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Abstract: Water contamination by harmful organic and inorganic compounds seriously burdens
human health and aquatic life. A series of conventional water purification methods can be employed,
yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete
treatment process, and high costs. To overcome these limitations, attention has been drawn to
nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular,
magnetic nanostructures hold promise for water decontamination applications, benefiting from easy
removal from aqueous solutions. In this respect, numerous researchers worldwide have reported
incorporating magnetic particles into many composite materials. Therefore, this review aims to
present the newest advancements in the field of magnetic composites for water decontamination,
describing the appealing properties of a series of base materials and including the results of the most
recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal–
organic framework-, and covalent organic framework-based magnetic composites are overviewed,
which have displayed promising adsorption capacity for industrial pollutants.

Keywords: water remediation; magnetic nanoparticles; magnetic composites; composites for water
decontamination; magnetic composite adsorbents; dye removal; heavy metal removal; drug removal

1. Introduction

Only one percent of the water on Earth is usable freshwater, of which about 70% is
used in agriculture and other commercial purposes. Over a billion people do not have
access to clean freshwater, and this limited resource is becoming scarcer globally due
to various factors, including population growth, climate change, deforestation, water
pollution, and wasteful water use. Contaminated water by industrial pollutants and
pathogens adversely affects human health and the environment. Freshwater contamination
can arise from various sources, including sewage, agricultural waste, industrial waste,
petroleum slicks, nuclear and thermal pollution, pesticides and fertilizers, the mining
industry, and population growth and urbanization [1–3].

Latent sources of drinking water still exist in rivers, streams, lakes, and subterranean
aquifers. Nonetheless, it is essential to remediate any water obtained from surface sources
in order to protect against the risk of ingesting various contaminants [4]. Untreated
wastewater often contains hazardous substances that may contaminate land or water where
sewage is dumped [5]. Therefore, wastewater treatment and disposal are not only desirable
but vital in the current global context.
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The main treatment process carried out in wastewater treatment plants follows the
standard process train: (i) preliminary treatment (involves screening and grit removal using
physical methods and setting the stage for primary treatment); (ii) primary treatment (using
sedimentation to reduce the organic load in wastewater); (iii) secondary treatment (employ-
ing biological methods such as activated sludge that is further treated or used); and (iv)
tertiary treatment (encompasses advanced processes like filtration, chemical coagulation,
flocculation, flotation, nutrient removal, adsorption, advanced oxidation processes (AOPs),
ion exchange, membrane processes (reverse osmosis, nanofiltration, etc.), constructed wet-
lands, electrocoagulation, and disinfection) [6–10]. When it comes to wastewater, tertiary
treatment (Figure 1) is the one referred to as water decontamination in most studies.
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The effectiveness of conventional techniques (e.g., sedimentation, chemical precipi-
tation, solvent extraction, ion exchange, and membrane separation) in eliminating heavy
metals from water and wastewater is widely recognized. However, these techniques have
certain drawbacks, including the need for expensive equipment, constant monitoring,
a considerable volume of sludge or solid wastes, chemical reagents, and an incomplete
treatment process [12]. Scientists worldwide have become increasingly interested in finding
affordable and environmentally friendly methods of disinfecting water [13]. Particular
attention has been drawn to adsorption, a method successfully employed for pollutant
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removal in water decontamination processes. This approach has an easy-to-understand
design and functioning, and it is reasonably priced. Many materials, such as carbon-based
materials, various synthetic porous composites, naturally occurring inorganic minerals like
clay or zeolites, and functionalized natural and synthetic polymers, have been rendered
effective at removing organic and inorganic contaminants from polluted water samples [12].

Recent advancements in nanotechnology can also be exploited for water decontam-
ination applications, with a special focus on multifunctional nanomaterials made from
nontoxic and cheap precursors. In particular, magnetic nanostructures hold promise for
their use in the development of performant adsorbents of heavy metals and organic pol-
lutants [12,13]. In this respect, the inclusion of intrinsic magnetic metal nanoparticles,
such as iron, cobalt, and nickel, into various composites has been extensively explored
in recent research [14]. When it comes to the separation and recovery of nanomaterials,
magnetic separation is an eco-friendly option compared to filtration or centrifugation
since it uses lower amounts of solvents and auxiliaries, takes less time to operate, and is
more economical. Hence, magnetic adsorbents have emerged as a new class of materials
for decontamination procedures [15]. Thus, numerous water decontamination studies
have reported the successful utilization of magnetic nanoparticles in combination with a
wide range of materials, extending the knowledge in the field and offering encouraging
perspectives for environmental applications.

In this context, this paper aims to briefly present magnetic nanoparticles, providing
evidence on their properties of interest for water decontamination applications, and further
overviews the recent developments in magnetic composites for pollutant removal from
aqueous samples. Several literature reviews have already been published in the field,
encompassing certain aspects related to magnetic adsorbents for water depollution [16–22].
Nonetheless, they were either issued a few years ago or addressed only one category of
composites/contaminants. Given the effervescence of the field, an updated, extensive
perspective is needed to help researchers optimize current materials and implement better-
performing magnetic adsorbents in real-life applications.

Thus, herein, a broader approach is adopted to present the most up-to-date literature
with the newest advancements in this interdisciplinary domain. Specifically, the latest
studies (published in the last 7 years) are included and comprehensively discussed in
several sections according to the base material. Carbon-, polymer-, hydrogel-, silica-,
aerogel-, biochar-, clay-, covalent organic framework-, and metal–organic framework-based
magnetic composites are considered in this review. Moreover, recent studies corresponding
to each category are tabulated, offering a clear image of their most important properties
and utility in removing toxic metals, dyes, pesticides, drugs, oils, organic solvents, and
other harmful compounds from contaminated water samples.

2. Magnetic Nanoparticles

In addition to established methods for remediating contaminated wastewater, novel
approaches that employ magnet-sensitive materials are progressively gaining traction [23].
Integrating composite adsorbents with a magnetic component enables the facile separa-
tion of adsorbate complexes from aqueous solutions and easy regeneration and reuse of
the material for future decontamination cycles by simply applying an external magnetic
field [24] (Figure 2). In more detail, magnetic nanocomposites are dispersed in a sample
solution to adsorb contaminants through specific interactions (e.g., electron transfer, chem-
ical bond formation, van der Waals forces, electrostatic interactions, H bonds, and π–π
bonds). After adsorption is accomplished, the magnetic material loaded with the captured
pollutants is separated from the treated water with an external magnet. Then, with the
aid of a desorption solvent, the contaminants are removed from the magnetic composites,
and the adsorbent is regenerated (through chemical treatment) and can be used again for
decontamination of other water samples. Hence, magnetic solid-phase extraction offers a
simple, rapid, eco-friendly, and economical possibility for recycling magnetic composites
involved in environmental purification [24–27].
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Figure 2. Schematic representation of liquid-phase adsorption employing magnetic nanoadsorbents.
Reprinted from an open access source [24].

The selection of magnetic material is a critical step in the magnetic separation process.
Different types of magnetic particles have lately been produced, and they have shown
considerable promise for separation in water treatment applications [28]. Fe, Ni, and Co
are metals recognized for their appealing intrinsic magnetic properties [23]. Exploring
their combined potential [29–34] or using them in association with different materials to
develop valuable composites [35–38] have been established as promising solutions for
water decontamination.

Additionally, different iron oxides have been considered in numerous studies. Particu-
larly, magnetite (Fe3O4) and maghemite (γ-Fe2O3) have shown promise in their use for the
development of advanced composite materials [23,39,40]. Both maghemite and magnetite
have a spinel crystal structure, while the latter contains both divalent and trivalent iron
cations. In maghemite, all iron cations are trivalent, and the presence of cation vacancies en-
sures the cell’s charge neutrality [41]. These iron oxides benefit from easy synthesis routes,
eco-friendliness, and high saturation magnetization [15,42]. Magnetite is the most magnetic
naturally occurring mineral, having an 84 emu/g saturation magnetization and small
magnetic anisotropy at room temperature [41]. Moreover, magnetite nanoparticles exhibit
thermal, chemical, and colloidal stability; dispersibility; and functionalization possibility—
advantageous features that extend their versatility [42]. Other ferrites that showed good
promise in environmental purification applications include barium hexaferrite (BaFe12O19;
excellent electrical, magnetic, optical and photocatalytic properties; remarkable stability;
and reusability) [43–45], strontium hexaferrite (SrFe12O19; high saturation magnetization,
great stability, and excellent photocatalytic properties) [46], and lead hexaferrite (PbFe12O19;
high saturation magnetization, coercivity, catalytic activity, and stability) [47,48].

Nonetheless, given their elevated surface energy, bare magnetic iron oxide nanopar-
ticles are susceptible to coaggregation and oxidation/dissolution, particularly in acidic
solutions. Their chemical stability can be compromised even under environmental con-
ditions, constraining their potential for large-scale implementation. Therefore, improved
solutions have been generated by using functionalized magnetic nanoparticles and mag-
netic nanocomposites, featuring novel surface properties and structures to address the
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shortcomings of magnetic nanoparticles, increase their number of active sites, enhance their
stability in aqueous environments, and increase separation efficiency [15,39,42,49,50].

3. Magnetic Composites for Water Decontamination

Given the appealing properties of magnetic nanoparticles, numerous magnetic com-
posite materials (Figure 3) have been developed with the purpose of providing performant
water decontamination solutions. The illustrated categories of materials are detailed in
subsequent subsections, including relevant examples of magnetic adsorbents from recent
studies in the literature (published since 2018).
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Figure 3. Schematic representation of magnetic composite materials for the removal of organic and
inorganic pollutants from contaminated water.

3.1. Carbon-Based Composites

Carbon structures are among the most studied materials due to their appealing proper-
ties, such as mechanical strength, chemical stability, anisotropy, and high conductivity [22].
Carbon-based materials, including activated carbon, carbon nanotubes, graphene oxide,
graphitized carbon black, and porous carbon, have been used for pollutant adsorption.
What renders them suitable for application in water decontamination processes is the versa-
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tility of their interactions with targeted pollutants, which can be electrostatic, hydrophobic,
or π–π interactions [15].

Moreover, combining carbon nanostructures with magnetic nanoparticles leads to
synergic composites with exceptional magnetic features [22]. Magnetic nanohybrids are
particularly relevant due to their facile separation from aqueous samples after the ad-
sorption of pollutants. In addition to the inherent benefits of magnetic separation (e.g.,
eco-friendliness, easy operation, and cost-effectiveness), this method facilitates magnetic
carbon-based nanocomposite regeneration and reuse for several adsorption/desorption
cycles of wastewater treatment [20,22].

Among carbon-based materials, carbon nanotubes (CNTs) have received the most
scientific interest in recent years. Given their unique morphology, surface chemistry, and
chemical and physical interactions with organic and inorganic compounds, CNTs have
been extensively employed in water remediation processes. Thus, CNTs have surfaced as
a profitable, efficient, and environmentally sustainable substitute for conventional water
treatments, being involved in the elimination of a wide range of water contaminants [51].
Having numerous adsorption sites (Figure 4), CNTs exhibit the ability to remove both
organic and inorganic pollutants from aqueous samples. Interstitial and groove sites
initiate the adsorption process, which is followed by pollutant adsorption on exterior walls
and the accumulation of captured molecules within interior channels [52]. Interstitial sites
are particularly fitted for trapping small contaminants depending upon the form of the
nanotube, whereas exterior sites and grooves present enough space for the adsorption of
both inorganic and organic contaminants [53].
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In recent years, CNTs have been investigated as promising solutions for heavy metal
removal, and they have been confirmed as strong adsorbents for metal ion adsorption,
including water decontamination from Ni2+, Sr2+, Pb2+, Zn2+, Cu2+, Cd2+, Co2+, and
Cr2+ [53–56]. However, in comparison, much more extensive progress has been made lately
in designing CNT-based adsorbents for organic pollutant removal, with numerous recent
studies reporting the encouraging outcomes obtained when associating these carbon-based
nanomaterials with magnetic components.

An impressive number of papers have revealed the potential of magnetic CNT-
based composites in extracting organic dyes from aqueous samples, such as methylene
blue [32,36,37,57–67], methyl orange [32,36,37,67], malachite green [36,59], Congo red [32,36],
rhodamine B [32,36,63,68–71], crystal violet [63], acid fuchsin [59], neutral red [37], basic vi-
olet [72], azure II [73], acid orange [72], methyl violet [74], patent blue V [75], reactive black
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5 [35], reactive violet 2 [76], Nile blue [74], alizarin red S [77], and Maxilon blue 5G [78]. Ex-
tensive research has also been carried out to verify the ability of magnetic CNT-based com-
posites to remove drugs/active pharmaceutical ingredients from contaminated water, with
encouraging studies being reported for the elimination of carbamazepine [79–81], ketopro-
fen [82], estriol [82], tetracycline and its derivatives [70,83–87], sulfamethoxazole [80,88–90],
phenytoin [81], oxcarbazepine [81], diclofenac [91], caffeine [92], paracetamol [92–94], and
ibuprofen [94]. Other organic substances that can be successfully removed from water
with the use of magnetic CNT-based materials include herbicides (e.g., metolachlor [82],
metribuzin [95], diquatdibromide [96]), insecticides (e.g., profenofos, triazophos, diazi-
non, phosalone, methidathion, ethoprop, sulfotep, and isazofos) [97], pesticides (e.g.,
pentachlorophenol) [33], agricultural nutrients (e.g., humic acid) [98], chemical interme-
diates used in industrial production (e.g., bisphenol A [82,99,100], bisphenol AF [95],
perfluoroalkyl carboxylic acids [101], perfluoroalkyl sulfonic acids [101], toluene [102],
m-cresol [103], esters [104], and phenol derivatives [57,67,105–111]), and ingredients from
cosmetics (e.g., tonalide [82], triclosan [82], butylparaben [104], methylparaben [104], and
phthalates [104,112]).

For a better presentation of the plethora of studies in the field, Table 1 summarizes
the magnetic CNT-based composites, some of their relevant properties, and targeted or-
ganic pollutants.

Other highly exploited carbon-based materials are graphene and its derivatives, as
they present certain appealing features (e.g., excellent mechanical properties, unique pore
structure with large specific surface area, and ionic molecular sieving separation capa-
bilities) [113]. Particularly, graphene oxide has attracted interest for its applications re-
lated to water decontamination, for both organic and inorganic pollutant removal. In
combination with magnetic materials, graphene oxide adsorbents benefit from unique
physicochemical characteristics, such as desirable magnetic features, surface active sites,
tunable dimension morphology, ease of modification/functionalization, and enhanced
chemical stability [15,114]. Adding these advantages to their affordability and magnetic
separation possibility, magnetic graphene oxide-based composites have been investigated
for the removal of many organic pollutants (e.g., dyes [65,115–119], drugs [120–123],
and pesticides [124]) (Table 2) and heavy metals (e.g., Pb2+ [125–130], Cr3+ [127,129,131],
Cr6+ [131–134], Hg2+ [119,135], Cu2+ [61,127,129,134], Zn2+ [127], Ni2+ [127,129],
As5+ [119,136], Cd2+ [128,129], Co2+ [129], and Ag+ [129]) (Table 3) [21,114,137].

Table 1. Magnetic carbon nanotube-based adsorbents for organic pollutant removal from contami-
nated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Carbon dot- and
magnetite-modified magnetic CNTs 184 5.6 Carbamazepine 65 [79]

Magnetic CNTs - -

Metolachlor
Bisphenol A

Tonalide
Triclosan

Ketoprofen
Estriol

20.53
28.55
27.32
19.68
26.67
18.24

[82]

CNT-incorporated MIL-88B-Fe 118.10 - Phenol - [105]

Nickel nanoparticles encapsulated
in porous carbon/CNT hybrids 999 3.66

Malachite green
Congo red

Rhodamine B
Methylene blue
Methyl orange

898
818
395
312
271

[36]
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Table 1. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Nickel nanoparticle-decorated
graphene oxide CNTs 71.7 - Rhodamine B 41.5 [68]

Magnetic CNT-reduced graphene
oxide–silver nanocomposite - 6.8 Methylene blue

4-Nitrophenol - [57]

CNTs/Fe@C hybrids 186.3 3.64
Methylene blue
Methyl orange

Neutral red

132.58
16.53
98.81

[37]

Magnetic multiwalled CNT 108.1 - Patent blue V - [75]

Magnetic nanocomposite cobalt
multiwalled CNT 87.1457 - Methylene blue 324.34 [58]

N-doped bamboo-like CNT
encapsulated with Fe nanoparticles

supported by biochar

194.8 at 700 ◦C,
225.4 at 800 ◦C
205.6 at 900 ◦C

- Rhodamine B - [69]

Core–shell ZIF-67/ZIF-8-derived
sea urchin-like cobalt/nitrogen

Co-doped CNT hollow frameworks
269.79 41.88

Methyl blue
Acid fuchsin

Malachite green

8862.5
8032.5
6043.2

[59]

Graphene-templated
zeolite-imidazolate framework

(ZIF-67) derived, Co nanoparticle
embedded, nitrogen-doped CNT

389 - Reactive black 5 - [35]

Magnetic fluorinated CNT - 47.7

Perfluoroalkyl
carboxylic acids
Perfluoroalkyl
sulfonic acids

- [101]

Magnetic titanium nanotube–CNT
nanocomposite 574.1 25.55 Bisphenol A - [99]

Aminated
MIL-53(Al)-functionalized CNT 811 - Bisphenol AF

Metribuzin
274
213 [95]

Magnetic and N-doped CNT with
cobalt encapsulation 125.5 1.61 Oxalic acid 5 [138]

Multiwalled CNT-functionalized
MIL-53(Fe) 60.17 -

Tetracycline
hydrochloride

Oxytetracycline
hydrochloride

Chlortetracycline
hydrochloride

364.37
325.59
180.68

[83]

Multiwalled
CNT–amino-functionalized

MIL-53(Fe) composites
- -

Tetracycline
hydrochloride

Chlortetracycline
hydrochloride

368.49
254.04 [84]

MIL-100(Fe)-CNT 1228 - Oxytetracycline 429 [85]

Magnetic nanomaterial of surface
oxidized nano-cobalt wrapped by

nitrogen-doped CNTs
243.63–277.62 4.64 Tetracycline

Rhodamine B
679.56
385.60 [70]

Nitrogen-doped CNTs with
encapsulated Fe3C nanoparticles - 12.6 Sulfamethoxazole - [88]
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Table 1. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Metal–organic framework
ZIF-8/magnetic multiwalled CNTs 127.95 53.56

Profenofos
Triazophos
Diazinon
Phosalone

Methidathion
Ethoprop
Sulfotep
Isazofos

3.89
3.12
2.59
3.80
2.34
2.18
2.84
3.00

[97]

Iron-loaded CNT microfibrous
composite - - M-cresol - [103]

Magnetic nitrogen-doped
CNT cages - - Okadaic acid 897.8 µg g−1 [139]

Amino-functionalized multiwalled
CNTs embedded with magnetic

nanoparticles
202.4 - Methylene blue 178.5 [60]

Magnetic CNT–TiO2 composite - -
Carbamazepine

and
Sulfamethoxazole

1.4 [80]

Magnetic CNT composites - 35.8 Methylene blue - [61]

Maghemite nanocrystals decorated
multiwalled CNTs - - Methylene blue 59.4 [62]

Magnetic multiwalled CNTs - -
Crystal violet

Methylene blue
Rhodamine B

287
302
231

[63]

Magnetite/multiwalled CNTs - 51.144 Reactive violet 2 52.356 [76]

Polyethyleneimine
(PEI)-functionalized magnetic CNTs 127.93 27.3 Alizarin Red S 196.08 [77]

Magnetic multiwalled CNTs
modified with chitosan

biopolymers
- - Bisphenol A 46.2 [100]

Polydopamine-coated Fe3O4
nanoparticles with multiwalled

CNTs
- 37.96

Phenytoin
Oxcarbazepine
Carbamazepine

- [81]

Magnetic multitemplate
molecularly imprinted

polymer@MWCNTs
- 25.6

Diethyl phthalate
Dimethyl
phthalate

Dibutyl phthalate

1.38
0.95
7.09

[112]

Magnetic single-wall CNTs - - Diclofenac [91]

Oxidized multiwalled CNT-Fe3O4 169.0 - Diquatdibromide
herbicide 20.9 [96]

Oxidized multiwalled
CNT–κ-carrageenan–Fe3O4

142.2 - Diquatdibromide
herbicide 10.7 [96]

Magnetic multiwalled CNTs
modified with polyaluminum

chloride
215.90 7.98 Humic acid - [98]

Multiwalled carbon
nanotube-modified magnetic
polyamidoamine dendrimers

- 47.71
Heterocyclic

aromatic
hydrocarbons

- [140]



Polymers 2024, 16, 709 10 of 41

Table 1. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Single-wall CNTs and magnetic
nanoparticles 284.21 - Toluene 49.8 [102]

Magnetic multiwalled
CNTs/cerium dioxide

nanocomposite
- 8.22 Methylene blue [64]

Multiwalled CNT-based Fe3O4 - - Maxilon Blue 5G - [78]

Multiwalled CNT–NiFe2O4
composite - 33.1 Sulfamethoxazole - [89]

Cobalt ferrite–CNT nanocomposites - 56 Methylene blue 8.5178 [65]

NiFe2O4/MWCNTs/ZnO hybrid
nanocomposite - 17.021 Methylene blue - [66]

Nitrogen-doped CNTs
encapsulated with Ni–Co alloy

nanoparticles

445.6 at 700 ◦C
537.5 at 800 ◦C
801.4 at 900 ◦C

-
Methylene blue

Methylene orange
Phenol

- [67]

Co0·5Ni0·5FeCrO4 spinel
nanoparticles decorated with
UiO-66-based metal–organic

frameworks grafted onto GO and
oxidized SWCNT

- - 4-Nitrophenol - [106]

Ag-Fe3O4-CNT composite 375 -

O-nitro phenol
P-nitro phenol

2-Methyl-p-
nitrophenol

Methylene blue

- [107]

Iron manganese oxide-modified
multiwalled CNT 211.3 - Basic violet

Acid orange
165.29
403.23 [72]

Zn@Cu–Fe2O4–NC–CNT - 36.14 Azure-II 50.25 [73]

CNT/MgO/CuFe2O4 magnetic
composite powder 127.58 12.137 Methyl violet

Nile blue
36.46
35.60 [74]

Co0.5Ni0.5Fe2O4 NPs grafted onto
CNTs 142.93 -

Methylene blue
Methyl orange

Congo red
Rhodamine B

88.05
48.60
291.3

120.78

[32]

Pd–Fe dual-metal nanoparticles
anchored in an interface of

double-layered carbon
nanotubes/nitrogen-doped carbon

163 - 4-Nitrophenol - [108]

Graphene oxide/multiwalled
carbon nanotube/Fe3O4/SiO2

79.7, - Paracetamol
Caffeine - [92]

Magnetite/multiwalled carbon
nanotubes/metal–organic

framework composite
- 21

Esters
Dimethyl
phthalate

Diethyl phthalate
Diallyl phthalate
Methylparaben
Butylparaben

- [104]

CNT–FeNi3/DFNS/Cu(II)
magnetic nanocomposite 341 19.7 Tetracycline - [86]
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Table 1. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Fe–Cu-doped multiwalled carbon
nanotubes 237.8–323.5 - Paracetamol - [93]

Nitrogen-doped carbon nanotubes
encapsulating Fe/Zn nanoparticles - - Sulfamethoxazole - [90]

CNT-COOH/MnO2/Fe3O4
nanocomposite 114.2 0.46 Paracetamol

Ibuprofen
80.645

103.093 [94]

Co0.5Mn0.5Fe2O4-CNT 108.20 0.61 Pentachlorophenol 43.2 [33]

Co0.5Ni0.5Fe2O4-CNT 95.52 0.61 Pentachlorophenol 40.8 [33]

Co0.5Cu0.5Fe2O4-CNT 112.04 0.42 Pentachlorophenol 35.1 [33]

Co0.5Zn0.5Fe2O4-CNT 96.05 0.40 Pentachlorophenol 33.9 [33]

Nitrogen-doped carbon nanotubes
modified with magnetic

Co0.5Cu0.5Fe2O4 nanoparticles
85.04–95.64 0.415 Chlorophenol - [109]

Bi2O2CO3/CNT/ZnFe2O4 - 25 2,4-Dimethyl
phenol - [110]

Fe-doped graphitic carbon nitride
coupled Ag3VO4 compounded

with CNTs
- - 2,4-Dimethyl

phenol - [111]

FeOx/MnOy-modified oxidized
CNTs 133–140 - Rhodamine B - [71]

CNTs/β-cyclodextrin/MnFe2O4 166 25.706 Tetracycline 40.36 [87]

Table 2. Magnetic graphene oxide-based adsorbents for organic pollutant removal from contami-
nated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Magnetic graphene oxide/ZnO
nanocomposites 83.2839 11.18 Tetracycline 1590.28 [120]

Magnetite/reduced graphene
oxide nanocomposite 213 18.269 Phenazopyridine 14.064 [121]

Amino-functionalized
mesoporous silica-magnetic

graphene oxide nanocomposites
- 39.37 Oxytetracycline - [122]

Graphene oxide/MIL-88A(Fe)
membrane - -

Methylene blue
Rhodamine B
Methyl orange

- [115]

Magnetic graphene
oxide@MIL-101(Fe) 134.1 30.3 Diazinon and

atrazine pesticides - [124]

Fe3O4@ZnO@graphene oxide
nanocomposite - 7.02 Methyl orange - [116]

Fe3O4@graphene oxide
nanocomposite - 45.788 Methyl orange - [116]

Montmorillonite/graphene
oxide/CoFe2O4

194.94 46.34 Methyl violet 97.26 [117]
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Table 2. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

CuFe2O4@GO 32.3 - Methylene blue 25.81 [118]

CoFe2O4@GO 52.1 - Methylene blue 50.15 [118]

NiFe2O4@GO 76.7 - Methylene blue 76.34 [118]

Cobalt ferrite-reduced graphene
oxide - 62 Methylene blue 4.3497 [65]

Magnetic chitosan
nanocomposites modified with

graphene oxide and
polyethyleneimine

- 29.31 Congo red
Amaranth

162.07
93.81 [119]

Mesoporous silica–magnetic
graphene oxide nanocomposite 31.68 26.98 Sulfamethoxazole 15.46 [123]

Table 3. Magnetic carbon nanotube- and graphene oxide-based adsorbents for heavy metal removal
from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Multiwalled CNTs doped with
magnetic iron oxide and deposited in

crosslinked chitosan
70.90 - Cr(III)

Cr(VI)
66.25
449.30 [131]

Sulfur-coated magnetic multiwalled
CNT - 8.2 Hg(II) 62.11 [135]

Magnetic Fe3O4@C@TiO2–nanotube
composites 37.02–50.33 2.1–3.9 Pb(II) - [126]

Magnetic CNT composites - 35.8 Cu(II) - [61]

Magnetic graphene oxide - 38

Pb(II)
Cr(III)
Cu(II)
Zn(II)
Ni(II)

200.00
24.330
62.893
63.694
51.020

[127]

Magnetic hollow-sphere
nanocomposite, graphene
oxide–gadolinium oxide

50.91 55 As 216.70 [136]

Magnetic chitosan/graphene
oxide/MnO2

- - Cr(VI) 78.2 [132]

Magnetic chitosan/graphene
oxide/Al2O3

- - Cr(VI) 77.8 [132]

Magnetic chitosan/graphene
oxide/SiO2

- - Cr(VI) 75.9 [132]

Fe3O4/SiO2–graphene oxide
composite - 18.2 Cd(II)

Pb(II)
128.2
385.1 [128]
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Table 3. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Silica-coated magnetic graphene
oxide - 22.58

Cr(III)
Co(II)
Ni(II)
Cu(II)
Cd(II)
Pb(II)
Ag(I)

79.91
62.18
64.79
70.77
62.09
82.58
54.90

[129]

Magnetic graphene oxide - - Cr(VI) 3.197 [133]

Graphene oxide functionalized
chitosan–magnetite nanocomposite - - Cu(II)

Cr(VI)
111.11
142.85 [134]

MnFe2O4/GO nanocomposite - 28.8 Pb(II) 90 [125]

Magnetic chitosan nanocomposites
modified by graphene oxide and PEI - 29.31 As

Hg(II)
220.26
124.84 [119]

3-aminopropyltrimethoxysilane-
functionalized magnetic

sporopollenin-based silica-coated
graphene oxide

- 30 Pb(II) 323.5 [130]

MnFe2O4/GO nanocomposite - 28.8 Pb(II) 625 [125]

3.2. Polymer-Based Composites

Polymer-based magnetic composites are generally defined as organic polymer matrices
embedded with inorganic magnetic components, mainly Fe3O4, Fe2O3/γFe2O3, CoFe2O4,
ZnFe2O4, and NiFe2O4 [22,27]. In addition, polymers can be used as coating layers for
magnetic nanoparticles to form chemically or physically anchored core–shell structures.
The polymeric covers act as protective layers while also providing active sites for pollutant
adsorption, and thus they are valuable materials for improving water decontamination
performance [15].

What makes polymers interesting for the formation of various composites is their
low weight, easy processing, and inexpensive fabrication [22]. Polymer-functionalized
nanocomposites also benefit from more advantageous physicochemical characteristics
compared to each of the system components, such as enhanced surface area-to-volume
ratio, higher interfacial reactivity, and augmented mechanical properties. In addition,
polymers endow composites with a highly tunable adsorption behavior, which makes them
appealing for water treatment and purification technologies [27]. Moreover, in combination
with magnetic elements, polymer-based composites offer enhanced nanoparticle stability,
helping them avoid processes like oxidation and flocculation [22]. Furthermore, the mag-
netic components enable stable material recovery, providing easy separation from treated
water and recycling performance to the polymer-based adsorbents [49,141,142].

With these advantages in mind, several research studies have investigated the po-
tential of ferrite-supported nanocomposite polymers for the removal of different con-
taminants from aqueous samples [143]. Specifically, various ferrites have been com-
bined with polymers like chitosan [144–148], polypyrrole [149], polyaniline [150], poly-
imide [151], and polyvinyl alcohol [152] to offer effective solutions for the removal of
organic [144–147,150–156] and inorganic [148,149] pollutants (Table 4).
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Table 4. Magnetic polymer-based adsorbents for various pollutants’ removal from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

ZnFe2O4/chitosan magnetic particles 57.4 9.75 Diclofenac 188 [144]

Magnetic geopolymer/Fe3O4 composite 53.40 2.50 Acid green 16 400 [153]

Magnetic zinc ferrite–chitosan
biocomposite 5.187 - Crystal violet

Brilliant green
14.3
20.0 [145]

CoFe2O4–chitosan composite 2 8.4 Congo red
Methyl orange

15.60
66.18 [146]

Polypyrrole-modified Fe3O4/SiO2
magnetic composite - 8 Congo red 361.43 [149]

Bio-magnetic membrane capsules from
PVA–alginate matrix - 11.02 Malachite green 500 [152]

Magnetic nanocellulose from olive
industry solid waste - 21.4 Methylene blue 166.67 [154]

Magnetic amine-functionalized chitosan - 17.5 Diclofenac sodium 469.48 [147]

Magnetic β-cyclodextrin porous polymer
nanospheres 70.63 44.8 Methylene blue 305.8 [155]

Polyaniline-coated Fe3O4 nanoparticles - 40.4
Polycyclic
aromatic

hydrocarbons
- [150]

Magnetic polyimide@ Mg-Fe-layered
double hydroxides core–shell composite - 26.38

Tetracycline
2,4-

Dichlorophenol
Glyphosate

185.53
176.06
190.84

[151]

Magnetic mesoporous lignin from date
palm pits 640 37.81 Spill oils 23.01 g g−1 [156]

Zinc ferrite–chitosan magnetic composite 3.833 - F− 6.9 [148]

Nickel ferrite–chitosan magnetic
composite 4.187 - F− 8.3 [148]

Cobalt ferrite–chitosan magnetic
composite 3.197 - F− 6.7 [148]

Polypyrrole-modified Fe3O4/SiO2
magnetic composite - 8 Cr(VI) 298.22 [149]

3.3. Hydrogel-Based Composites

Hydrogels can be considered a special class of polymeric materials due to their unique
network structure and additional advantageous properties that render them suitable for a
broad range of applications [157]. Hydrogels present a three-dimensional porous network
of hydrophilic polymer chains that create an ideal adsorption and storage medium for large
amounts of water, thereby being an appealing option for aqueous pollution remediation.
In more detail, water permeates the hydrogel through capillary effect and osmolarity,
which are mechanisms correlated with the hydrophilic functional groups, such as hydroxyl,
carbonyl, carboxyl, and amino groups [157,158].

Furthermore, hydrogels made of biopolymers exhibit distinct beneficial characteristics,
including safety, environmentally friendly nature, easy handling, tunable dimensions,
and diverse morphology [158,159]. Moreover, hydrogels are excellent matrixes for the
incorporation of different fillers, leading to synergistically acting composites. Embedding
magnetic structures into hydrogels has been explored as a particularly effective option
for water remediation applications, enhancing the mechanical properties of the composite
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material, augmenting its stability, and improving the electrical and thermal properties
of hydrogels. Moreover, the addition of metallic magnetic particles endows the material
with catalytic activity for degrading captured pollutants and provides the possibilities of
remotely controlled swelling and the adsorption/desorption of analytes and collection
from wastewater systems by adjusting the external magnetic field [157–159]. Besides, the
endowed magnetism facilitates the separation of hydrogel composite beads after contami-
nant extraction. Furthermore, the used adsorbents can be conveniently regenerated and
recycled through successive adsorption and washing rounds, considerably diminishing the
economic costs of water treatment in practical applications [159,160].

Hydrogels have been especially recognized for the adsorptive removal of dyes from
contaminated water for nearly two decades since various hydrogel-based composites
started being developed [159]. According to the literature, alginate–chitosan hydrogels
can reach dye removal capacities of larger than 100 mg/g (sometimes even surpassing
2000 mg/g), while metal absorption capacity can range between 38 mg/g and more
than 440 mg/g [161]. Recent studies in the field (Table 5) have uncovered the potential
of hydrogel-based magnetic composites for the removal of various organic dyes (e.g.,
reactive orange 16 [162], methylene blue [163–168], rhodamine B [166], methyl orange [168],
and malachite green [168]) and environmentally harmful inorganic contaminants (e.g.,
Cd2+ [169], Pb2+ [168,170,171], Hg2+ [168], Ni2+ [168], Mn2+ [171], Cu2+ [171], Al, K, Se, Na,
V, and S [158]).

Table 5. Magnetic hydrogel-based adsorbents for various pollutants’ removal from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Chitosan/graphite/polyvinyl alcohol magnetic
hydrogel microspheres - 7.2 Reactive orange 16 196.3 [162]

Polyacrylamide/chitosan/Fe3O4 composite
hydrogels - - Methylene blue 1603 [163]

Chitosan–graphene oxide hydrogels with
embedded magnetic iron oxide nanoparticles 22.37–25.83 32.56 Methylene blue 36.2 [164]

Hydrogel beads based on the incorporation of
nanosilver/diatomite into calcium alginate 0.31 - Methylene blue 128.21 [165]

Graphene quantum-dot-decorated magnetic
graphene oxide-filled polyvinyl alcohol hybrid

hydrogel
- 20.55 Methylene blue

Rhodamine B
46.79
44.89 [166]

Fe3O4-modified chitosan-based co-polymeric
magnetic composite hydrogel - 0.178 Methylene blue - [167]

Magnetic hydrogel microspheres of lignin
derivate - -

Methylene blue
Methyl orange

Malachite green

43
39

155
[168]

Polyvinyl alcohol composite hydrogels
containing magnetic nanoparticles - - Cd(II) 42.6 [169]

Magnetic hydrogel microspheres of lignin
derivate - -

Pb(II)
Hg(II)
Ni(II)

33
55
23

[168]

Magnetic chitosan/alginate/Fe3O4@SiO2
hydrogel composites - 0.30–4.1 Pb(II) >220 [170]

Magnetic sodium alginate/carboxymethyl
cellulose composite hydrogel - 3.2

Mn(II)
Pb(II)
Cu(II)

1.83
89.49

105.93
[171]

Alginate hydrogel reinforced with cellulose
nanofibers decorated with magnetic

nanoparticles
17.02 -

Al
K
Se
Na
V
S

22
13.2
19

11.1
44.4
13.7

[158]
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3.4. Metal–Organic Framework (MOF)- and Covalent Organic Framework
(COF)-Based Composites

Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) repre-
sent special classes of polymeric materials that have made great progress in recent years.
MOFs are porous coordination polymers that can self-assemble from organic ligands and
metal ions or clusters of metal ions to create various geometries (e.g., pyramidal, trigonal
bipyramidal, square, octahedral, and tetrahedral). Numerous metal ions have been consid-
ered for MOF development, including Cu2+, Mg2+, Cd2+, Zn2+, Co2+, Ca2+, Fe3+, Al3+, Ti3+,
Ln3+, and Zr4+, while organic components are generally amines, carboxylates, sulfonates
and phosphates [27,172].

Many MOFs can be formed by different combinations between the aforementioned
materials (Figure 5), yet some of them have gained more relevance. For instance, the MIL
(Materials of Institut Lavoisier) series of MOFs have been produced from transition metals
or metal ions (or clusters) from the lanthanide series and linkers of terephthalic acid or
trimesic acid. ZIFs (zeolitic imidazolate frameworks) are another important series of MOFs
that are produced through the coordination of metal ions and imidazole ligands. Other
interesting MOFs are the UiO (University of Oslo) series, based on zirconium, and Cu-BTC
or HKUST, based on copper [172].
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Given their versatility, unique structure, and appealing physicochemical properties
(e.g., high chemical stability, presence of active metal sites, large surface area, and tunable
pore size), MOFs have attracted interest for wastewater treatment [27]. Among the many
possible structural compositions, magnetic MOFs can provide particularly promising
results, as they can allow for easy and high-efficient recycling [173]. By applying an
external magnetic field, the MOF-based adsorbent used can be easily separated from water
samples, further regenerated by washing with common solvents (e.g., ethanol), and reused
several times without significant loss in its adsorption capacity [27].

The main magnetic component associated with MOFs is iron oxide, due to its super-
paramagnetism, biocompatibility, and desirable stability against chemicals. Thus, various
iron oxide MOFs started to be employed in environmental applications to remove a wide
range of organic and inorganic pollutants from contaminated water samples [173].

Magnetic MOFs have been rendered especially valuable for the adsorption of dyes,
which has been demonstrated to be effective in numerous recent studies. They have
been successfully used for decontaminating water from organic dyes like methylene
blue [174–178], rhodamine B [174], methyl orange [179–181], indigo carmine [175], Congo
red [182], AB92 [183], and DR31 [183]. Moreover, studies have been performed on other
organic contaminants as well, with investigations being reported for the removal of an
important number of drugs, including but not limited to ciprofloxacin [180,184], nor-
floxacin [180,184], tetracycline and its derivatives [34,185–187], diclofenac sodium [186,188],
and ofloxacin [189]. For clarity, an at-glance perspective on MOF-based magnetic compos-
ites for organic pollutant removal is presented in Table 6.

In addition, recent articles have also reported on the potential of magnetic MOFs
for the adsorption of heavy metal ions, as summarized in Table 7. Studies have shown
that magnetic MOFs can be used for the efficient removal of a series of harmful metals
from contaminated water samples, such as Co(II) [190], Cr(VI) [191–195], As(V) [196],
Hg(II) [197,198], Pb(II) [187,192,199,200], U(VI) [201], Cu(II) [199,202,203], and Cd(II) [204].

Similar to MOFs, COFs have drawn attention to the adsorptive removal of targeted
environmental pollutants [172]. Constructively, COFs are ordered crystalline porous poly-
mers containing light elements connected to organic monomers through robust covalent
bonds with ordered π structure [15,172,205]. Generally, COFs are MOF derivatives, dis-
playing comparable surface areas; low densities; and well-defined pore size, topology, and
framework. Other advantageous properties include their ease of functionalization, thermal
and chemical stability, and ordered channel architecture [15,205].

Nonetheless, in most situations, COFs made in powder form have the disadvantages
of lengthy operation, a significant agglomeration tendency, and low recyclability, which
severely limits their environmental applications. Combining COFs with magnetic compo-
nents emerged as an interesting solution to address these difficulties. Magnetic COF-based
composites have an excellent adsorption capacity due to their well-developed pore struc-
ture, and they are endowed with superior magnetic responsiveness that facilitates their
separation, recovery, and recycling. Owing to their unique qualities, magnetic COFs hold
great promise for water remediation [205], and their potential for the elimination of toxic
contaminants has been reported in a series of recent studies (Table 8). Magnetic COF-based
composites have proved effective for the removal of various organic (e.g., triclosan [206],
triclocarban [206], polycyclic aromatic hydrocarbons [207], bisphenols [208,209], methyl or-
ange [210], diclofenac [211], and sulfamethazine [211]) and inorganic (e.g., Cr(VI) [209,212],
Pb(II) [213], Hg(II) [214,215], Au(III) [216], and UO2

2+ [217]) pollutants.
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Table 6. Magnetic metal–organic framework-based composite adsorbents for organic pollutant
removal from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Polyoxometalate/CoFe2O4/metal–
organic framework magnetic
core–shell nanocomposites

799.56 13.7 Rhodamine B
Methylene blue

153.84
200 [174]

Composite based on
metal–organic frameworks and

Fe3O4 nanoparticles
- 30.1 Anthracene 12.7 [218]

Composite material graphene
oxide/MIL-101(Fe) 888.29 - Methyl orange 186.20 [179]

Ag NPs supported on the
magnetic Al-MOF/PDA 54.31 26.62

Ciprofloxacin
Norfloxacin

Methyl orange
- [180]

Ce-MOF@Fe3O4@activated
carbon composite - 21.39 Methylene blue

Indigo carmine
84.9
85.5 [175]

Magnetic nanocomposite based
on Zn/Fe-MIL-88B 186–216 - Chlortetracycline 11.7–359.2 [185]

Magnetic Fe3O4-PSS@ZIF-67
composites with core–shell

structure
1041.90 - Methyl orange 738 [181]

Yolk-shell Fe3O4@MOF-5
nanocomposites 203 46.57 Methylene blue - [178]

La-MOF-NH2@Fe3O4 36.1 15.54 Congo Red 716.2 [182]

Superparamagnetic MOF@GO
Co-based hybrid nanocomposite 71.47 56.4 Methylene blue 67 [176]

Superparamagnetic MOF@GO
Ni-based hybrid nanocomposite - 47.0 Methylene blue 54 [176]

Fe3O4 NPs incorporated into the
zeolitic imidazolate framework

lattice (Fe3O4@ZIF-8)
1206 37.87 Methylene blue - [177]

PPI–Dendrimer-Functionalized
Magnetic MOF

(Fe3O4@UiO-66@PPI)
120 10.5 AB92

DR31
122.5
173.7 [183]

Magnetically functionalized
Zr-MOF (Fe3O4@MOF-525) 427 7.48 Tetracycline

Diclofenac sodium
277
745 [186]

β-cyclodextrin-modified
Fe3O4@MIL-100(Fe) composite 2.60 9.40 Fungicides 64.52–102.10 [219]

Composites with a magnetic
Fe3O4 core and a MIL-101 (Cr)

MOF shell
803 19.6 Polyaromatic

hydrocarbons - [220]

Fe3O4/HKUST-1 magnetic
copper-based MOFs 327.9 44 Ciprofloxacin

Norfloxacin
538
513 [184]

Magnetic Fe3O4@ZIF-67
composites - 60.9 Tetrabromobisphenol

A - [221]

Hydrophobic
carboxyl-functionalized ionic

liquid encapsulated into
Fe3O4@Zr-MOFs

685 48.8 Ofloxacin 438.5 [189]
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Table 7. Magnetic metal–organic framework-based composite adsorbents for inorganic pollutant
removal from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Zr-based magnetic metal–organic framework
composite (Fe3O4@SiO2@UiO-66-Glu) 633.5 17.40 Co(II) 178.6–270.3 [190]

Magnetic ZIF-67 MOF@aminated chitosan
composite beads 220.76 10.90 Cr(VI) 119.05 [191]

Magnetic Fe3O4@UiO-66 composite 33.12 26.5 As(V) 73.2 [196]

Magnetic materials with functionalized
titanium-based MOF composite

(SNN-MIL-125(Ti)@Fe3O4)
195.82 13.06 Hg(II) 511.4 [197]

Magnetic Zr-MOF named
Ni0.6Fe2.4O4-UiO-66-PEI 22 4.11 Pb(II)

Cr(VI)
273.2
428.6 [192]

Magnetic MOFs/graphene oxide
(Fe3O4@HKUST-1/GO) 72.23 - U(VI) 202.84–268.82 [201]

Surfactant-functionalized magnetic
MOF@MOF adsorbent

(Fe3O4@UiO-66@UiO-67/CTAB)
115.94 36.05 Cr(VI) 932.1 [193]

Fe3O4@metal–organic framework@covalent
organic framework (Fe3O4@MOF@COF) - 16 Cu(II) 37.29 [202]

Citrate capped Fe3O4@UiO-66-NH2 MOF 572.13 3.07 Cr(VI) 743 [194]

Fe3O4@ZIF-8 core–shell magnetic composite 724.7 37.26 Pb(II)
Cu(II)

714.7
299.7 [199]

Magnet-responsive Fe3O4@ZIF-8 896 27 Cu(II) 345 [203]

Magnetic Zr-MOF@polypyrrole
(Fe3O4@UiO-66@Ppy) 52.49 19.75 Cr(VI) 259.1 [195]

Multifunctional composite
Fe3O4/MOF/L-cysteine 413.67 - Cd(II) 248.24 [204]

Fe3O4@DTIM-MOF@SH composite 827 13 Hg(II) 756.9 [198]

Fe3O4@ZIF-8 composite 1722 13.4 Pb(II) 276.06 [187]

Polyacrylic acid capped Fe3O4–Cu-MOF 332.07 - Pb(II) 610 [200]

Non-core–shell Fe3O4@ZIF-67 composites - - Phosphate 116.59 [222]

Table 8. Magnetic covalent organic framework-based composite adsorbents for various pollutants’
removal from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Core–shell structured magnetic
covalent organic framework

nanocomposites
55.71 48.4 Triclosan

Triclocarban - [206]

Bouquet-shaped magnetic porous
nanocomposite made of TpPa-1

grafted on surface-modified
Fe3O4 nanoparticles

247.8 40.1
Polycyclic
aromatic

hydrocarbons
- [207]

Porous nanospheres with a
magnetic core and a tunable

TpBD shell
272.6 22 Bisphenol A

Bisphenol AF
160.6
236.7 [208]
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Table 8. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Magnetic porous covalent
triazine-based framework

composites
930–1149 1.1–5.9 Methyl orange 291 [210]

Magnetic covalent organic
framework (TpPa-1) with
β-ketoenamine linkage

485.2 19.5 Bisphenol A 1220.97 [209]

Fe3O4 particles grown in the pore
channels of COFs 2245 5.2 Diclofenac

Sulfamethazine
40.4

55.24 [211]

Fe0 nanoparticles immobilized on
porous TpPa-1 covalent organic

framework
102.97 - Cr(VI) 516 [212]

Bimetal oxide MnFe2O4
incorporated onto β-ketoenamine

linked TpPa-1
152.5–450.5 11.52 UO2

2+ 1235.01 [217]

Magnetic covalent organic
framework (TpPa-1) with
β-ketoenamine linkage

485.2 19.5 Cr (VI) 245.45 [209]

Magnetic organic framework
adsorbent (Ni0.6Fe2.4O4-HT-COF) - 39.83 Pb(II) 411.80 [213]

Thiol-functionalized magnetic
covalent organic frameworks 181.5 19.6 Hg(II) 383 [214]

Fe3O4 decorated porous
melamine-based covalent organic

framework
344–600 0.75–3.59 Hg(II) 97.65 [215]

Magnetic β-ketoenamine COF
(MTpPa-1) 538.60 6.59 Au(III) 1737 [216]

3.5. Silica-Based Composites

Silica is another material recognized and exploited for its three-dimensional network
structure. It consists of SiO4 ending with oxygen atoms connected via siloxane or silanol
groups. Silanol groups are particularly relevant for water decontamination applications, as
they provide beneficial surface chemistry for the adsorption of molecules and metal cations
through complex formation (an interaction that can be enhanced by pH modification).
Moreover, silica exhibits easy grafting of additional functionalities, including photocatalyst
grafting for dye degradation. Hence, plain silica can be successfully employed in removing
various pollutants, including aromatic compounds, organic dyes, and heavy metals [15,223].

Nonetheless, even better outcomes can be obtained when combining silica with other
materials to create magnetic composites that can be easily removed from wastewater
and further reused. From a constructive point of view, similar possibilities to magnetic
polymer-based composites are often involved: core–shell structures and dispersed mag-
netic particles in a silica matrix. Using nonporous or mesoporous silica to cover iron
oxide nano-/microparticles is an appealing method for protecting the magnetic core from
leaching and oxidation while reducing particle aggregation tendency [15]. Moreover, the
application of a solid silica coating on iron oxide particles improves their stability and re-
stricts their dissolution, as silica ring molecules block the diffusion of structures larger than
oxygen. Physical damage to the silica layer is the sole method through which the chemical
resistance of magnetite nanoparticles coated with solid silica can be diminished [224]. In
addition, the augmentation of silica-based composites with magnetic materials enables
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facile separation from aqueous solutions through the application of external magnetic
forces, thus simplifying the adsorption process and enhancing the overall adsorption ca-
pacity. After contaminant removal from the treated water, the magnetic adsorbent can
be easily regenerated (e.g., acid treatment) and reused for successive decontamination
procedures [225].

Given these advantageous properties, it is no surprise that silica-based magnetic compos-
ites have been explored as unconventional effective adsorbents, with numerous studies being
focused on dye removal from contaminated waters [223,226] (Table 9). Organic compounds
(e.g., phenanthrene [227], methylene blue [228–232], Congo red [230], glyphosate [233], methy-
lene red [234], doxycycline [235], acid blue 25 [236], fenpropathrin [237], cyhalothrin [237],
S-fenvalerate [237], bifenthrin [237], bisphenol A [238], and methyl orange [239]) have
been successfully removed from water in recent studies involving different combinations
between silica, magnetic particles, and other materials.

Table 9. Magnetic silica-based adsorbents for various pollutants’ removal from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

PVP-modified Fe3O4@SiO2
nanoparticles 60.82 30.89 Phenanthrene 18.84 [227]

Fe3O4@SiO2–VTEOS–DMDAAC - - Methylene blue 109.89 [228]

Carboxylated ethylenediamine
functionalized Fe3O4@SiO2

nanoparticles
- 58.7 Methylene blue 43.15 [229]

Fe3O4@SiO2@Zn–TDPAT - >20 Methylene blue
Congo red

58.67
17.73 [230]

Fe3O4@SiO2@UiO-67 - 20.9 Glyphosate 256.54 [233]

Raspberry-like supraparticles made
of very small silica nanoparticles and

SPIONs
193 >25 Methylene blue 93 [231]

Fe3O4@SiO2@NH2 - >40 Methylene red 81.39 [234]

Fe3O4@SiO2@mSiO2-CD 119 30.99 Doxycycline 78 [235]

Magnetic-SBA-15 crosslinked
poly(acrylic acid) 159 2.68 Acid blue 25 909.09 [236]

Mesoporous composite
Fe3O4@SiO2@KIT-6 579 42.8

Fenpropathrin
Cyhalothrin
S-fenvalerate

Bifenthrin

2.47
2.47
2.43
2.45

[237]

Ag/Fe,N-TiO2/Fe3O4@SiO2 - 5.82 Bisphenol A - [238]

Hollow-structured Fe2O3/Au/SiO2
nanorods 58.23 - Methyl orange - [239]

Yolk-porous-shell
SiO2@void@Ag/TiO2 nanospheres 702.8 - Methylene blue - [232]

EDTA-modified magnetic
mesoporous microspheres 337.02 29.49 Cr(III) - [240]

Iron oxide magnetic nanoparticles
with SiO2 shell 270–275 1.28–1.34 Pb(II) 14.9 [241]

Researchers have recently developed modified magnetic mesoporous materials ca-
pable of eliminating heavy metals via charge transfer and electrostatic attraction mecha-
nisms [226]. For instance, EDTA-modified magnetic mesoporous microspheres have been
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considered for Cr3+ removal [240], while iron oxide magnetic nanoparticles coated with
silica have been employed in Pb2+ adsorption [241].

3.6. Aerogel-Based Composites

Aerogels can be considered a distinctive category of materials with porous structures
that can be accomplished from different raw components. Aerogels have a very low
density, consisting of 90–99% air. Their unique 3D network of interconnected pores is
generally developed by crosslinking polymeric nanoparticles, removing the solvent from
the obtained gel, and then filling the pores with air [27,242,243]. Nonetheless, numerous
other base materials can be employed for fabricating aerogels due to the progress made in
the preparation and drying processes. Currently, these materials include organic aerogels
(made from chitosan, gelatin, cellulose, etc.), inorganic aerogels (made from silica, titania,
alumina, etc.), carbon aerogels (made from graphene or carbon nanotubes), and others,
reflecting the uniqueness, versatility, and potential of aerogel-based materials [242,243].

Silica-, polymer-, and carbon-based aerogels have entered the market in several fields,
including transportation, construction, and coatings [242], with interesting prospects also
noted for catalysis, adsorption, and biomedicine [243]. These lightweight materials have
also attracted renewed interest in water decontamination [27]. Their high surface area,
tunability in terms of hydrophobicity/hydrophilicity, and readily recyclability reinforce
their potential for water treatment alternatives. In addition, aerogels benefit from their
nontoxic characteristic, nonflammability, and easily disposable nature [242,244].

Besides the useful properties of monocomponent aerogels, functionalizing these
porous materials with synergistic compounds unveils new avenues for their high-scale
utilization. In particular, converting pristine aerogels into magnetic composites has con-
tributed to extending the performance of these materials and endowed them with su-
perparamagnetic properties. Magnetic aerogels can maintain their magnetic properties
and adsorption ability throughout several decontamination cycles, as they can be easily
recollected from water samples, regenerated, and reused in further treatments [244].

For matrix material, the most employed aerogels are silica-based composites, followed
by aerogels based on carbon, natural polymers/cellulose, metals, synthetic polymers,
alumina, and clays [244]. Regarding decontamination potential, various recent studies
(Table 10) have highlighted the use of magnetic aerogel-based composites to remove both
organic and inorganic pollutants. Encouraging results have been obtained for the elimi-
nation of organic contaminants, like methylene blue [245–249], acid orange [245], Congo
red [246,249,250], crystal violet [246], methyl orange [246,248], malachite green [251,252],
reactive black 5 [253], and organic solvents and oils [254]. Few interesting studies have
also reported on the possibility of adsorbing heavy metals ions from contaminated wa-
ter, including Cr(III) [249], Cr(VI) [245], As(V) [245], Cd(II) [249,255], Cu(II) [249], and
Pb(II) [249].

Table 10. Magnetic aerogel-based adsorbents for various pollutants’ removal from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Hexagonal boron nitride nanosheets
(h-BNNSs) based on magnetic hybrid

aerogels
104.6 74.6 Methylene blue

Acid orange
415
286 [245]

N-doped magnetic carbon aerogel 94 85 Congo red 431 [250]

Multifunctional magnetic
carboxymethyl chitosan

(Fe3O4@PDA/CMC) aerogel
106.7 13.69

Methylene blue
Crystal violet

Methyl orange
Congo red

217.43
262.27
83.47
92.83

[246]
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Table 10. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Carboxymethylcellulose-based citric
acid crosslinked magnetic aerogel - - Methylene blue 83.6 [247]

NiCo-loaded reduced graphene oxide
aerogel microspheres 253.9 43.8 Organic solvents

and oils 107–270 g g−1 [254]

Magnetic carbon
nanospheres/graphene composite

aerogels
787.92 22.47 Organic solvents

and oils 187–537 g g−1 [256]

Aerogels based on reduced GO
decorated with nanoparticles of iron

oxides Fe3O4 and γ-Fe2O3

670 - Methylene blue
Methyl orange

1501
1390 [248]

Fe-doped silica aerogel composite 240 - Malachite green 1592 [251]

Amphiprotic cellulose-mediated
graphene oxide magnetic aerogels - 8.61 Congo red

Methylene blue
282
346 [249]

Magnetic bacterial cellulose
nanofiber/graphene oxide polymer

aerogel
214.75 26.59 Malachite green 270.27 [252]

Polyaniline/hexaferrite aerogels
supported by poly(vinyl alcohol) - 7.7–12.5 Reactive black 5 - [253]

Hexagonal boron nitride nanosheets
(h-BNNSs) based on magnetic hybrid

aerogels
104.6 74.6 Cr(VI)

As(V)
833
426 [245]

Magnetic carbon aerogel 145.7 15.9 Cd(II) 143.88 [255]

Amphiprotic cellulose-mediated
graphene oxide magnetic aerogels - 8.61

Cu(II)
Pb(II)
Cd(II)
Cr(III)

222.2
568.2
185.5
122.2

[249]

3.7. Biochar-Based Composites

Biochar represents a stable substrate obtained from biomass through the combustion
of organic materials under low or no oxygen conditions [257]. Various materials can be
turned into biochar, with much focus placed on the exploitation of waste products [258].
Biochar-based materials have heterogeneous properties, and their characteristics depend
on the raw materials utilized and production conditions [257,258]. Common feedstocks are
switchgrass, hardwoods, peanut hulls, corn hulls, pecan shells, bark, rice, sugarcane, leaves,
paper sludge, cow manure, poultry manure and litter, sewage sludge, and aquaculture
waste. Biochar can assist in decreasing people’s aversion to discarding stream items by
reducing both dampness and odor through the process of pyrolysis [257].

Biochar-based materials have numerous attractive physicochemical features, including
high surface area, stable structure, microporosity, high carbon content, cation exchange
capacity, and charged surface functional groups [257,258]. These properties raised interest
in biochar for use in environmental applications, as they enable the immobilization or
removal of contaminants from soil, water, and air [259].

Although biochar can be used to absorb organic pollutants such as pesticides and
herbicides from contaminated water, it also hinders bacteria’s ability to decompose these
substances, extending their environmental persistence. Metals can also be chemically or
physically adsorbed onto biochar-based materials, unlike organic compounds. Biochar
does not impede the microbial degradation of inorganic contaminants [257]. To further
improve their adsorbent potential in decontamination applications, biochars can be tailored
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through various chemical and physical modification methods, the incorporation of different
materials, and magnetic functionalization [260].

Recent studies have particularly investigated the incorporation of metal ions (e.g.,
magnesium, silver, zinc, and copper) onto the surface and within the pores of biochar. The
resulting materials exhibited a considerably enhanced adsorption capacity compared to
pristine biochar due to the presence of two solid phases (i.e., metal oxide nanocrystals and
biochar matrix) that contribute to contaminant removal ability through mechanisms like
hydrogen bonding, precipitation, electrostatic precipitation, and ligand exchange [259].

When the metal oxides introduced in the porous carbon platform possess magnetic
properties, the obtained composite may display permanent magnetism after pyrolysis,
leading to improved decontamination efficiency [260]. Moreover, magnetic biochar-based
adsorbents can be easily separated from water samples with the aid of a permanent magnet.
After recovery, contaminants like heavy metal ions can be desorbed from the composite
through treatment with a strong base, and the adsorbent can be further regenerated through
HCl treatment [261].

Unlike unmodified biochar, magnetic biochar-based composites offer better out-
comes in the removal of water pollutants, including heavy metals, dyes, drugs, and
pesticides [262]. For clarity, Table 11 summarizes recently reported magnetic biochar-
based adsorbents that have shown good promise for eliminating various organic [263–270]
and inorganic [271–278] contaminants.

Table 11. Magnetic biochar-based adsorbents for various pollutants’ removal from contaminated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Sludge-based magnetic biochar 20.19 25.60 Methylene blue 296.52 [263]

Magnetic wakame biochar
nanocomposites 744.15 - Methylene blue 450.92 [264]

Rice husk biochar-based magnetic
nanocomposite - 30.8 Crystal violet 185.6 [265]

Magnetic montmorillonite-biochar
composite 67.77 35.10 Oxytetracycline 58.85 [266]

Magnetized biochar - 44.1 Sulfadiazine
Oxolinic acid - [267]

Magnetized biochar functionalized
with TiO2

- 6.96 Sulfadiazine
Oxolinic acid - [267]

Magnetized biochar functionalized
with TiO2 and afterward magnetized

by in situ
- 27.9 Sulfadiazine

Oxolinic acid - [267]

Magnetized biochar functionalized
with TiO2 and afterward magnetized

by ex situ
- 33.5 Sulfadiazine

Oxolinic acid - [267]

Magnetic Fe3O4 biochar 70.17 - Tetracycline 29.4 [268]

Magnetic cobalt ferrite–biochar
composite 83.23 39.11 Lomefloxacin

hydrochloride - [269]

Magnetic CuZnFe2O4–biochar
composite 61.5 37.6 Bisphenol A

Sulfamethoxazole - [270]

Amino-modified rice bran
biochar/MgFeAlO4 magnetic

composites
34.13 19.78 Ni(II) 201.62 [271]
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Table 11. Cont.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Amino hybrid biopolymer-decorated
magnetic biochar

composite—MTBC-2N
13.54 20.31 P 53.32 [272]

Amino hybrid biopolymer-decorated
magnetic biochar

composite—MTBC-4N
12.69 19.48 P 69.64 [272]

Halloysite and coconut shell–magnetic
biochar composites 234–391 56.34–59.15 Pb(II) 415–680 [273]

Magnetic Zn/iron-based
sludge/biochar composite 145.13 32.57 Cr(VI) 36.27 [274]

Magnetic greigite/biochar composites 10.2–17.6 - Cr(VI) - [275]

Magnetic biochar composites 109.65 ~9.45 U(VI) 52.63 [276]

Magnetic biogas residue-based biochar 79.64 39.96 Cu(II)
Pb(II)

75.76
181.82 [277]

Biochar loaded with chitosan-stabilized
ferrous sulfide nanoparticles 3.63–4.49 - Cr(VI) 49.17–49.21 [278]

3.8. Clay-Based Composites

Another upcoming direction for water and wastewater treatment consists of devel-
oping clay-based composite materials. Clays are naturally occurring absorbents found
abundant in sedimentary rocks in the form of hydrated phyllosilicates. The base unit of
these materials is SiO4

4−. Three of each tetrahedron’s apical oxygen atoms are shared with
another tetrahedron, placing the fourth apical oxygen vertically on the sheet [15,27,279,280].

Clay minerals have the advantages of being cheap and widely available, features that
allow them to be explored and exploited for environmental applications. They also benefit
from high porosity, high surface area, hydrophilic character, and natural net negative
charge on their configuration. Additionally, clays have great adsorption capability, swelling
capacity, and ability to interleave and/or graft different moieties. These properties make
clays valuable materials for water decontamination purposes, with a special focus on the
removal of cationic particles and heavy metals from aqueous solutions [15,279].

Different types of nanoclays can be involved in water treatment, including kaolin,
bentonite, montmorillonite, illite, micas, and kaolinite [279]. Moreover, these materials can
be further modified by incorporating magnetic components to optimize the systems toward
more proficient and economical adsorption platforms [27]. The obtained magnetic clay-
based composites exhibit improved physicochemical characteristics, such as high electrical
and chemical resistance, strong mechanical properties, superparamagnetism, saturation
magnetization, and enhanced specific surface area [279]. These magnetic adsorbents also
allow for easy separation via an external magnetic field without affecting water turbidity,
and their stability and reusability make them versatile materials for removing cationic and
anionic pollutants individually or concurrently [281].

Furthermore, other components can be added to the composite (e.g., surfactants,
polymers, and other substances with functional groups of interest) to attract the adsorbate
more effectively [280]. With their additional properties, magnetic clay-based composite
materials can be used to eliminate diverse pollutants, including heavy metals, dyes, drugs,
and other organic contaminants, through various processes (e.g., adsorption, chemical
treatment, oxidation, and photo-oxidation) [279,280].

In more detail, recent studies (Table 12) have demonstrated the capacity of magnetic
clay-based composites to remove organic (e.g., direct red 23 [282], crystal violet [283], acid
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red [283], Congo red [284], methylene blue [285–287], sunset yellow [288], Nile blue [288],
naphthol blue-black [289], enrofloxacin [290], tetracycline [291], ciprofloxacin [291], phe-
nol [292], p-nitrophenol [292], p-cresol [292], atrazine [293], and bisphenol A [294]) and in-
organic (Cr(VI) [284], Cu(II) [284,295,296], Pb(II) [284,295], Cd(II) [285], Ni(II) [295], F [297],
and Sr(II) [298]) pollutants from water and wastewater.

Table 12. Magnetic clay-based composite adsorbents for various pollutants’ removal from contami-
nated water.

Adsorbent Surface Area
(m2 g−1)

Magnetic
Saturation
(emu g−1)

Pollutant
Adsorption

Capacity
(mg g−1)

References

Fe3O4/kaolin magnetic
nanocomposites 31.56 12.32 Direct red 23 22.88 [282]

Banded iron formation @bentonite 21.04 - Crystal violet
Acid red

117
91 [283]

Bacterial cellulose/attapulgite
magnetic composites 197 16 Congo red 230 [284]

Magneto-carbon black-clay composite - - Methylene blue 9.72 [285]

Clay/starch/MnFe2O4 magnetic
nanocomposite 66.95 10.33 Sunset yellow

Nile blue
79.81
86.78 [288]

Magnetic Fe3O4/zeolite NaA
nanocomposite ~117 - Methylene blue 40.36 [286]

Clay–magnetite nanocomposite 37.458 24.910 Naphthol
blue-black - [289]

Graphene/magnetite/montmorillonite
nanocomposite 97.916 49.95 Methylene blue 225.0 [287]

Magnetic montmorillonite composite 64.78 27.57 Enrofloxacin - [290]

Sodium dodecyl sulfate-modified
BiOBr/magnetic bentonite 26.34 3.6 Tetracycline

Ciprofloxacin - [291]

Iron oxide/hydrotalcite intercalated
with dodecylsulfate/β-cyclodextrin

magnetic organocomposite
- -

Phenol
P-nitrophenol

P-cresol

216.08
255.63
272.48

[292]

Modified sepiolite clay loaded with
Fe3O4

81.01 - Atrazine - [293]

Magnetic sepiolite composite 81 26.22 Bisphenol A - [294]

Bacterial cellulose/attapulgite
magnetic composites 197 16

Cr(VI)
Cu(II)
Pb(II)

91
70.5
67.8

[284]

Magneto-carbon black-clay composite - - Cd(II) 8.83 [285]

EDTA-modified magnetic attapulgite
chitosan gel beads 51.81 0.9

Pb(II)
Cu(II)
Ni(II)

368.32
267.94
220.31

[295]

Kaolin–bentonite–Fe3O4 composite 10 0.045 F- - [297]

Magnetic hydroxyapatite coated with
manganese dioxide 131.826 11.713 Sr(II) 32.37 [298]

Magnetic bentonite/carboxymethyl
chitosan/sodium alginate hydrogel

beads
- 7.05 Cu(II) 56.79 [296]
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3.9. Summative Discussion and Remaining Challenges

In recent years, extensive interest has been directed toward developing carbon- and
polymer-based composite materials combined with magnetic particles to act upon nu-
merous organic and inorganic contaminants, which may pose significant environmental
problems. These composites provide facile separation from tested solutions; are chemi-
cally stable; and have good recyclability, enhanced porosity, high surface area, and great
adsorption capacity, properties well found on the list of requirements for an ideal adsorbent.

However, several limitations remain and must be addressed before coming onto the
market with better-performing water remediation solutions.

Magnetic composites are widely used in wastewater treatment, especially due to their
high flocculating and ferromagnetic properties [49]. However, depending on the material
they are associated with (Table 13), the magnetism of metallic particles may be shielded
by the covering layers, leading to overall poorer magnetic properties. Hence, special
attention must be given when choosing the materials to optimize targeted properties while
preserving enough magnetism to enable efficient separation.

Table 13. Comparative overview of surface areas and magnetic saturations for the described magnetic
adsorbent categories.

Magnetic Composite Category Surface Area Range (m2 g−1) Magnetic Saturation Range (emu g−1)

Carbon nanotube-based 60–811 0.4–56

Graphene-based 32–213 7–62

Polymer-based 2–640 2.5–45

Hydrogel-based 0.3–26 0.18–32

MOF-based 2.6–1722 3–61

COF-based 56–2245 0.75–48

Silica-based 58–703 1.3–59

Aerogel-based 94–788 7.7–85

Biochar-based 3.6–744 7–59

Clay-based 10–197 0.05–50

High variability can be observed between the adsorption capacity of the reviewed mag-
netic adsorbents, a property that depends not only on the matrix material but also on the
target contaminants. Considering the tabulated composites for which data were available,
the variation in the adsorption capacity could range between several orders of magnitude
for each base material. For instance, for CNT-based magnetic composites, an adsorption
capacity of 0.95 mg g−1 was registered for dimethyl phthalate in the case of magnetic
multitemplate molecularly imprinted polymer@MWCNTs [112], while a more complex-
structured adsorbent (i.e., core–shell ZIF-67/ZIF-8-derived sea urchin-like cobalt/nitrogen
Co-doped CNT hollow framework) allowed for the adsorption of 8862.5 mg g−1 for methy-
lene blue [59]. For graphene-based magnetic composites, the highest reported adsorption
capacity of 1590 mg g−1 was observed for tetracycline adsorbed by magnetic graphene
oxide/ZnO nanocomposites [120], whereas a maximum of 3 mg g−1 was reported for
chromium ions removed by magnetic graphene oxide [133]. However, this does not
necessarily imply that graphene-based magnetic composites are bad adsorbents for inor-
ganic contaminants, as other compositions could lead to better adsorption properties (e.g.,
Fe3O4/SiO2–graphene oxide had a 385 mg g−1 adsorption capacity for Pb(II) [128]). For
polymer-based magnetic structures, the adsorption capacities ranged between 6.7 mg g−1

for fluoride ions captured by cobalt ferrite–chitosan magnetic composites [148] and 23 g g−1

for spill oils adsorbed by magnetic mesoporous lignin [156], indicating the exceptional
potential of the latter material in water decontamination. For hydrogel-based composites,
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the lowest reported adsorption capacity value was 1.83 mg g−1 for Mn(II) (i.e., magnetic
sodium alginate/carboxymethyl cellulose composite hydrogel [171]), while the highest
was 1603 mg g−1 for methylene blue (i.e., polyacrylamide/chitosan/Fe3O4 composite hy-
drogels [163]). MOF-based composites ensured the highest adsorption capacity for Cr(VI)
(i.e., 932 mg g−1 for Fe3O4@UiO-66@UiO-67/CTAB [193]), while the lowest was reported
for anthracene (i.e., 12.7 mg g−1 composite based on MIL-101 and Fe3O4 [218]). In a similar
fashion, the highest adsorption capacity reported for COF-based magnetic adsorbents
was 1734 mg g−1 for metallic ions (i.e., Au(III) gold removal via magnetic β-ketoenamine
COF (MTpPa-1) [216]) whereas the lowest was 40.4 mg g−1 for an organic compound (i.e.,
diclofenac removal via Fe3O4 particles grown in the pore channels of COFs [211]). In the
case of silica-based magnetic composites, the available data for adsorption capacity ranged
between ~2.45 mg g−1 for pyrethroid pesticides and 909 mg g−1 for acid blue 25, removed
by mesoporous composite Fe3O4@SiO2@KIT-6 [237] and magnetic-SBA-15 crosslinked
poly(acrylic acid) [236], respectively. Magnetic aerogels offer an exceptional adsorption
capacity in general, regardless of contaminant type, with the numerical values starting
from 83.5 mg g−1 for methyl orange (i.e., Fe3O4@PDA/CMC aerogel [246]) and reaching
up to 537 g g−1 for organic solvents and oils (i.e., magnetic carbon nanosphere/graphene
composite aerogels [256]). Biochar-based magnetic composites exhibited adsorption capaci-
ties in the range between 29.4 mg g−1 and 680 mg g−1 for tetracycline removal by magnetic
Fe3O4 biochar [268] and Pb(II) removal by halloysite and coconut shell biochar magnetic
composites [273], respectively. For clay-based materials, the lowest reported adsorption
capacity value was ~9 mg g−1 for Cd(II) (i.e., magneto-carbon black-clay composite [285]),
whereas the highest adsorption capacity was 368 mg g−1 for Pb(II) (i.e., EDTA-modified
magnetic attapulgite chitosan gel beads [295]).

In addition, certain specific limitations have been encountered for each material. For
instance, composites developed by combining carbon-based materials and magnetic par-
ticles were noted to improve the adsorption properties compared to the pristine carbon
material, due to more available adsorption sites and enhanced porosity [15]. Nonetheless,
graphene is still quite expensive and is not a feasible alternative for large-scale experimenta-
tion [22]. Certain improvements must also be made to reduce the cost of aerogel production
to ensure their entrance into the market availability [242]. Similarly, despite promising
laboratory-scale results, magnetic COF-based materials are difficult to scale up for indus-
trial production, as they require complex and costly synthesis processes. Moreover, the
introduction of magnetic nanoparticles in the structure of COFs may affect their crystalline
structure, further impacting the specific surface area and adsorption capacity [205].

Several limitations have also been observed for the use of silica-based composites.
Specifically, a proper assessment of the effects of the large-scale utilization of these materials
and the implied environmental risks depending on other compounds introduced in their
structure is lacking [226]. Similar considerations are warranted for all the tabulated mag-
netic composites, given that the materials were only tested in small-scale studies [15,279].

Another important aspect to be considered is the regeneration of developed uncon-
ventional adsorbents so that they do not become waste materials and lead to secondary
pollution [22,205,280]. In this respect, after capturing the targeted contaminants and being
separated from an aqueous solution, carbon- and polymer-based magnetic composites
can be subjected to processes like thermal regeneration, ultrasonic treatment, chemical
treatment, gamma irradiation, and microwave irradiation, ensuring their suitability for
another decontamination cycle [22].

Moreover, most of the reviewed studies have been carried out on synthetic wastewa-
ter solutions, leaving a gap for how they would function in real-life applications, where
samples generally present a mixture of pollutants. In addition to its more complicated com-
position, industrial water exhibits a wide pH range, significant water quality fluctuation,
and variable chemical and biological stability [27,279,280,299].
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4. Conclusions and Future Perspectives

In summary, magnetic composites hold great promise for water decontamination
applications, increasing research interest in developing newer and better water remediation
systems. The versatility, tunability, surface properties, and ease of separation of different
magnetic nanoparticles have led to increased attention directed toward their inclusion in
various composite materials. Numerous magnetic-based composites have been fabricated
and tested to remove various organic and inorganic contaminants from aqueous solutions,
offering encouraging prospects for replacing conventional water treatment methods.

Magnetic nano- and micromaterials based on iron, cobalt, nickel, magnetite, and
maghemite have been explored in association with a wide range of other materials, either as
matrices or as coatings for metallic cores. The most studied magnetic composites involved
carbon- and polymer-based structures. Specifically, an impressive number of papers have
reported the potential of carbon nanotube- and graphene oxide-based magnetic composites.
Concerning polymers, there is broad material variability, with recent studies pointing to the
potential of conventional natural and synthetic polymers, hydrogels, aerogels, MOFs, and
COFs. Moreover, several important advancements have been reported in the use of silica-,
biochar-, and clay-based magnetic composite materials, offering extensive possibilities for
removing dyes, drugs, pesticides, heavy metal ions, and other contaminants from polluted
water samples.

Despite the significant progress in the field, there is a need to bridge the gap between
laboratory performance and real-world effects, necessitating the conversion of reported
achievements to low-cost scalable technology. Thus, future studies should focus on com-
posite materials that have shown the most promising results for synthetic samples and
test them on real wastewater in a broader context to ensure their advancement to higher
technological maturity levels. Moreover, extensive tests should also be performed on the
environmental impact of utilizing recently developed materials (i.e., the pollution resulting
from their production, implementation, and destruction/recycling). Minimizing envi-
ronmental impact should be a priority when deciding the materials and synthesis routes
for the water remediation systems to avoid falling under the trap of replacing current
contamination with secondary pollution. Moreover, the economic dimension must be
considered. In this respect, the feasibility of the developed magnetic composites depends
on the cost of raw materials, the equipment and energy requirements for production, the
possibility for the successive use of fabricated adsorbents, and the capacity to remove
multiple contaminants simultaneously.

To conclude, remarkable progress has been registered in developing a wide range of
magnetic composite materials that, through thorough further evaluation and testing, can
soon become performant alternatives to conventional decontamination methods.
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