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Abstract: Probiotics have attracted great interest from many researchers due to their beneficial effects.
Encapsulation of probiotics into biopolymer matrices has led to the development of active food
packaging materials as an alternative to traditional ones for controlling food-borne microorganisms,
extending food shelf life, improving food safety, and achieving health-promoting effects. The chal-
lenges of low survival rates during processing, storage, and delivery to the gut and low intestinal
colonization, storage stability, and controllability have greatly limited the use of probiotics in prac-
tical food-preservation applications. The encapsulation of probiotics with a protective matrix can
increase their resistance to a harsh environment and improve their survival rates, making probiotics
appropriate in the food packaging field. Cellulose has attracted extensive attention in food packaging
due to its excellent biocompatibility, biodegradability, environmental friendliness, renewability, and
excellent mechanical strength. In this review, we provide a brief overview of the main types of
cellulose used for probiotic encapsulation, as well as the current advances in different probiotic
encapsulating strategies with cellulose, grafted cellulose, and cellulose-derived materials, including
electrospinning, cross-linking, in-situ growth, casting strategies, and their combinations. The effect of
cellulose encapsulation on the survival rate of probiotics and the patented encapsulated probiotics are
also introduced. In addition, applications of cellulose-encapsulated probiotics in the food industry
are also briefly discussed. Finally, the future trends toward developing encapsulated probiotics with
improved health benefits and advanced features with cellulose-based materials are discussed.

Keywords: cellulose; probiotic; encapsulation; food application

1. Introduction

Probiotics are live microorganisms that exert beneficial effects on their host, when ad-
ministered in adequate amounts [1]. They are widely used to produce dairy products, such
as yoghurt and drinks, as well as functional foods. Currently, various forms of probiotic
dietary supplements have been developed, including probiotic powders, probiotic candies,
probiotic capsules, etc. [2]. With the increase in health awareness and the flourishing of
probiotic-related research, various probiotic-related industries are developing rapidly, and
the sales of the probiotic products are expected to grow at an annual rate of approximately
7.4% [3]. Probiotics exert beneficial effects by producing functional metabolites, modulating
intestinal microecology, regulating the immune system, and preventing pathogens [4].
However, it is difficult for probiotics to reach the intestinal tract in adequate amounts and
activity due to the susceptibility of probiotics to adverse conditions such as temperature,
oxygen, water activity, pressure, pH, hydrogen peroxide, and digestive enzymes during
processing, storage, and digestion, thus affecting the beneficial effects of probiotics [5]. In
addition, during processing and storage, probiotics are subjected to high temperatures,
high acidic or alkaline conditions, and other harsh conditions, which result in a significant
reduction in the viability of probiotics [6]. Therefore, it is necessary to maintain the high
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viability of probiotics during processing, storage, and digestion to promote their efficacy.
Probiotic encapsulation is an effective strategy for protection and efficient delivery of
probiotics during processing, storage, and oral administration.

Natural polymer-based materials (e.g., polysaccharides, proteins, and lipids) are bio-
compatible, food-grade, biodegradable, and widely available, making them ideal matrixes
for protection and controlled delivery of probiotics [7]. For example, proteins, includ-
ing soybean protein, whey protein, and soybean protein isolate (SPI), etc., are used as
encapsulation materials for probiotics due to their low cost, abundant sources, and high
nutritional properties [8]. However, proteins typically encapsulate probiotics by interact-
ing with a variety of active compounds or other polymers via their surface functional
groups [9–12]. Lipids can also be used to encapsulate probiotics [13,14]. Lipids are often
used to encapsulate probiotics by forming different types of emulsions or forming lipid
membranes by self-assembly under the action of calcium ions [15,16]. Compared with
proteins, encapsulation of probiotics using lipids is less studied, except for emulsions.
Polysaccharides (e.g., cellulose, alginate, chitosan, and gellan gum) are commonly used
as probiotic encapsulation materials due to their biocompatibility, low-cost, accessibility,
modifiability, and pH-responsive properties. They can be used alone or combined with
other materials for probiotic encapsulation to improve the survival and colonization rates
of probiotics in the intestine, to realize the targeted release in the intestine, and to guarantee
the retention time of probiotics in the gut. Among the polysaccharides, cellulose is one
of the most used protective matrices for encapsulating probiotics to improve the survival
rate of probiotics in harsh environments, to maintain the viability of probiotics, and to
extend the storage time of probiotic products [17,18]. Various cellulose derivatives, such
as hydroxypropyl cellulose and carboxymethyl cellulose (CMC) have been extensively
used as probiotic encapsulation materials [19,20]. The cost of cellulose production is much
lower than that of other materials, making it ideal for encapsulating probiotics by creating
a microenvironment that protects probiotics from harsh environments and maintains the
metabolic activity of probiotics. In addition, cellulose can maintain the viability of probi-
otics for a long time during storage. Moreover, cellulose encapsulation of probiotics has
the advantages of safety, non-toxicity, high reactant resistance, high biomass density, high
activity, and stability. When cellulose-encapsulated probiotics are used as a starter culture
for yogurt fermentation, the stability of the released probiotics in the fermented milk is
significantly improved, and the cellulose-based starter culture can be reused several times,
enabling recyclability, long-term fermentation, and biotransformation [21].

In this review, we will comprehensively summarize the advances in the development
of cellulose-encapsulated probiotics for food applications from five aspects: (1) the types
of cellulose used for encapsulating probiotics, (2) strategies for probiotic encapsulation
using cellulose or grafted cellulose, (3) the effects of cellulose encapsulation on the sur-
vival rate of probiotics, (4) patented encapsulated probiotics, and (5) the applications of
cellulose-encapsulated probiotics in food industry (Figure 1). Finally, the current challenges
regarding the cellulose-encapsulating probiotics and future prospects in this field are pro-
posed. We hope that this review can have implications for further research on designing
and developing cellulose or cellulose-based materials for encapsulating probiotics and
promoting their practical applications.
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Figure 1. Schematic illustration of the types of cellulose used for probiotic encapsulation, probi-
otic encapsulating strategies with cellulose or cellulose-based materials, and the applications of
encapsulated probiotics in the food field.

2. Cellulose Types Used for Probiotic Encapsulation

Cellulose is globally abundant as a major component of the plant cell wall. Recently,
cellulose/cellulose-based materials have attracted extensive attention due to the biocom-
patibility, biodegradability, renewability, environmental friendliness, functionalizability,
and excellent mechanical strength [22,23]. They have been extensively studied in various
fields, including packaging, electronics, healthcare materials, printing, and materials sci-
ence [24,25]. Many reviews about the types, preparations, modifications, and applications
of cellulose have been published [26–28]. In addition, although there are many types of
cellulose and cellulose derivatives that have been developed and applied in various fields,
not all cellulose and cellulose derivatives are studied for the use in encapsulating probiotics.
Thus, in this section, we will briefly introduce several representative celluloses for encapsu-
lating probiotics, including bacterial cellulose (BC), bacterial cellulose nanofibers (BCNF),
carboxymethyl cellulose (CMC), and cellulose nanofiber (CNF) from the aspects of their
production methods, characteristics, and effects on the survival rates of probiotics before
and after cellulose encapsulation (Table 1). Since cellulose is an indigestible fiber that is
resistant to gastric juices, probiotics have an enhanced adverse environmental tolerance
and survival rate after cellulose encapsulation. So, cellulose is particularly suitable as a
material for protecting and controlling the delivery of probiotics.
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Table 1. Types of cellulose used for probiotic encapsulation and their applications.

Cellulose Type Probiotic Type
Survival Rate of
Probiotics before

Cellulose Encapsulation

Survival Rate of
Probiotics after Cellulose

Encapsulation

Application of the
Cellulose-Based
Probiotic Films

Ref.

Bacterial cellulose

Lactobacillus
acidophilus,

Bifidobacterium
animalis

– – Bio-preservation [29]

Bacterial cellulose

Lactiplantibacillus
pentosus,

Lactiplantibacillus
plantarum

Less than 80% (After
5 months of storage at

4 ◦C)

About 90–95% (After
5 months of storage at

4 ◦C)
Milk fermentation [30]

Bacterial cellulose
nanofibers

Lactobacillus
plantarum

<60% (Treatment in pH
2.5, 3.5, 4.5 and 6.8 for 3 h)

>150% (Treatment in pH
2.5, 3.5, 4.5 and 6.8 for 3 h) Milk fermentation [21]

Carboxymethyl
cellulose Lactobacillus lactis – – Improving nisin

production [31]

Carboxymethyl
cellulose

Bifidobacterium
lactis, Lactobacillus

acidophilus,
Lactobacillus casei

The number of probiotics
is less than 7.00 log CFU/g
(45 days of storage at 7 ◦C)

The number of probiotics
exceeded 8.00 log CFU/g
(45 days of storage at 7 ◦C)

Food coating [32]

Carboxymethyl
cellulose

Lactobacillus
plantarum – – Bioactive food

packaging [33]

Carboxymethyl
cellulose

Lactobacillus
acidophilus

About 49% (Digest in
simulated gastric juices for

120 min)

About 70% (Digest in
simulated gastric juices for

120 min)

Antibacterial food
coating [34]

Cellulose
nanofiber

Lactobacillus casei,
Bacillus coagulans – – Food packaging [35]

Cellulose acetate Escherichia coli
Nissle 1917

0% (Digest in a simulated
digestive system for

100 min)

About 26% (Digest in a
simulated digestive
system for 100 min)

– [36]

Cellulose
microgels

Lactobacillus
plantarum

The number of viable
bacteria decreased by 105

(Freeze drying)

The number of viable
bacteria decreased by 103

(Freeze drying)
– [37]

Kombucha
bacterial cellulose

Lactobacillus
plantarum

About 33%
(Freeze drying)

About 49%
(Freeze drying)

Antibacterial food
packaging [38]

2.1. Bacterial Cellulose (BC)

BC is a polymeric material produced by aerobic bacteria, such as Acetobacter xylinum (A.
xylinum), Gluconacetobacter xylinus (G. xylinum), and Komagataeibacter xylinus (K. xylinum),
etc. [39]. The Food and Drug Administration (FDA) has approved BC as “generally recog-
nized as safe (GRAS)” since 1992, and it is an insoluble dietary fiber [40]. BC represents
the purest form of cellulose, without any pectin, lignin, hemicellulose, or arabinose [41]. It
has attracted much attention in different fields such as biomedicine [42–44], textiles [45],
food [46], 3D printing [47], and cosmetics [48] due to its unique properties, such as ultra-
fine three-dimensional (3D) fibrous-network nanostructures, hydrophilicity, high porosity,
high water-holding capacity, high mechanical strength, crystallinity, and biocompatibility
(Figure 2a) [49–52].

BC can be obtained by microbial fermentation (Figure 2b) and the cell-free culture
system (Figure 2c) [53]. For microbial fermentation, the most famous BC-producing bac-
terium is K. xylinus, formerly known as A. xylinum. It is a Gram-negative, highly aerobic
bacterium known as acetic acid bacteria (AAB). These bacteria grow at 25–30 ◦C with
pH ranges from 3 to 7, using glucose as the best energy source [43]. In addition, BC can
also be produced by Bacillus, Leifsonia, Salmonella, Erwinia, Enterobacter, Pseudomonas, and
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Shewanella [39]. Moreover, many genetically engineered bacteria have been constructed
for enhancing bacterial cellulose production, improving the properties of BC and adding
new functionalities to BC [54]. For example, Sajadi et al. expressed the cellulose synthase
subunit D (bcsD) gene of G. xylinum BPR2001 in the wild-type E. coli Nissle 1917 to obtain
bacterial cellulose with an increased crystallinity index [55]. In their another work, bcsA
and bcsB genes from G. xylinum were expressed in E. coli Nissle 1917 to improve the yield
of BC without influencing the crystallization index [56]. Although BC possesses various
excellent properties as a useful natural hydrogel material, large-scale production of BC
by microbial fermentation is challenging due to the high cost of the culture media, long
fermentation time, and a large-scale fermentation facility [57]. Therefore, the development
of novel bacterial cellulose production platforms that are not subject to the above limitations
is important to facilitate the large-scale production and application of bacterial cellulose.
The cell-free system is developing as an important in vitro platform for synthetic biology
to produce various valuable substances using cell extracts (rather than microbial cells) [58],
since the biosynthesis, regulation, and secretion process of substances are not impaired by
cell walls or membranes. The cell-free system provides an efficient and economic platform
for economically producing BC. For example, the cell-free system from Gluconacetobacter
hansenii PJK that contains ATP and NADH utilizes glucose to synthesize cellulose with
higher yield and glucose conversion efficiency than bacterial cells [59]. Moreover, it has
been reported that cell-free cultures can reduce the cost of the synthetic process, decrease
metabolic inhibitors, and maximize the rate of enzymatic reactions, thereby improving the
efficiency and specificity of the biochemical reaction and expanding the application of the
biochemical process.
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Figure 2. Morphology and production of BC. (a) Photographs of the freshly prepared BC film
(left top), freeze-dried BC film (left bottom), and a scanning electron microscope (SEM) image of
the BC film (right). (b) Schematic illustration of the bacterial cellulose preparation process by the
bacterial cultivation method. Adapted from Ref. [57] with permission of SAGE Publications Ltd.,
2022. (c) Illustration of the BC production process via the cell-free system. (I) Cultivation of cell-free
enzyme solution with glucose source as carbon source, (II) formation of fibrils, (III) self-assembly
of fibrils, (IV) formation of bio-cellulose pellicles, (V) formation of bio-cellulose pellicles, and (VI)
harvesting of bio-cellulose pellicles. Adapted from Ref. [59] with permission of Elsevier Ltd., 2015.

2.2. Bacterial Cellulose Nanofibers

BCNFs are obtained through special treatments of bacterial cellulose, such as superfine,
soft homeogenesis, and electrostatic spinning [60]. The diameter of a BCNF is smaller than



Polymers 2024, 16, 794 6 of 21

that of bacterial cellulose, with a width range of 20 nm to 100 nm [61]. BCNFs have high
surface area, high immobilization efficiency, minimal sensory impact when applied in food
products, and protective effects when used as carrier materials [62]. Several strategies have
be used to prepare BCNFs, such as homogenization [63], electrospinning [64], wet-drawing
and wet-twisting [65], etc. [66].

2.3. Carboxymethyl Cellulose (CMC)

CMC is probably the best-known anionic linear polysaccharide derived from cellulose
by reacting the sodium monochloroacetate with cellulose in an alkaline medium [67]. CMC
is highly viscous and is generally considered non-toxic, non-allergenic, and biodegrad-
able [68]. The degree of substitution (DS) of CMC affects the solubility of CMC molecules
and the nature of the CMC solution [69]. CMC with DS values of 0.0–0.4 is insoluble
in water but can undergo swelling. In contrast, CMC with DS values of 0.4–3 is soluble
in water.

Cellulose (the precursors of CMC) can be obtained from a range of renewable biomass,
including wood, cotton, crops, agricultural wastes, bacteria, and algae [70]. Currently, great
efforts have been made to prepare CMC using green and eco-friendly methods to reduce
environmental pollution and meet sustainable development requirements. For example,
Moussa et al. prepared a series of CMC samples with different degrees of substitution
by one-step carboxymethylation reaction of the celluloses extracted from almond stems,
almond shells, and fig stems [71]. Besides cellulose, lignocellulosic materials can also be
used to fabricate CMC. Akhlaq et al. used lignocellulosic wastes (eg., rice straw (RS), wheat
straw (WS), sugarcane bagasse (SCB), and banana leaves (BL)) as raw materials to extract
cellulose for CMC preparation [72]. Various CMCs from different raw materials are found
to possess different physicochemical or morphological characteristics (e.g., DS, rheological
properties, viscosity, water retention, and oil retention). For example, CMC obtained from
wheat straw possessed a DS value of 2.1, and the DS value of CMC from banana leaf waste
was 0.7 [72]. Moreover, CMC can also be obtained from cellulose-containing wastes such
as those from the textile industry (e.g., knitted rags or cotton lint) and household/office
products (e.g., office wastepaper, paper sludge, or waste textiles). Employing these waste
materials to produce CMC will lower the production costs and mitigate environmental
pollution [73].

2.4. Cellulose Nanofiber (CNF)

CNFs are crystalline fibers with a length of >1 µm and a width of 5–200 nm, consisting
of bundles of fibrils, and are mainly isolated from wood or plant sources such as cotton, flax,
bamboo, hemp, etc. [74]. Based on their excellent biocompatibility, renewability, biodegrad-
ability, and the properties (e.g., high crystallinity, high specific surface area, and good
rheological behavior) derived from their nanostructure, CNFs have attracted enormous
interest in many different fields over the past decades. CNF is also used as a cellulose-based
material for probiotic encapsulation to improve the survival rate of probiotics during pro-
cessing, storage, and delivery processes. Pretreatment is critical for efficient and sustainable
CNF production. Several methods can be used to pretreat cellulose to produce CNF, such
as enzyme treatment, mechanical pretreatment (e.g., high-pressure homogenization, ball
milling, cryocrushing, microfluidization, and ultra-fine grinding), and chemical pretreat-
ment [75]. Each pretreatment method has advantages and disadvantages when applied to
the production of CNF [76]. For example, enzyme pretreatment is effective in removing
hemicellulose and lignin from lignocellulosic feedstocks, resulting in smaller CNF diam-
eter and increased crystallinity and homogeneity after fibrillation. However, enzymatic
pretreatment must be carefully controlled to avoid excessive enzymatic hydrolysis, as it
breaks down cellulose components and reduces overall fiber length and DP. In addition,
the high cost of enzymes limits their use in industry. Mechanical pretreatment requires
high energy consumption. Chemical pretreatment requires several washing steps due to
the use of various chemical solvents, and may bring some environmental problems [77].
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In general, the low cost, easy availability, and biocompatibility of cellulose make it
useful in various fields. Moreover, cellulose can be modified to endow it with multiple prop-
erties and functions, and thus enhance the protective effect of cellulose on the encapsulated
probiotics (Table 2).

Table 2. Grafted cellulose for the encapsulation of probiotics.

Probiotic Type Cellulose Type Grafting Method Function Ref.

Lactobacillus
plantarum

Cellulose
nanofiber

TEMPO-mediated oxidation to endow
cellulose with carboxyl groups

Improving the survival rate
and the intestinal retention

time of the probiotics
[78]

Lactobacillus casei Cellulose Sulfation of cellulose to endow it with
negatively charged sulfuric acid groups

Improving the survival rate
and intestinal delivery rate of
the probiotics, realizing their

controllable release

[79]

Lactobacillus
plantarum

Cellulose
nanofiber TEMPO-mediated oxidation

Improving the survival rate of
the probiotics and realizing the

controllable release of
the probiotics

[80]

Bifidobacterium
adolescentis and
Bacillus subtilis

Carboxymethyl
cellulose

Obtaining mercaptoylcarboxymethyl
cellulose through the

EDC (1-ethyl-3(3-dimethylaminopropyl-
carbodiimide hydrochloride)/NHS
(N-hydroxysuccinimide) chemistry

Improving the survival rate
and improving the storage

stability of the probiotics and
promoting the proliferation,
adhesion, and colonization

of probiotics

[81]

Saccharomyces
cerevisiae

Cellulose
nanocrystals

The complexation of shellac and
cellulose nanocrystals via

hydrogen bonding

Improving the survival rate of
the probiotics and realizing the

controllable release of
the probiotics

[82]

3. Probiotic Encapsulation Strategies with Cellulose-Based Materials
3.1. Electrospinning

Electrospinning is an electro-liquid droplet kinetic process in which micro-jets of
liquid droplets formed under the influence of an electric charge are mechanically stretched,
elongated, and cured by drying steps into fibers and adsorbed onto a receiver plate, creating
continuous polymer fibers with diameters ranging from nanometer to micron scale [83].
The electrospinning device consists of a syringe push injection pump, a spinneret, a high
voltage power supply, and a collector. During the electrospinning process, the polymer
solution is pumped into the spinneret, causing the droplets to be charged and resulting in
a surface repulsion greater than the surface tension. Then, the droplets take on a conical
structure, producing a Taylor cone [84], where the jet is initially extended in a straight line,
followed by a violent whipping motion due to bending instability, and rapidly solidifies
when the jet is stretched to a finer diameter, thus resulting in the deposition of solid fibers
onto the grounded collector [85].

Fibers can be fabricated by electrospinning to encapsulate probiotics for protecting
them from adverse environments (e.g., temperature, oxygen, water activity, pressure, pH,
hydrogen peroxide, digestive enzymes, etc.) and ensuring no interaction with other compo-
nents of the matrix [84]. The physicochemical properties of the polymer solution used for
forming the film are critical to the formation of the fibers and the effectiveness of probiotic
encapsulation. Çanga et al. prepared novel cellulose acetate (CA) and polyvinyl alcohol
(PVA) hybrid fibers for encapsulating probiotics using a two-nozzle electrospinning method
to improve the gastrointestinal stability of probiotics (Figure 3a) [36]. In that work, E. coli
Nissle 1917 (EcN) was encapsulated in the PVA/CA composite film, where CA enhanced
the stability of the probiotic under gastric conditions and PVA provided a protection effect
against toxic solvents during electrospinning. As can be seen from the ESEM images, EcN
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cells were successfully encapsulated in PVA/PVA fibers and PVA/CA fibers during the
electrospinning process. The survival rate of probiotics under simulated gastrointestinal
conditions was significantly improved after encapsulation with PVA/CA fibers. The above
research cleverly utilized the unique characteristics of CA and used it for the first time to en-
capsulate probiotics in electrospun mixed fibers. This study provided an angled dual-nozzle
electrospinning method for improving the survival rate of probiotics in the gastrointestinal
tract using PVA/CA fibers. In addition to encapsulating probiotics by mixing them with
a cellulose-based solution as an electrospun liquid, electrospun cellulose films can also
be used as a culture support for culturing probiotics into biofilms. It has been reported
that biofilms possess excellent resistance to harsh environments, and probiotic biofilms can
endow probiotics with excellent resistance and adhesion abilities in the intestine [86]. Meng
et al. studied the electrospun cellulose acetate nanofibrous membrane as a probiotic biofilm
enrichment material. They found that electrospun cellulose acetate nanofibrous membranes
exhibited outstanding advantages in the enrichment of Lactobacillus paracasei (L. paracasei)
biofilms compared with micrometer scale fiber membranes. Overall, electrospun cellulose
acetate nanofibrous membrane is an ideal material for enriching probiotic biofilms and has
certain development potential (Figure 3b) [87].
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3.2. Cross-Linking

Another strategy for fabricating probiotic cellulose films is cross-linking. During the
cross-linking process, the cellulose macromolecules interact with bifunctional molecules,
resulting in the formation of cross-linked bonds (e.g., bridge bonds) between cellulose
macromolecules in a web-like structure. The selection of different types of cellulose and
suitable cross-linking agents to prepare cellulose films can seal probiotics in them and im-
prove the stability of probiotics, showing promising applications in different fields. Sodium
carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC) were used to fabricate
cellulose-based films with citric acid (CA) as the cross-linking agent (Figure 4a) [88]. It was
found that the thickness of the film depended on the amount of CA. As the concentration
of CA increased, the rigidity increased, while the swelling rate and the surface area of the
film decreased. However, high CA content induced the formation of fibrous aggregates
in the membranes and led to structural defects. The prepared cellulose membranes can
effectively encapsulate live Lactobacillus rhamnosus GG (L. rhamnosus) (LGG) in the mem-
brane after soaking in bacterial media. With the protective effect of the cellulose membrane,
the survival rate of LGG was greatly improved. In another study, Li et al. prepared Ca-
alginate/cryoprotectants/cellulose composite (ACFP) capsules to encapsulate L. plantarum
(Figure 4b) [37]. After encapsulation, the storage stability, and the survival rate of L. plan-
tarum during a vacuum freeze-drying process were greatly improved. Furthermore, in
addition to the protective effect of the encapsulation matrix, controlled release of probiotics
is important for probiotics to have efficient effects. In this respect, sodium alginate (SA)
is a good choice due to the pH-responsive property of SA. Zhang et al. used sodium
alginate (SA) and TEMPO oxidized cellulose nanofiber (CNF) to prepare alginate/cellulose
nanofiber gel microspheres (ACM) loaded with L. plantarum by a cross-linking reaction
of calcium ions (Figure 4c) [80]. It was found that the acidic environment of the human
stomach would stabilize the gel macrospheres by reducing electrostatic repulsion and
forming hydrogen bonds between SA and CNF, protecting L. plantarum cells to a greater
extent. In contrast, the neutral simulated intestinal fluid dissolved the gel macrospheres
and facilitated the release of L. plantarum cells in the human intestine. This work provides
a pH-responsive encapsulation method for realizing the controlled release of probiotics,
showing potential application in the intestine-targeted delivery of probiotics.
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Elsevier Ltd., 2019. (b) The enhanced storage stability of probiotics after ACFP composite capsule
encapsulation. Black: AG, Ca-alginate gel with L. plantarum. Red: ACG, Ca-alginate/cellulose gel
with L. plantarum. Blue: ACFP, Ca-alginate/cellulose/cryoprotectant gel with L. plantarum. Adapted
from Ref. [37], with permission of Elsevier Ltd., 2019. (c) Scheme illustrating the morphology of
ACMS encapsulated probiotics and the pH-responsive mechanisms. Adapted from Ref. [80], with
permission of American Chemical Society, 2018.

3.3. In-Situ Growth

In addition to the above-mentioned encapsulation strategies, probiotics can also be
incorporated into the BC network structure by co-culturing A. xylinum (Ax) and probiotics
to form probiotic cellulose [89]. This encapsulation method not only increases the survival
rate of the probiotics but also endows BC with multifunctional properties. Moreover,
this method is simple and environmentally friendly without using any toxic agents. For
example, Sabio et al. obtained a probiotic cellulose for treating severe skin infections and
chronic wounds by co-culturing Ax suspensions and probiotics (Lactobacillus fermentum (Lf )
or Lactobacillus gasseri (Lg)) (Figure 5a) [89]. In their work, Ax and Lf or Lg suspensions
were co-cultured in a 1 mL Hestrin–Schramm (HS) medium at a volume ratio of 1:1 and
co-cultured at 30 ◦C under aerobic conditions. Bacterial cellulose containing Ax and Lf
or Lg was obtained after 3 days’ incubation. Afterwards, the HS medium was replaced
by a MRS (5 mL) medium, and the bacterial suspensions were anaerobically incubated at
37 ◦C for 48 h. After incubation for 24 h, the MRS medium was replaced with fresh MRS,
and probiotic-cellulose films (Lf - or Lg-cellulose) were obtained after 48 h incubation in
MRS. This encapsulating strategy of co-culturing BC producing strains with probiotics to
obtain probiotic cellulose by regulating the oxygen conditions without expensive and toxic
chemical treatments provides a good idea for developing BC-embedded probiotics. In their
another work, the authors prepared a cellulose-based material by embedding probiotics to
modulate the cellulose viscoelasticity via the probiotic proliferation. It was found that this
living cellulose-based material possessed lower-than-matrix viscoelasticity at a low probi-
otic density, and became an elastic solid promoted by the probiotic proliferation. Therefore,
it can be used as a biological ink and applied in the field of 3D printing (Figure 5b) [90].
In addition to BC produced from Ax, Charoenrak et al. produced Kombucha bacterial
cellulose (KBC) by fermentation of Kombucha, which is mainly composed of tea and sugar
as the nutrients, to protect L. plantarum (Figure 5c) [38]. In summary, the in-situ growth
method for producing bacterial cellulose is simple, easy to operate, eco-friendly, and does
not require the use of toxic chemical reagents. Additionally, probiotics can be incorpo-
rated into bacterial cellulose through co-cultivation, providing an effective and convenient
strategy for encapsulating probiotics.
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of Elsevier BV, 2021. (b) Scheme illustrating the preparation of PC-Lf by co-incubating Kx and Lf.
Adapted from Ref. [90], with permission of American Chemical Society, 2022. (c) Electron micrographs
of the freeze-dried KBC incorporated with L. plantarum TISTR 541 cells by the adsorption–incubation
method. (i–iii) L. plantarum attached on KBC fibrils at different magnifications (Green arrows represent
L. plantarum). Adapted from Ref. [38], with permission of MDPI, 2023.

3.4. Casting

Casting is also a common method for encapsulating probiotics into cellulose mem-
branes [64]. Lan et al. used a casting method to produce a composite film composed of
corn starch (NS) and carboxymethyl cellulose (CMC) embedded with Lactobacillus lactis
(L. lactis) (Figure 6a) [31]. In this work, CMC powder was added to 1.5% NS solution to
fix the total concentration of NS and CMC at 3% (NS and CMC were added in a ratio
of 5:5), and 1.5% (wt%) glycerol was added to the solution. Then, L. lactis with a final
concentration of 1.5% was mixed with the above solution. Finally, the above mixtures were
poured onto a glass plate and dried at 28 ◦C to obtain the composite film. The prepared
film can inhibit the growth of Staphylococcus aureus due to the release of nisin by L. lac-
tis. These antibacterial films promise to be used in low-moisture food packaging in the
future. Alcântara et al. produced different carboxymethyl cellulose-based films containing
Bacillus coagulans (B. coagulans) by a casting method to improve the storage stability of
probiotics (Figure 6b) [91]. In this study, FOS was incorporated into the film to improve the
viability of B. coagulans. In another study, El-Sayed et al. used chitosan (CH), SA, CMC,
and microcrystalline cellulose (AMCC) to prepare a fiber to encapsulate probiotic strains
(Bifidobacterium lactis, Lactobacillus acidophilus (L. acidophilus) and Lactobacillus casei (L. casei))
by a casting method [32]. Such films protected probiotics from gastrointestinal digestion
and maintained a sufficient quantity and activity of the probiotics. Mozaffarzogh et al.
prepared a carboxymethyl cellulose (CMC)-sodium caseinate (SC)-based film by a homoge-
nizing method to encapsulate L. acidophilus, Lactobacillus reuteri, L. casei, L. rhamnosus, and
Bifidobacterium bifidum [92]. The obtained probiotic film can be used for food packaging to
extend the shelf life of sturgeon fillets.

In summary, four encapsulation strategies, namely, electrospinning, cross-linking,
in-situ growth, and casting, are extensively discussed in this section (Table 3). The four
packaging methods have their inherent advantages and disadvantages. The preparation
efficiency of the electrospinning method is high, and a variety of fiber structures and
shapes can be prepared. However, this method also has certain limitations, requiring
complex electrospinning equipment, and the fiber prepared by this method is uneven in
thickness. The cross-linking method can improve the mechanical properties of the fiber and
enhance the stability of the fiber, but excessive cross-linking will cause fiber aggregation.
In-situ growth is easy to operate and does not require the use of toxic chemicals, but it
takes a long time to produce fibers and is difficult to remove the microorganisms used to
produce cellulose fibers. The casting method can improve the physical properties of the
prepared materials, but the operation process is complicated and cumbersome. Currently,
some patented encapsulated probiotics have been reported based on electrospinning, cross-
linking, and spray drying (Table 4). However, compared with the other three encapsulation
methods, the in-situ growth encapsulation method is currently less researched and is hardly
used for the production of patent encapsulated probiotics.
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Elsevier Ltd., 2020.

Table 3. Encapsulation strategies for probiotics with cellulose-based materials.

Encapsulation
Strategies Cellulose Type Probiotic Type Advantage Disadvantage Refs.

Electrospinning
Cellulose acetate;
Cellulose acetate

nanofiber

Escherichia coli
Nissle 1917;
Lactobacillus

paracasei

High preparation
efficiency, a variety of
fiber structures and

shapes can
be prepared

Uneven fiber thickness,
and complex

electrospinning
equipment

[36,83,87]

Cross-linking

Carboxymethyl
cellulose and
hydroxyethyl

cellulose;
Cellulose; TEMPO
oxidized cellulose

nanofiber

Lactobacillus
rhamnosus;

Lactobacillus
plantarum;

Lactobacillus
plantarum

Improving mechanical
properties and

enhancing the stability
of the fiber

Fiber aggregation
caused by excessive

cross-linking
[37,80,88]
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Table 3. Cont.

Encapsulation
Strategies Cellulose Type Probiotic Type Advantage Disadvantage Refs.

In-situ growth

Bacterial cellulose;
Bacterial cellulose;

Kombucha
bacterial cellulose

Lactobacillus
fermentum and

Lactobacillus gasseri;
Lactobacillus
fermentum;

Lactobacillus
plantarum

It is easy to operate
and does not require

the use of
toxic chemicals

Long production
period, and difficult to

remove the
microorganisms used

for producing
cellulose fiber

[38,89,90]

Casting

Carboxymethyl
cellulose;

Carboxymethyl
cellulose;

Carboxymethyl
cellulose and

microcrystalline
cellulose;

Carboxymethyl
cellulose

Lactobacillus lactis;
Bacillus coagulans;

Bifidobacterium
lactis, Lactobacillus

acidophilus and
Lactobacillus casei;

Lactobacillus
acidophilus,

Lactobacillus reuteri,
Lactobacillus casei,

Lactobacillus
rhamnosus and
Bifidobacterium

bifidum

It can improve the
physical properties of

materials

Complicated and
tedious operation

process
[31,32,91,92]

Table 4. Patented encapsulated probiotics.

Encapsulation Materials Encapsulation Method Suggested Application Patent Number Ref.

Sodium alginates/PEG
4000/methacrylate polymers Ion gelation Drugs that promote

intestinal health IN201711011030A [93]

Casein/starch Spray drying Probiotic powder
supplement US8871266B2 [94]

4-(2-hydroxyethyl)-1-piperazine-
ethanesulfonic

acid/glycine/betaine/carboxymethyl
cellulose

Cross-linking A drug to treat
intestinal disorders WO2018230939A1 [95]

Sodium carboxymethyl
cellulose/maltodextrin Freeze drying

Freeze-dried powder
preparation of

probiotics
US11571387 B2 [96]

Millet extract powder Freeze drying or
spray drying

Functional food
supplements or dietary

supplements
US10576113B2 [97]

Gum Arabic/polyvinyl alco-
hol/polyvinylpyrrolidone/whey

protein concentrate or maltodextrin
Electrospinning Probiotic capsules US2023/019354 A1 [98]

Monovalent alginate/gelatin
or cellulose

Freeze drying or
spray drying

Probiotic powder
supplements US2004/0175389 A1 [99]

4. Cellulose-Based Probiotic Films for Food Applications
4.1. Food Packaging

Food packaging plays an important role in protecting food from chemical, physical,
or microbial contaminations to extend the shelf life of food and ensure food safety [27].
Conventional packaging materials come from petroleum-based plastic, which have brought
serious environmental pollution problems due to their non-biodegradability and the release
of toxic substances during the recycling process. Cellulose-based materials have attracted



Polymers 2024, 16, 794 14 of 21

great attention in food packaging due to their biodegradable, environmentally friendly,
and easily accessible properties. Entrapment of probiotic cells in cellulose-based films
can make the packaging bioactive due to the high antimicrobial ability of the probiotics
and their metabolites [29,31,33,100,101]. For example, Moghanjougi et al. fabricated a
bacterial cellulose film containing free or microencapsulated probiotics (L. acidophilus or
Bifidobacterium animalis) to inhibit the growth of Aspergillus niger in cheese [29]. The results
showed that bacterial cellulose films containing probiotics microencapsulated with SA
maintained a high viability of the probiotics and were most effective in inhibiting the growth
of Aspergillus niger in cheese. Moreover, prebiotics can be incorporated into cellulose-based
probiotic films to further increase the survival rate of probiotics. For example, Zabihollahi
et al. prepared a CMC-based cellulose film to encapsulate probiotic bacteria (L. plantarum)
for extending the shelf life of chicken tenders. In this system, inulin was added to the
film, enhancing the survival rate of probiotics by 36% [33]. Salimiraad et al. constructed
novel probiotic cellulose-based films for preserving fresh chicken fillets (Figure 7a) [35].
In this system, the cellulose-based films were prepared by mixing nano cellulose, nano
chitosan, gelatin, and probiotics (e.g., L. casei, B. coagulans, and their combinations). The
results showed that the nanocomposite probiotic film could extend the shelf life of the
frozen fish fillets by inhibiting the growth of listeria monocytogenes. In addition to probiotics,
synbiotics, which contain probiotics and prebiotics are of great interest due to their excellent
health-promoting capacities [102]. Food packaging materials incorporated with synbiotics
are of great interest to researchers. Seyedzadeh-Hashemi et al. prepared cellulose-based
films containing synbiotics composed of β-glucan, inulin, and L. acidophilus [34]. In this
system, the addition of inulin effectively improved the extensibility and the oxygen barrier
property of the films. In addition, the incorporation of L. acidophilus LA-5 with inulin
into the CMC/BG film resulted in a much higher stability under storage and simulated
gastrointestinal conditions. Collectively, the cellulose-based probiotic films can not only
protect probiotics from harsh processing environments and prolong probiotic stability
but also provide a new platform for bioactive packaged foods (Figure 7b). Although
considerable fundamental research related to cellulose-based probiotic encapsulation has
been reported, moving the practical food applications of probiotic-containing cellulose
films from lab to food applications seems to be a difficult task at present, possibly due
to the fact that the cost of the film may exceed the cost of the packaged food due to
the high cost of the preparation technologies of the cellulose-based probiotic films. For
example, electrospinning equipment is complex, large-scale production of electrospun
probiotic film requires a large amount of expensive equipments and the equipment needs
to be maintained in the later stage, resulting in very high production costs, which are not
conducive to the industrialization of products. If we want to apply cellulose-based probiotic
film to other food packaging, it is possible to choose to improve the main structure of the
cellulose-based probiotic film, to optimize the size and thickness of the film, to simplify
the preparation process, to shorten the preparation time, and to reduce the consumption of
energy and materials. In summary, there is still a need to continuously explore appropriate
encapsulation strategies with cellulose or cellulose-based materials, to develop suitable
cellulose preparation technologies, and to develop new types of probiotics to facilitate the
practical application of cellulosed-based probiotic films.
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nano-chitosan gelatin film was used to encapsulate L. casei and B. coagulans GBI-306086 and their
combination for preservation of meat products. Adapted from Ref. [35], with permission of Elsevier
Ltd., 2022. (b) Based on CMC/βMglucan (BG), L. acidophilus LA-5 was prepared according to
four ratios of 100:0, 75:25, 50:50, and 25:75, and different proportions of inulin (IL, 2%, 4%) were
added to predict the shelf life of food. Adapted from Ref. [34], with permission of Elsevier BV, 2022.

4.2. Food Manufacturing

In addition to food packaging, cellulose-based films can be used as scaffolds for
the formation of microbial biofilms or as starter cultures and bioreactors to produce fer-
mented products and valuable metabolites. For example, Hu et al. prepared electrospun
nanofiber-based films for probiotic biofilm growth. The electrospun nanofibers embedded
with probiotic biofilms can be used as the starter culture for the fermentation of milk
(Figure 8a) [21]. The electrospun nanofiber membranes were proven to be an excellent
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scaffold for L. plantarum biofilm growth. Probiotic biofilms on the electrospun nanofiber
membranes showed excellent gastrointestinal resistance compared with the planktonic
bacteria. When the probiotic biofilm-containing membranes were used as the starter culture
to produce fermented milk, they showed excellent fermentative ability with a decreased
fermentation time and a higher survival rate of L. plantarum during the shelf life. Moreover,
the number of surviving bacteria in the fermented milk after the first batch increased to ap-
proximately 11.06 log CFU/g in the recycled batches and remained at this level throughout
the tested reusable batches (Figure 8b). In another study, Lappa et al. prepared a bacteria
cellulose (BC) film as a novel biocatalyst for producing functional sour milk (Figure 8c) [30].
In this work, Lactiplantibacillus pentosus B329 and Lactiplantibacillus plantarum 820 were
selected as starter cultures. After the encapsulating of bacterial strains with BC, the cell
viability and metabolic activity were sustained. Moreover, the probiotic viability during
storage was improved after immobilization on BC, and the fermented milk produced by
the BC-encapsulated lactic acid bacteria (LAB) displayed better organoleptic properties.
This work presents cellulose-based platforms for encapsulating LAB used in fermentation
for improving the survival rate of LABs during processing and extending the stability of
the fermented products.
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Collectively, the application of cellulose-based probiotic film in the food field is useful
and involves many aspects, including food packaging and biocatalysts. Since probiotics
are added to cellulose-based films to endow them with antibacterial ability and to prolong
shelf life, most cellulose-based probiotics films are used as food packaging films. However,
probiotic cellulose membrane containing a shelf-life prediction function is less studied
and should be further developed. In addition, cellulose-based probiotic films have the
potential to be used as biocatalysts, and more cellulose-based probiotic membranes should
be extended in this direction in the future.

5. Conclusions and Perspective

In this review, we summarized the types of cellulose materials, including bacterial
cellulose, bacterial cellulose nanofibers, carboxymethyl cellulose, and cellulose nanofibers
used for encapsulating probiotics. The preparation methods for cellulose-based films
were also briefly reviewed in relation to electrospinning, cross linking, in-situ growth, and
casting strategies. Furthermore, we summarized the probiotic-encapsulating strategies
using cellulose-based films. Finally, the applications of cellulose-based-film encapsulated
probiotics were also discussed, with emphasis on their applications in food packaging and
food manufacturing. In addition, to summarize the previous studies of cellulose-based
probiotic films, we also propose some unsolved problems of the current studies about
cellulose-based film for encapsulating probiotics and put forward several future research
directions in this field.

Although many efforts have been devoted to developing cellulose-based films for
probiotic encapsulation and applying the encapsulated probiotics in various food fields in
the past years, some unsolved issues still exist and need to be addressed:

(1) The properties and functions of probiotics after different encapsulations should
be further explored, and the action mechanisms of the encapsulated probiotics should
also be continuously explored and accurately elucidated. Moreover, advanced strategies
for fabricating cellulose-based materials for the encapsulation of probiotics should be
developed, such as 3D or 4D printing.

(2) The safety, environmental friendliness, reusability, and biodegradability of cellulose-
based probiotic films should be evaluated. Moreover, the relationship between the probi-
otics and the packaged food should be further evaluated.

(3) Most of the current research on developing cellulose-based probiotic films and
their applications are still in the laboratory stage; large-scale production of cellulose-based
probiotic films will further promote the practical application of the films. It is necessary to
develop appropriate encapsulation strategies that are suitable for large-scale production
of cellulose-based probiotic films. Moreover, the selection of easily processable and cost-
effective cellulose and probiotics also influences the cost of the probiotic films.

(4) The shelf-life prediction cellulose film containing probiotics should be widely
developed and applied.

Despite the above-mentioned challenges, it is expected that cellulose-based probiotic
films will play a vital role in future food preservation. It is also hoped that this review
will inspire future researchers to develop more effective and economic strategies for the
production of cellulose-based probiotic films and promote their successful large-scale
fabrication and practical applications.
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