relatively fast mobile components. Furthermore, the DQ and SE sequences detected the
slow mobile components with short relaxation times.

2.3. Contact Angle Measurement

Contact angle measurements were conducted using a contact angle meter (DMs-401,
Kyowa Interface Science Co., Ltd., Saitama, Japan). A 2 µL droplet of clean water was
dispensed using a microsyringe, and its side image was captured using the accompanying
digital camera. From the obtained image, the contact angle was automatically calculated
using the θ/2 method. The contact angle of each specimen was measured thrice, and their
average value was adopted as the final measured contact angle. Based on the measured
contact angles, the films were divided into two groups: films with contact angles less than
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25◦, 30◦, 35◦, or 40◦ were categorized as 0, while those with contact angles exceeding 25◦,
30◦, 35◦, or 40◦ were classified as 1. Such a classification was performed to avoid large
differences in the amount of data after classification.

2.4. Generation of Molecular Descriptors

Molecular descriptors of the monomers were generated using a simplified molecular
input line entry system [42], which transformed chemical structures into text representa-
tions, and RDKit (version 2023.3.2) (Table S2). The descriptors of all the monomers were
selected (Table S3). The molecular descriptors of the copolymers were calculated based
on the mixing ratio of the monomers and photoinitiators. Additionally, the number of
chemical bonds, including double bonds (C–C, C=C, C–N, C–O), in each monomer was
utilized as a descriptor. Furthermore, the bond distances between the vinyl groups were
manually calculated based on individual bond numbers and bond lengths (C–C: 1.54 Å,
C=C: 1.34 Å, C–N: 1.43 Å, and C–O: 1.43 Å).

2.5. Data Analysis

The data were processed using Python (version 3.10.12), scikit-learn library (version
1.2.2), LightGBM (version 1.2.2), and XGBoost (version 2.02). Autoscaling (standardization)
was conducted for both the molecular descriptors and TD-NMR relaxation curves. Because
the mobile molecules were assumed to be contributors to hydrophilicity, TD-NMR and
data from five pulse sequences were employed in the analysis. Feature selection was
executed using GBM-RFE, RF-RFE, SVM-RFE, and XGM-RFE. To ensure that the number
of features remains less than the number of samples (=57), the number of features after
reduction was set to 30. The features obtained via RFE were employed as explanatory
variables, while the binary classification values of the contact angle were employed as
target variables. RF classifiers were used to construct classification models. The data were
split into training and test datasets using the holdout method. Hyperparameters were
determined using cross-validation methods by applying GridSearchCV to the training data.
Prediction accuracies were assessed based on the parameters: accuracy, precision, recall,
and F1-score. The flow of data analysis is depicted in Figure S2, and the hyperparameter
RF is shown in Table S4.

3. Results
3.1. Surface Coating

Surface coatings were applied by the photoinitiated copolymerization of acrylamide
monomers on PET films. Both ionic (FOM-3010)) and nonionic (NBTA) monomers were
utilized to alter the surface properties. Cross-linkers with varying numbers of vinyl groups
were employed to stabilize the coating and regulate film dynamics. Upon exposure to UV
light, the initially flowable liquid transformed into a cured solid with high viscosity. As
a result, polyacrylamide was coated onto the PET films through the copolymerization of
the monomers.

3.2. TD-NMR

Changes in chain dynamics due to surface modifications were assessed through
TD-NMR measurements. Figure S3 displays the TD-NMR relaxation curves, which are
correlated with the surface modification conditions, acquired for various pulse sequences.
Noticeable distinctions in the relaxation curves were evident for CPMG, MSE, and SE se-
quences. Specifically, the CPMG and MAPE [40] appeared suitable for mobile components,
suggesting their effectiveness in detecting components characterized by long relaxation
times on the surface.

The impact of the presence or absence of cross-linkers on the relaxation curves was
confirmed, as depicted in Figure 2. The evaluation of samples coated with NTBA using the
CPMG sequence revealed a gradual attenuation in the intensity of T2 relaxation. Conversely,
the relaxation curve obtained using the MSE sequences exhibited a low intensity with min-
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imal changes. However, for samples with cross-linkers, the CPMG relaxation curves
exhibited minimal alterations, with sharper relaxations observed in the MSE sequences.
These trends were accentuated with an increase in the number of vinyl groups. Polyacry-
lamide prepared with NTBA featuring a single vinyl group exhibited linear polymer chains,
while FOM-3006, FOM-3007, FOM-3008, and FOM-3009, which possess multiple vinyl
groups, displayed cross-linked or networked structures with reduced mobility. Thus, these
findings underscore a disparity in the TD-NMR relaxation curves, stemming from the chain
mobilities of polyacrylamide on the surface.

Figure 2. T2 relaxation curves of each single-monomer polymer. (a) CPMG, (b) DQ, (c) MSE, and
(d) SE. The blue, orange, gray, yellow, and light and dark green lines represent FOM-3006, FOM-3007,
FOM-3008, FOM-3009, FOM-3010, and NTBA, respectively.

3.3. Contact Angle

The properties of the modified surfaces were evaluated through contact angle mea-
surements. Figure 3 illustrates a histogram of the contact angles of the sample films. The
contact angles of the modified surfaces exhibited a broad range of values, spanning from
5◦ to 80◦. To determine the standard for binary classification, data analysis was performed
according to the approach indicated in Section 2.5, and the best results were obtained at
40◦. Therefore, 40◦ was set as the criteria for binary classification. The performance data
for angles of 25◦, 30◦, and 35◦ are shown in Figure S4.
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3.4. RFE

Feature selection was performed using the importance-based RFE method, and the
importance was evaluated using the GBM, RF, SVM, and XGB classifiers. When a classifier
model is trained on a training dataset, feature weights that reflect the importance of each
feature are obtained. After all the features were ranked according to their weights, the
feature with the lowest weight value was removed. The classifier is then retrained with the
remaining features until there are no more features to learn. Finally, the model-based RFE
method can obtain important features and show good performance [20]. The classification
models were constructed by RF classifiers using the selected feature values above. As a
result of feature reduction using GBM-RFE, RF-RFE, SVM-RFE, and XGB-RFE, the values
of accuracy, precision, recall, and F-score for all models were higher than those obtained
without RFE. The GBM-RFE showed the highest accuracy and F-score, the GBM-RFE and
XGB-RFE had the highest precision, and the RF-RFE had the highest recall. From the
results of the receiver operating characteristic curve and the area under the curve (AUC),
GBM-RFE had the highest AUC value (Figure 4).
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The important factors extracted differed for each model (Figure 5). As a feature of
RDKit, fr_unbrch_alkane was the top selected feature in all RFE models. For the TD-NMR
sequence, several time points of the CPMG, double quantum (DQ) filter, MSE, MAPE, and
SE sequences were selected, but most of them were after the intermediate region where the
slope of the transition curve becomes gentle (Figure 6). The important factors extracted
differed for each model (Figures 5 and 6).

Figure 5. Important features of each RF classification model. Feature selections were performed by
(a) GBM-RFE, (b) RF-RFE, (c) SVM-RFE, and (d) XGB-RFE.
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4. Discussion

Among the four RFE methods, GBM-RFE exhibited the best feature-selection per-
formance. For LightGBM, following the decision tree analysis, gradient boosting was
employed to enhance the accuracy. This boosting technique improves the predictive per-
formance by learning from errors between predicted and actual values; it particularly
focuses on data that could not be initially accurately predicted, and this method of growing
according to the leaves of a decision tree is called leaf-wise [43].

Although XGB is based on gradient boosting, a difference with the branches of the
decision tree, called level-wise, exists for each layer [43]. SVM-RFE, a wrapper method [44],
was employed for feature selection in this study using a linear form [45]. However, the
linear approach might not have effectively classified the current dataset, which comprised
RDKit and five pulse sequence data with diverse characteristics. RF, a bagging method
based on decision trees [46], demonstrated the second-best performance among the mod-
els. Its strength lies in amalgamating multiple decision trees into an ensemble, which
potentially contributes to its effective analysis ability. Although both GBM and XGB are
gradient boosting methods, their inherent approaches are different. GBM utilizes the
leaf-wise method, focusing on improving accuracy while learning the errors for each leaf.
Interestingly, GBM-RFE proved suitable for our dataset with its varying characteristics.
Notably, the selection and importance of the features were dependent on the RFE methods
employed in the analysis. This dependency underscores the significance of the chosen
methodology in determining feature relevance and importance.

TD-NMR measurements offer a wide dynamic range, spanning from sub-microseconds
(µs) to seconds, allowing for the extraction of various types of information across different
time scales [46]. Mobility within meso-regions, like domain fluctuations, was observed in
the µs range [40,47,48], while fluctuations in chain ends or the mobility of unfrozen and
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bound water were detected at the ms level [31]. The CPMG pulse sequence enables the
measurement of long T2 relaxation times, allowing the analysis of the long components
(liquid-like) of polymers [28,49–51]. DQ, MSE, and SE have short T2 relaxation times and
are thus suitable for analysis of the rigid components (solid-like) of polymers [52–54]. The
data after the middle region of each transitional curve includes data related to highly motile
components. The monomers used in this study contained acrylamide groups, and the
monomer FOM-03010 features a betaine structure, which is a zwitterionic group. The C=O
and N=H of the acrylamide group [55] (betaine structures [56]) interact with the water
surrounding the polymer, forming a hydration layer that inhibits foulant adhesion. In our
case, multiple pulse sequences of CPMG, DQ, MSE, and SE were used to detect data from
relaxation curves; in addition, various motilities might be involved in the measured contact
angle and hydration properties.

Among the several molecular descriptors of physicochemical features, fr_unbrch_alkane
(number of unbranched alkanes of at least four members, excluding halogenated alka-
nes) [57], which represented the proportion of unbranched alkanes, was selected in most
of the RFE methods. The presence of branched alkanes in molecular structures is crucial
for predicting crystallization owing to their disruptive effect on molecular packing, which
destabilizes the liquid crystal phase [58]. This characteristic suggests that hydrophilic
monomers may form structures conducive to expressing hydrophilicity by orderly bonding
among themselves. Furthermore, molecular fluctuations occur more easily in a linear
structure than in a branched structure. Based on the TD-NMR data, intermediate or late
relaxation time and high molecular mobility were selected as important factors in the
region; thus, we can infer that this molecular mobility (molecular fluctuation) is involved
in the expression of hydrophilicity.

As discussed earlier, our current methodology offers the unique advantage of si-
multaneously providing the essential components from both molecular descriptors and
TD-NMR T2 relaxation curves. These components respectively represent physicochemical
and dynamic properties. While understanding both properties is crucial for designing
superior surface modifications, the challenge lies in the human capacity to manage a vast
array of molecular descriptors and numerous NMR curves obtained through various pulse
sequences. An additional noteworthy aspect is our utilization of diverse types of RFE
methods. The importance attributed to ML algorithms varies, and relying on a single set
of criteria can lead to misunderstandings due to factors like noise or pseudo-correlation.
Therefore, our approach is particularly well-suited for a comprehensive and multifaceted
examination of material data. In recent years, simple and inexpensive methods using smart-
phones and ML have been developed to measure contact angles [59,60]. Until recently,
expensive contact angle meters were extensively used. However, these new ML-based
methods enable the evaluation of the process of creating hydrophilic/hydrophobic polymer
coating materials and aid in efficiently managing their manufacturing process. Therefore,
incorporating the proposed ML-based method into future studies will be useful.

5. Conclusions

In our study, we showcased feature-selection techniques for molecular descriptors
assessed via RDKit and relaxation curves obtained from TD-NMR, employing RFE for
surface modifications. Our surface modifications involved copolymerizing various com-
binations of acrylamide monomers on PET films. To evaluate polymer chain dynamics
across a broad time range, we utilized TD-NMR measurements with multiple pulse se-
quences, standardizing the data obtained from these five sequences. Applying GBM-RFE,
RF-RFE, SCM-RFE, and XGB-RFE treatments to these descriptors significantly improved
the predictability of the RF classifications. Moreover, our findings highlighted the crucial
roles played by both the physicochemical properties and dynamics of polymer chains in
determining the surface properties. The RFE method not only enhanced the predictability
but also allowed us to extract critical factors or time regions from both physicochemical and
TD-NMR data. This deeper insight into underlying mechanisms underscores the versatility
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of these approaches, extending their applicability beyond surface modification to other
materials requiring comprehensive multi-modal information.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16060824/s1; Figure S1: chemical structure of monomers;
Figure S2: The flow of data analysis of this study; Figure S3: Autoscaling of each T2 relaxation curve;
Figure S4: Performance of each criterion for binary classification; Table S1: list of samples; Table S2:
list of the molecular descriptors; Table S3: list of the RDKit descriptors of each monomer; Table S4:
the parameter of each random forest classifier model.
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