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Abstract: Microvascular self-healing composite materials have significant potential for application
and their mechanical properties need in-depth investigation. In this paper, the tensile and compressive
properties of woven fabric carbon fiber-reinforced polymer (CFRP) laminates containing three-
dimensional microvascular channels were investigated experimentally. Several detailed finite element
(FE) models were established to simulate the mechanical behavior of the laminate and the effectiveness
of different models was examined. The damage propagation process of the microvascular laminates
and the influence of microvascular parameters were studied by the validated models. The results show
that microvascular channels arranged along the thickness direction (z-direction) of the laminates
are critical locations under the loads. The channels have minimal effect on the stiffness of the
laminates but cause a certain reduction in strength, which varies approximately linearly with the
z-direction channel diameter within its common design range of 0.1~1 mm. It is necessary to consider
the resin-rich region formed around microvascular channels in the warp and weft fiber yarns of
the woven fabric composite when establishing the FE model. The layers in the model should be
assigned with equivalent unidirectional ply material in order to calculate the mechanical properties
of laminates correctly.

Keywords: self-healing composites; woven fabric CFRP; microvascular; experimental test; finite
element analysis

1. Introduction

Due to the poor interlaminar performance of fiber-reinforced polymer composite
laminates and the shortcomings of existing non-destructive testing and repair methods for
composite structures [1], self-healing structural polymers and fiber-reinforced composites
have been proposed, which can be divided into intrinsic and external approaches [2]. The
intrinsic self-healing system is mainly based on the reversible chemical reaction of the
matrix material itself, which does not affect the structural integrity but is only suitable
for repairing small damages or scratches [3]. The external approaches, inspired by the
self-healing characteristics of organisms after injury, use microcapsules, hollow fibers,
or micro channels to transport healing agents to promptly repair damages [4]. Among
these approaches, microvascular self-healing is more promising for it allows multiple
efficient repairs of delamination damage or matrix cracks [5–9]. It can effectively reduce
maintenance costs, improve safety, and extend structure service life if implemented.

Luterbacher et al. [10] incorporated microvascular self-healing into a composite skin-
stringer structure to deliver the healing agent and found that the structural performances
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could be fully restored by using microvascular self-healing to repair the debonding interface
between the stringer and skin panel. Sakurayama et al. [11] conducted impact and compres-
sion tests on composite stiffened panels containing microvascular networks and repaired
the impact damage using them. The results showed that the repaired stiffened panel could
recover 50% of its compression strength compared to the unrepaired specimens. These all
confirm the potential of microvascular systems under practical conditions. Additionally,
there are relatively mature technical routes in terms of manufacture processes and healing
agents, such as the vaporization of sacrificial component (VaSC) method [7] and the epoxy
resin system [12]. However, the microvascular channels can also be regarded as initial
damage that affects the mechanical properties of the structure. Therefore, it is necessary
to thoroughly study the mechanical performance of laminates containing microvascular
channels so as to determine appropriate design parameters in actual structures.

A number of experimental studies have now been conducted to address the issue of
the mechanical performance of microvascular composites. Kousourakis et al. [13] tested
the tensile and compressive properties of laminates containing micro channels located in
the mid-plane of the laminate. As the diameter of the microvascular channels increased
from 0.3 mm to 3 mm, the strength and stiffness of the specimens with longitudinally
oriented channels decreased by less than 10%, while the performance of the specimens
with transversely oriented channels decreased significantly, with a maximum reduction
in tensile strength of 50%. The main reason for this significant performance loss was the
bending of fibers around the channels which resulted in a change in the stress state. Devi
et al. [14] also reached similar conclusions. Saeed et al. [15] conducted three-point bending
and short beam strength tests on laminates containing in-plane microvascular channels and
found that both the bending strength and short beam strength of the specimens linearly
decreased as the diameter of the channels increased. With a channel diameter of 1.5 mm,
the short beam strength decreased by about 33%, and the bending strength decreased by
about 15%. Coppola et al. [16] investigated the tensile properties and damage propagation
of 3D orthogonally woven glass fiber composites containing straight and undulating wave-
shaped micro channels and found that reductions in strength and modulus only occurred
when channels distorted the fiber architecture. Norris et al. [17] found that cutting the
fibers around the channel can prevent the formation of a resin-rich region, but this will lead
to a more significant decrease in the mechanical performance of the laminate.

Some researchers have also attempted to conduct studies using finite element meth-
ods. Nguyen and Orifici [18] first conducted experiments on laminates containing micro
channels with a diameter of 0.68 mm. They found that the tensile stiffness of the laminate
perpendicular to the microvascular channels could decrease by up to 7.5%, and the compres-
sive strength could decrease by 4.9%, while the performance decrease along the direction of
the channel was not significant. They further established a representative volume element
(RVE) model of the microvascular channel. The composite plies were modeled using contin-
uous shell elements, and the two-dimensional Hashin criterion was used to determine the
damage of the composite material. The resin-rich region was considered and the numerical
results of mechanical performance and failure modes were in good agreement with the
experimental results. Huang et al. [19] established a plane strain model, while Shawk
et al. [20], Demiral et al. [21], and Zhao et al. [22] established three-dimensional models to
study the influence of in-plane microvascular channels on different mechanical properties
of laminates. Ran et al. [23] also considered the variation in fiber volume fraction in the
area around the microvascular channels where fibers are bent in an FE model. Compared
to models that do not consider this factor, the calculated results of laminate strength and
stiffness were more accurate.

It is evident that current researchers primarily focus on laminates with a one-dimensional
microvascular channel arranged between composite layers. A few studies have demon-
strated research on three-dimensional microvascular channels but lack simulation analysis.
Delamination damage can occur at any position within the laminate during the structures’
manufacturing and service period [24]. In-plane micro channels can only repair damage
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between specific layers, and arranging channels in multiple layers would lead to a signifi-
cant decline in the laminate’s mechanical performance. Therefore, in a three-dimensional
microvascular configuration, the in-plane microvascular channels are used to transport
healing agents and the z-direction microvascular channels are used to repair delamination
damage at different positions. This may be the way to make self-healing structures available
for engineering applications. In order to provide a reference and basis for the design of
microvascular composite structures, studies on the mechanical performance of laminates
with such microvascular configurations should be conducted.

In this paper, the tensile and compressive properties of woven fabric CFRP laminates
containing three-dimensional microvascular channels were investigated experimentally.
New detailed finite element models with a resin-rich region and variations in fiber volume
fraction around the z-direction microvascular based on the actual structure were established,
which were employed to study the damage propagation of laminates under tensile and
compressive loads. The effects of microvascular parameters, including diameter, spacing
and volume fraction, on the tensile and compressive properties of the laminates were
discussed using the FE model. Finally, the design criteria for microvascular self-healing
composite structures were summarized based on the parameter study results.

2. Experiment
2.1. Material

The laminates in this study were all made of CF3031 carbon fiber fabric and
5284 epoxy resin, with the mechanical properties listed in Table 1. The materials and
the nominal properties were all provided by AVIC Manufacturing Technology Institute.

Table 1. Mechanical properties of CF3031/5284 ply.

Property Value Property Value

E1, E2/GPa 55.0 Xt, Yt/MPa 550
E3/GPa 8.4 Xc, Yc/MPa 593

G12/GPa 3.64 Zt/MPa 80
G13, G23/GPa 3.0 Zt/MPa 180

ν12 0.051 S12/MPa 84
ν13, ν23 0.15 S13, S23/MPa 80

2.2. Specimen Design and Manufacture

The tensile and compression specimens containing microvascular channels were
designed according to the ASTM D3039 [25] and D6641 [26] standards. The specimens
contained two parallel, three-dimensional microvascular channels, as illustrated in Figure 1.
The layup of the specimens was [(0,90)/±45/(0,90)/±45/(0,90)] s, with a nominal thickness
of 0.25 mm per layer. The width of the specimens was 24 mm, and the spacing of the z-
direction channels was 12 mm. The diameter of the channel was 0.5 mm, with the in-plane
channels located two layers beneath the surface of the specimen, as illustrated in Figure 2.
For compression specimens, care was taken during preparation to ensure the presence of z-
direction channel within the gage section. Blank specimens were also prepared as controls.

In the manufacturing procedure, the carbon fiber-woven fabric was manually laid
to form a preform and polylactic acid (PLA) threads were sewn into the preform at pre-
determined intervals. After this, the vacuum-assisted resin infusion (VARI) process was
used for resin impregnation and curing. Finally, the VaSC method was used when the
PLA threads were evaporated in an oven, leaving hollow channels. In order to make
their decomposition temperature much lower than the glass transition temperature of the
composite matrix resin, some catalyst was added into the PLA threads.
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2.3. Mechanical Testing

Tensile and compression tests were conducted on an INSTRON-8801 testing machine
(Norwood, MA, USA) in a standard laboratory environment (23 ± 2 ◦C, 50 ± 10% relative
humidity), using displacement control loading at a rate of 2 mm/min. The width and
thickness of the gage section of each specimen were measured three times before testing,
and the average values were taken. Five microvascular specimens and five blank specimens
were tested in both experiments. The microvascular specimens for tensile and compression
test were numbered XT-P-1~5 and XC-P-1~5, while the blank specimens were numbered
XT-C-1~5 and XC-C-1~5 accordingly.

The tensile test was conducted according to ASTM D3039; strain in the longitudinal
and transverse directions of the specimen was measured using two extensometers. The
stiffness of the specimen was calculated using data from the longitudinal extensometer
within the range of 1000 µε to 3000 µε. Extensometers were removed when the longitudinal
strain was 5000 µε, then the specimen was stretched to failure. The failure load and mode
were recorded. The setup of the test is shown in Figure 3.
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The compression test was conducted according to ASTM D6641. Four strain gauges
were used on the gage section to measure the strain of the specimen. The stiffness of the
specimen was calculated using the gauges’ data within the range of 1000 µε to 3000 µε.
The specimen was loaded until failure, and the failure load and mode were recorded. The
location of the strain gauges and the setup of the test are shown in Figure 3.

All specimens were determined to have failed when visible fracture occurred and the
load of the testing machine rapidly decreased by more than 30%.

2.4. Result and Analysis

Test results are shown in Table 2. The tensile stiffness and strength of the specimens
with microvascular channels reduced by 6.1% and 11.9% compared with the control group,
while the compressive strength reduced by 10.3% but the stiffness increased by 2.1%.
The stress–displacement curves of the tensile specimens and stress–strain curves of the
compression specimens are shown in Figure 4. It can be observed that the microvascular
has an evident effect on the strength of the laminates, but a relatively smaller effect on the
stiffness. When the strain is small, the curves of the two types of specimens are very close
to each other. The increased stiffness of the compression specimens with microvascular
channels may be due to the dispersion of the material properties, which has a greater effect
than that of the microvascular channels.

Table 2. Test results.

Specimen Type Specimens Tensile
Stiffness/GPa

Tensile
Strength/MPa Specimens Compression

Stiffness/GPa
Compression
Strength/MPa

Blank

XT-C-1 43.51 419.75 XC-C-1 41.34 475.67
XT-C-2 43.36 436.13 XC-C-2 42.22 455.59
XT-C-3 43.85 430.25 XC-C-3 41.26 477.40
XT-C-4 45.14 466.70 XC-C-4 39.30 467.92
XT-C-5 44.05 454.45 XC-C-5 40.40 437.92

Average 43.98 441.45 Average 40.90 462.9

Microvascular

XT-P-1 41.15 376.07 XC-P-1 41.48 416.11
XT-P-2 41.46 400.55 XC-P-2 41.20 391.21
XT-P-3 40.63 404.09 XC-P-3 42.38 438.65
XT-P-4 41.44 386.48 XC-P-4 42.27 413.13
XT-P-5 41.72 376.82 XC-P-5 41.45 416.27

Average 41.30 388.80 Average 41.75 415.10
Variations of

AVG/% −6.1 −11.9 Variations of
AVG/% 2.1 −10.3
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The failure modes of the tensile specimens are shown in Figure 5a. Three of the
specimens failed at the middle of the gage section. Figure 5b shows the fracture section
captured by optical microscopy and the z-direction channels are visible, suggesting that
the z-direction microvascular channels are found at key sections of these specimens when
carrying tensile load. Specimens XT-P-1 and XT-P-2 failed near the grip section where stress
concentration existed, but their strengths were not significantly lower than others.
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For compression specimens, the primary failure mode was brooming fracture in the
middle of the gage section where the z-direction microvascular channel was located, as
shown in Figure 5c; however, it was difficult to determine the z-direction channel due to
the extensive damage in the matrix of the compression specimens.

When bearing loads, the z-direction microvascular channel causes stress concentration
around it, thereby reducing the strength. However, since the microvascular channel only
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causes a slight bending of fibers in local areas, which is also a feature of the woven fabric
material itself, the fibers are not cut and the total fiber volume does not change, so that the
stiffness of laminates is barely affected.

3. Finite Element Model

To further investigate the failure mechanism of laminates containing microvascular
channels and to conduct parametric studies, it is necessary to establish a detailed finite
element model; however, modeling the whole structure is too hard to achieve. It is advisable
to consider in-plane and z-direction microvascular channels separately. The mechanical
properties of laminates containing in-plane microvascular channels have been the focus
of some studies, in which it was observed that the mechanical properties of the laminates
along the direction of the in-plane channel were less affected [13,14,16,18]. Also, the
experimental results in Section 2 indicate that the z-direction of microvascular channels
is a critical position. Therefore, the model will focus on the z-direction of microvascular
channels and its influence on the mechanical properties of the laminate. Finite element
analysis was performed on ABAQUS 6.14 software.

3.1. Model Generation
3.1.1. Resin-Rich Region

In laminates, the resin-rich region around microvascular channels can cause stress
concentration or fiber bending, which are key factors affecting the mechanical performance
of the laminate. It is important to consider the resin-rich region in the FE model. Ma
et al. [27] developed a numerical method to predict the shape of the resin-rich region
around microvascular channels, and this paper refers to this method to determine the
length of the resin-rich region.

The z-direction microvascular channels in woven fabric composite will lead to the
formation of two perpendicular resin-rich regions within the warp and weft fiber yarns
in one ply. Since the forming process involves stitching sacrificial lines into the preform
before resin impregnation, the fibers are still continuous. Typical intralaminar resin-rich
region in the current specimens are shown in Figure 6.
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Some specimens were cut to measure the length of the resin-rich region. The mea-
surement results were compared with the numerical results as illustrated in Figure 7. The
measurement results show obvious dispersion, which is primarily due to the bending of
fiber in the fabric material, and so the complete resin-rich region might not be observable
on certain thickness sections. By adjusting the parameter values in the numerical methods,
the calculated results exceeded 95% of the measured values. The lengths of the resin-rich
region used in the FE models are presented in Table 3.
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Table 3. Resin-rich region length in FE model.

Microvascular
Diameter/mm

Resin-Rich Region
Length/mm

Microvascular
Diameter/mm

Resin-Rich Region
Length/mm

0.1 1.70 0.6 4.48
0.2 2.55 0.7 4.84
0.3 3.15 0.8 5.17
0.4 3.65 0.9 5.49
0.5 4.04 1.0 5.79

3.1.2. Variation of Fiber Volume Fraction

The fiber volume fraction around the microvascular channel will change as the fibers
are pushed away, and the mechanical properties of the local material will be affected. The
authors of [23] illustrated the necessity of considering this factor in in-plane microvascular
models. This paper also considers this factor in the model of the z-direction microvascular
channels first, and then compares different modeling approaches without it.

Since there are two resin-rich regions in the warp and weft yarns in one layer, it
is necessary to model them separately. This paper assumed that the fabric layer was
divided into warp and weft sublayers in the model, and each sublayer was treated as an
equivalent unidirectional ply. By assigning appropriate material properties, the mechanical
performances of the combination of two sublayers remained the same as those of the
original fabric material, and the properties of the sublayers and fabric layers satisfy the
following relationships:

EL = ET =
1
2
(E11 + E22) (1)

νL = νT =
ν21E11 + ν12E22

E11 + E22
(2)

GLT = G12 (3)

XLt = XTt =
1
2

(
Xt +

Xt

E11
E22

)
(4)

XLc = XTc =
1
2

(
Xc +

Xc

E11
E22

)
(5)

where the subscripts L and T represent the longitudinal and transverse direction of the
fabric. EL, ET, νL, νT, GLT, XLt, XTt, and XLc, XTc are the elastic modulus, Poisson’s ratio,
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shear modulus, tensile strength, and compression strength of the woven fabric. E11, E22,
ν12, ν21, G12, Xt, and Xc are the elastic modulus, Poisson’s ratio, shear modulus, tensile
strength and compression strength of the unidirectional ply. The out-of-plane properties of
the two materials are considered the same.

In order to ensure that the simulation results of the fabric material are consistent with
the nominal values, it is necessary to apply correction factors when calculating the modulus
and strength parameters of the unidirectional ply based on the properties of the fibers and
resin. Referring to the Chamis [28] model, the calculation formulas are as follows:

E11 = α1

(
VfEf

11 + VmEm
)

(6)

E22 = α2
Ef

22Em

Ef
22 −

√
Vf
(
Ef

22 − Em
) (7)

ν12 = α3

(
Vfνf

11 + Vmνm
)

(8)

G12 = α4
Gf

12Gm

Gf
12 −

√
Vf
(
Gf

12 − Gm
) (9)

G23 = α5
Gf

23Gm

Gf
23 −

√
Vf
(
Gf

23 − Gm
) (10)

Xt = βt

(
Vfσf + Vm σf

Ef
11

Em

)
(11)

Xc = βc

(
Vfσf + Vm σf

Ef
11

Em

)
(12)

where the subscripts f and m represent the fiber and resin. Vf, Vm are the fiber and
resin’s volume fraction. Em, Gm, and νm are the elastic modulus, Poisson’s ratio, and shear
modulus of the resin. Ef

11, Ef
22 are the elastic moduli in the longitudinal and transverse

directions of the fiber. νf
12, Gf

12, and Gf
23 are the Poisson’s ratio and shear modulus of the

fiber. σf is the fiber’s strength. α and β are correction factors.
The properties of the fibers and resin used in the research are shown in Table 4, and

the fiber volume fraction is 55%. The correction factors must be adjusted to ensure that the
failure strain in the fiber direction of the unidirectional ply matches that of the actual fabric
material, as indicated in Table 5. The calculated properties of the equivalent unidirectional
ply are presented in Table 6. It is assumed that the transverse tensile and compressive
strengths of the unidirectional ply are same as the strengths of the matrix. The material
properties of the unidirectional ply used in the following models are all calculated using
the method described in this section.

Table 4. Mechanical properties of the fiber and resin.

Ef
11/GPa Ef

22/GPa Gf
12/GPa Gf

23/GPa νf
12 σf/MPa Em/GPa Gm/GPa νm Sm

t /MPa Sm
c /MPa

230 13.8 9 4.8 0.2 3530 3.2 1.13 0.42 80 180

Table 5. Correction factor value.

α1 α2 α3 α4 α5 βt βc

0.8118 0.8257 1.5279 1.1322 1.1538 0.5321 0.5735
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Table 6. Equivalent unidirectional ply properties calculated by modified Chamis model.

E11/GPa E22/GPa ν12 G12/GPa G12/GPa Xt/MPa Xc/MPa

103.86 6.14 0.46 3.64 3.00 1038.6 1119.8

3.2. Failure Criteria and Material Property Degradation
3.2.1. CFRP Material

Three-dimensional Hashin failure criteria [29], Chang fiber-shear failure criteria [30],
and Ye delamination failure criteria [31] were employed to predict the different damage
modes in the laminate, which are explained in detail as follows:

Fiber failure: (
σ11

XT

)2
+

(
τ12

S12

)2
+

(
τ13

S13

)2
≥ 1 (σ11 ≥ 0) (13)

(
σ11

XC

)2
≥ 1 (σ11 < 0) (14)

Matrix failure: (
σ22

YT

)2
+

(
τ12

S12

)2
+

(
τ23

S23

)2
≥ 1 (σ22 ≥ 0) (15)

(
σ22

YC

)2
+

(
τ12

S12

)2
+

(
τ23

S23

)2
≥ 1 (σ22 < 0) (16)

Fiber–matrix shear failure:(
σ11

XC

)2
+

(
τ12

S12

)2
+

(
τ13

S13

)2
≥ 1 (σ11 < 0) (17)

Delamination: (
σ33

ZT

)2
+

(
τ13

S13

)2
+

(
τ23

S23

)2
≥ 1 (σ33 ≥ 0) (18)

(
σ33

ZC

)2
+

(
τ13

S13

)2
+

(
τ23

S23

)2
≥ 1 (σ33 < 0) (19)

where σ11, σ22, and σ33 are normal stress components along the longitudinal, transverse,
and thickness directions, respectively. τ12, τ13, and τ23 are shear stress components. XT
and XC are tensile and compressive strengths along the longitudinal direction. YT and
YC are tensile and compressive strengths along the transverse direction. ZT and ZC are
tensile and compressive strengths along the thickness direction. S12, S13, and S23 are shear
strengths. The properties of unidirectional CFRP were obtained by the method presented
in Section 3.1.2 and listed in Tables 1 and 6.

Once the stress state of an element satisfies any of the above failure criteria, stiffness
parameters of the element will be degraded to a certain value according to the degradation
rules proposed by Camanho and Matthews [32] as listed in Table 7.

Table 7. Stiffness degradation rules of composite.

Failure Mode Stiffness Degradation Rule

Fiber failure 0.07 × all parameters
Matrix failure 0.2 × E22, G12, G23, µ12, µ23

Fiber–matrix shear failure 0.2 × G12, µ12
Delamination 0.2 × E33, G13, G23, µ13, µ23
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3.2.2. Resin

For the resin-rich region, the parabolic criterion [33] was used to determine the initia-
tion of resin damage:

3J + I(Smc − Smt)

SmcSmt
= 1 (I ≥ 1) (20)

−3J = I(Smc − Smt)

SmcSmt
= 1 (I < 1) (21)

where Smt and Smc are the unidirectional tensile and compressive strength of resin as listed
in Table 4. I and J are defined as follows:

I = σ̃m1 + σ̃m2 + σ̃m3 (22)

J =
1
6

[
(σ̃m1 − σ̃m2)

2 + (σ̃m1 − σ̃m3)
2 + (σ̃m2 − σ̃m3)

2
]

(23)

where σ̃m1, σ̃m2, and σ̃m3 are principle stress components. The stiffness parameters of
failure elements are degraded according to the relation of Em = 0.2Em, µm = 0.2µm. The
failure criteria and material property degradation rules of CFRP and resin are defined in
the VUMAT subroutine of ABAQUS.

3.3. Model Details

The model with z-direction microvascular channels that considers the resin-rich region,
fiber bending, and variations in material properties is shown in Figure 8, referred to as
model A. In this model, it is assumed that the fiber volume fraction linearly decreases from
the edge of the channel to the surrounding area, while ensuring the conservation of the total
fiber volume. Different colors in the elements represent different material properties. This
was accomplished by using Python script. The coordinates of each node were read, and the
fiber volume fraction was calculated based on the distance from the center of the element
to the center of the channel. Then, the material parameters were calculated according to
Formulas (6)~(12) and assigned to the corresponding elements.
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different material properties).

Symmetric models were established to save computational time. The tensile model
only includes the gage section, while the compression model does not include reinforcement
tabs. The z-direction microvascular structure was tied to the overall structure. One end of
the model was fixed, the other was coupled with a reference point where the displacement
load is applied, and the reaction force was extracted. In the tensile model, the displacements
of the side nodes were extracted to calculate the stiffness, while in the compression model,
the strain at the center of the surface was extracted for the same purpose, consistent with
the experimental measurement method.
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The fiber bending region and resin-rich region near the channel were meshed finely to
investigate the damage propagation in more detail with a maximum element size of 130 µm
in the x- and y-directions. The main element type was C3D8R, with a few C3D6 elements in
the resin-rich region, and the total number of elements in tensile and compression models
were 110,344 and 104,616, respectively. The models of the laminates, including boundary
conditions, loading condition, and nodes for result output, are shown in Figure 9.
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compression model (b).

To investigate the necessity of this modeling approach, several other z-direction
microvascular models were also established for comparison. Model B did not consider
the variation in fiber volume fraction compared to model A. Model C did not divide the
fabric layer into two unidirectional ply and applied fabric material directly compared to
model B. These two models had the same mesh as model A. Model D did not consider
the resin-rich regions, bending of fibers near the channel, and variation in fiber volume
fraction. The model contained 45,292 elements and also applied fabric material properties.
This modeling process is simple but equivalent to cutting the fibers and reducing the total
fiber volume. The control models are shown in Figure 10.
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3.4. Validation and Comparison of the FE Models

The tensile and compressive performances of the microvascular laminates calculated
by each model, along with their comparison with experimental results, are listed in Table 8.
It shows that since model A considers the variation in the fiber volume fraction around
the microvascular channel, which results in higher material strength near the channel, the
strengths of the laminate are slightly greater than those of model B. However, the results
of model B are still very close to the experimental data. The strength results of model C
and D are significantly lower than the experimental results, indicating that these modeling
approaches do not accurately reflect the actual performances of the structure. In FE models,
the element layers with a longitudinal resin-rich region bear greater load because of higher
stiffness and the total load reaches peak value when they fail. So, the strengths of the whole
model mainly depend on the properties of these layers, which explains why model C has
a larger error with a fabric material assigned. In model D, the fibers are cut and stress
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concentration is severer, which is inconsistent with reality. The details are discussed in the
following section. As for the stiffness performances of the laminates, since the impact of the
microvascular channels is minimal, the simulation results of all models are relatively close.

Table 8. Comparison of experiment and simulation results.

Properties
Experiment Control Model Model A Model B Model C Model D

Control Vascular FEM Error/% FEM Error/% FEM Error/% FEM Error/% FEM Error/%

Tensile stiffness/GPa 43.98 41.30 43.67 −0.7 42.95 4.0 42.98 4.1 43.05 4.2 43.29 4.8

Tensile strength/MPa 441.5 388.8 434.7 −1.5 386.6 −0.6 379.1 −2.5 315.1 −19.0 337.7 −13.1

Compression
stiffness/GPa 40.90 41.75 43.49 6.3 41.69 −0.1 41.37 −0.9 42.87 2.7 42.86 2.7

Compression
strength/MPa 462.9 415.1 469.5 1.4 424.2 2.2 413.1 −0.5 350.5 −15.6 360.4 −13.2

The damage configurations of test and simulation results are listed in Table 9. The
tensile specimen was polished to observe the channels and the z-direction channel is circled
in red. As can be seen, the numerical results all exhibit lateral tensile or compressive
failures. The failure fractures of models A and B are relatively more jagged and closer to
the test results, further demonstrating the better rationality of models A and B.

Table 9. Experimental and numerical damage configurations.

Load Model A Model B Model C Model D Experiment

Tensile
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Based on the above results, it can be concluded that when modeling the z-direction
microvascular channel in woven fabric material, the resin-rich regions formed within the
warp and weft fibers and the bending of fibers should be considered. Furthermore, the
fabric layer should be equivalently modeled as two unidirectional plies. It is not necessary
to consider the variation in the fiber volume fraction around the microvascular channel,
which simplifies the modeling process appropriately.

3.5. Damage Mechanism

Figure 11 presents the load–displacement curves of the microvascular laminates nu-
merically in model A, as well as the damage propagation process in different layers of
the laminate.



Polymers 2024, 16, 665 14 of 19

Polymers 2024, 16, x FOR PEER REVIEW 15 of 20 
 

 

70 MPa and showing no damage. For comparison, the stress maps calculated by model D 
without resin-rich regions are also presented under the same load conditions. When the 
resin-rich regions are present, the stress concentration factor around the microvascular 
channel is approximately 1.44, whereas it is about 2.3 when not considering the resin-rich 
region. It can be seen that although the presence of resin-rich regions leads to stress con-
centration, their impact is significantly less than directly drilling holes in the laminate, 
resulting in a relatively smaller loss in the strength of the laminate. 

  
(a) (b) 

Figure 11. Load–displacement curves and damage propagation of specimens: tensile (a) and com-
pression (b). 

 
Figure 12. Stress distribution around the microvascular channel. 

  

Figure 11. Load–displacement curves and damage propagation of specimens: tensile (a) and com-
pression (b).

During the tensile process, fiber damage first appeared around the microvascular
channel in the internal 0◦ layers of the laminate at point A (19.5 kN). At point B (20.4 kN),
resin damage appeared around the microvascular channel in the internal 90◦ layers, and
extended to the entire resin-rich region at point C (21.4 kN). Before reaching the peak load,
the fiber damage in the internal 0◦ layers continued to extend towards the edges of the
laminate, while the surface layers showed no significant damage. After reaching the peak
load at point E (23.2 kN), extensive fiber damage rapidly occurred in all layers until the
specimen ultimately failed.

During the compression process, fiber damage first appeared around the microvascular
channel in the internal 0◦ layer at point A (20.1 kN), and damage in the resin-rich region
around in the 90◦ layers also occurred. The damage had almost completely penetrated the
resin-rich region by point B (21.9 kN). Before reaching the peak load, the fiber damage in
the internal layers continued to extend from the edge of the channel towards the laminate
edges, with no significant damage in the surface layers. After reaching the peak load at
point D (25.4 kN), extensive fiber damage occurred near the channel and at the tips of the
resin-rich region in the internal 0◦ layers, while significant damage also appeared in the
surface layers, leading to the final failure of the specimen.

Figure 12 presents the S11 stress maps around the microvascular channel in the 0◦ layer
during the loading process, with the laminate under tensile or compression load of 70 MPa
and showing no damage. For comparison, the stress maps calculated by model D without
resin-rich regions are also presented under the same load conditions. When the resin-rich
regions are present, the stress concentration factor around the microvascular channel is
approximately 1.44, whereas it is about 2.3 when not considering the resin-rich region. It
can be seen that although the presence of resin-rich regions leads to stress concentration,
their impact is significantly less than directly drilling holes in the laminate, resulting in a
relatively smaller loss in the strength of the laminate.
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4. Parameter Study

From Section 3, it is known that model B can calculate the mechanical properties of the
laminates accurately and the modeling approach is easier than with model A. Therefore,
this modeling method was utilized to investigate the influence of microvascular parameters
on the mechanical properties of the laminates.

4.1. Diameter

The materials and layup sequence are the same as those in Section 3, with channel
diameters ranging from 0.1 mm to 1 mm. This range is commonly used in current research,
for smaller diameters are not conducive to the flow of the repair agent while larger di-
ameters affect the laminate’s mechanical performances too much, which is impractical.
The spacing of channels, S, was set to 8, 12, and 18 mm. The changes in the stiffness and
tensile/compressive strengths of the laminates with varying channel diameters are shown
in Figure 13. All calculation results presented as a percentage relative to the results of the
control model.

It can be observed that the mechanical properties of the microvascular laminates are
generally lower than those of the control laminates. However, within the diameter range
of 0.1~1 mm, the decrease in laminate stiffness is less than 3%, with a slightly increasing
rate of decrease, while the strength of the laminates decreases approximately linearly with
channel diameters. Microvascular channels with a spacing of 8 mm and a diameter of
1 mm can reduce the tensile and compressive strength of the laminates by about 15%.
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With microvascular channel diameters D set to 0.1, 0.5, and 1 mm, the changes in the 

stiffness and tensile/compressive strengths of the laminates with varying spacing of chan-
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Figure 13. Variation of mechanical properties with diameter of microvascular channels: stiffness (a),
tensile strength (b), and compression strength (c).

4.2. Spacing

With microvascular channel diameters D set to 0.1, 0.5, and 1 mm, the changes in
the stiffness and tensile/compressive strengths of the laminates with varying spacing
of channel are shown in Figure 14. It can also be seen that within the current range of
design parameters, the stiffness of the laminates is minimally affected by the microvascular
channel. When the spacing between channels exceeds 30 mm, there is almost no change in
laminate stiffness, and the variations in tensile and compressive strengths are also relatively
minor. However, when the spacing is less than 30 mm, the decrease in the mechanical
properties of the laminates becomes significantly more pronounced.

Polymers 2024, 16, x FOR PEER REVIEW 17 of 20 
 

 

   
(a) (b) (c) 

Figure 14. Variation of mechanical properties with spacing of microvascular channel: stiffness (a), 
tensile strength (b), and compression strength (c). 

4.3. Volume Fraction 
The volume fraction of the microvascular channel in the laminate is also an important 

design parameter in practical applications. Based on the microvascular configuration in 
this paper, the volume fractions of the microvascular channel corresponding to various 
channel diameters and spacing are calculated. Figure 15 presents the variation in the me-
chanical properties of the laminates under specified channel diameters. Since the volume 
fraction of the microvascular channel with a 0.1 mm diameter is extremely small, making 
the curve difficult to observe, only the curves with 0.5 mm and 1 mm diameters are pre-
sented. Furthermore, as the stiffness of the laminates is minimally affected, the focus is 
primarily on the variation in strength. It can be observed that the laminate with larger 
channel diameter has a lower slope on the strength curve. As the volume fraction of the 
microvascular channel increases, the slope of the strength curves decreases gradually. 

  
(a) (b) 

Figure 15. Variation in mechanical properties with volume fraction of microvascular channel: tensile 
strength (a) and compression strength (b). 

4.4. Parameter Design Criteria 
When designing microvascular self-healing composite structures, it is necessary to 

consider both the mechanical properties of the laminate and the damage repair capability 
of the microvascular channel. Generally, to ensure that self-healing is triggered in time 
before the damage propagation significantly affects the overall performance of the struc-
ture, the spacing of the microvascular channel must be less than a certain value. At the 
same time, there may also be requirements that the mechanical properties of the laminate 
should not fall below a certain level, or the volume fraction of the microvascular channel 

0 10 20 30 40 50 60 70 80 90
96.9

97.2

97.5

97.8

98.1

98.4

98.7

99.0

St
iff

ne
ss

(%
)

spacing (mm)

 D=0.1mm
 D=0.5mm
 D=1.0mm

0 10 20 30 40 50 60 70 80 90
84.0

85.5

87.0

88.5

90.0

91.5

93.0

94.5

te
ns

ile
 s

tre
ng

th
 (%

)

spacing (mm)

 D=0.1mm
 D=0.5mm
 D=1.0mm

0 10 20 30 40 50 60 70 80 90
85.2

86.4

87.6

88.8

90.0

91.2

92.4

93.6

co
m

pr
es

si
on

 s
tre

ng
th

 (%
)

spacing (mm)

 D=0.1mm
 D=0.5mm
 D=1.0mm

0 1 2 3 4 5

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

te
ns

ile
 s

tre
ng

th
 (%

)

volume fraction (%)

 D=0.5mm
 D=1.0mm

0 1 2 3 4 5
0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

co
m

pr
es

si
on

 s
tre

ng
th

 (%
)

volume fraction (%)

 D=0.5mm
 D=1.0mm

Figure 14. Variation of mechanical properties with spacing of microvascular channel: stiffness (a),
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4.3. Volume Fraction

The volume fraction of the microvascular channel in the laminate is also an important
design parameter in practical applications. Based on the microvascular configuration in this
paper, the volume fractions of the microvascular channel corresponding to various channel
diameters and spacing are calculated. Figure 15 presents the variation in the mechanical
properties of the laminates under specified channel diameters. Since the volume fraction
of the microvascular channel with a 0.1 mm diameter is extremely small, making the
curve difficult to observe, only the curves with 0.5 mm and 1 mm diameters are presented.
Furthermore, as the stiffness of the laminates is minimally affected, the focus is primarily on
the variation in strength. It can be observed that the laminate with larger channel diameter
has a lower slope on the strength curve. As the volume fraction of the microvascular
channel increases, the slope of the strength curves decreases gradually.
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Figure 15. Variation in mechanical properties with volume fraction of microvascular channel: tensile
strength (a) and compression strength (b).

4.4. Parameter Design Criteria

When designing microvascular self-healing composite structures, it is necessary to
consider both the mechanical properties of the laminate and the damage repair capability
of the microvascular channel. Generally, to ensure that self-healing is triggered in time
before the damage propagation significantly affects the overall performance of the structure,
the spacing of the microvascular channel must be less than a certain value. At the same
time, there may also be requirements that the mechanical properties of the laminate should
not fall below a certain level, or the volume fraction of the microvascular channel should
not exceed a certain level when designing structures. So, the variation of the mechanical
properties of the microvascular composites can be determined through experiments or
finite element methods first, and then the range of microvascular design parameters can be
determined based on these limitations. Larger diameter and spacing are better within the
allowable design range.

5. Conclusions

Tensile and compressive performances of woven fabric CFRP laminates containing
three-dimensional microvascular channels were investigated experimentally. Different
finite element models with z-direction microvascular channels were established and verified
by experimental results. The validated models were used to investigate the damage
propagation process and failure mechanism of the laminates under tensile and compressive
loads. Then, a parameter study was conducted. The following conclusions can be obtained:

(1) The Z-direction microvascular channel has a critical position, which is prone to
damage under tensile and compressive loads. It has minimal effect on the stiffness of
laminates, but a certain effect on the strength. With a channel diameter of 0.5 mm and
a spacing of 12 mm, the tensile and compressive strengths decrease by approximately
10% to 12% compared with blank laminates.

(2) The FE models with z-direction microvascular channels which consider different ori-
entations of the resin-rich region formed in the warp and weft fiber yarns agree well
with the test results. For woven fabric CFRP composites with z-direction microvas-
cular channels, equivalent unidirectional ply material properties should be assigned
separately in an FE model for more accurate calculation, while the effect of variations
in the fiber volume fraction around the microvascular channel can be disregarded.
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(3) Within the common microvascular diameter ranging from 0.1 mm to 1 mm, stiffness
variation of the laminates is small, while the laminate strength varies approximately
linearly with the channel diameter.

(4) The combined investigation using experimental and numerical methods makes it
possible to conveniently determine the mechanical properties of laminates with mi-
crovascular layers, which provides references for structural design. Moreover, it is
also necessary to establish design methods for microvascular parameters in order to
apply microvascular composites in engineering structures, which is a key direction
for future study.
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