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Abstract: The article presents the results of modeling various modes of vacuum infusion molding
of thin-walled polymer-composite structures of arbitrary geometry. The small thickness of the
manufactured structures and the fixation of their back surface on the rigid surface of the mold made
it possible to significantly simplify the process model, which takes into account the propagation
of a thermosetting resin with changing rheology in a compressible porous preform of complex 3D
geometry, as well as changes in boundary conditions at the injection and vacuum ports during
the post-infusion molding stage. In the four modes of vacuum-infusion molding studied at the
post-infusion stage, the start time, duration and magnitude of additional pressure on the open surface
of the preform and in its vacuum port, as well as the state of the injection gates, were controlled
(open–closed). The target parameters of the processes were the magnitude and uniformity of the
distribution of the fiber volume fraction, wall thickness, filling of the preform with resin and the
duration of the process. A comparative analysis of the results obtained made it possible to identify
the most promising process modes and determine ways to eliminate undesirable situations that
worsen the quality of manufactured composite structures. The abilities of the developed simulation
tool, demonstrated by its application to the molding process of a thin-walled aircraft structure, allow
one to reasonably select a process control strategy to obtain the best achievable quality objectives.

Keywords: polymeric composites; thin-walled composite structures; vacuum infusion technology;
controlled pressures application; finite element modeling and optimization

1. Introduction

Increasing demands on the strength, stability and aerodynamic precision of many thin-
walled aircraft structures made from polymer composite materials [1–3] have prompted
a large amount of research into design methods [4–9] and technologies [10–13] capable
of meeting these requirements at satisfactory performance and cost. An analysis of the
results of these studies shows that in practice, meeting these often conflicting requirements
with restrictions on mass, properties of available components and technologies is a rather
complex task that can be solved by making expert decisions.

For example, increasing the stiffness of the polymer matrix by adding reinforcing
particles to it, optimizing the thickness [14] and the fiber volume fraction [15] distributions
in the preform, and the angles and order of reinforcing layers winding/laying [7–9],
depending on the dynamic nature and area of application of the maximum loads, will
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improve the strength characteristics of the composite structure. But even if the weight
requirements are met, they significantly complicate and increase the cost of production. In
addition, the implementation of the described methods can be difficult when forming thin-
walled composite structures (see Figure 1), most frequently in open molds (see Figure 2)
with the injection of liquid resin into a dry preform using a vacuum.
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time of the pore pressure gradient, resin viscosity and anisotropic permeability of the 
preform [12,13]. To achieve acceptable quality and productivity indicators for such pro-
cesses of molding composite structures as RTM, VAP and its varieties, it is necessary to 
solve the problem of finding optimal control. Its controllable parameters typically include 
the location of the resin inlet and outlet ports, the pressures at these ports, and tempera-
ture. The solution to such a problem is carried out either by trial and error, or using 
computer modeling tools, which have become increasingly widespread in recent years 
[10–16]. 

However, an alternative way to avoid the disadvantages and difficulties of obtaining 
reliable results in the production of critical composite structures by such methods is to 
technically modify them, most often by introducing additional controllable parameters. 
Such technical solutions include the so-called pulsed vacuum infusion process, the use of 
a post-infusion dwell for about 2 h at high temperature [17–22], which allows reduced 
porosity and increased strength to be obtained. Nevertheless, the most effective and fairly 
widespread solution to the problem of improving the vacuum infusion process seems to 
be through the technology of controlled post-infusion external pressure, proposed and 
studied on samples in [23,24]. This modification involves applying varying pressure to 
the exposed surface of a preform being filled and placed in an insulated chamber, and/or 
varying the outlet pressure. The features and capabilities of this technology are discussed 
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Figure 2. CAD models of a forming open mold (a) and a thin-walled composite structure produced
on it (b) using vacuum infusion technology.

These difficulties are associated primarily with the complexity of propagation of the
liquid resin front in a three-dimensional preform of complex shape, changes in space
and time of the pore pressure gradient, resin viscosity and anisotropic permeability of
the preform [12,13]. To achieve acceptable quality and productivity indicators for such
processes of molding composite structures as RTM, VAP and its varieties, it is necessary to
solve the problem of finding optimal control. Its controllable parameters typically include
the location of the resin inlet and outlet ports, the pressures at these ports, and temperature.
The solution to such a problem is carried out either by trial and error, or using computer
modeling tools, which have become increasingly widespread in recent years [10–16].

However, an alternative way to avoid the disadvantages and difficulties of obtaining
reliable results in the production of critical composite structures by such methods is to
technically modify them, most often by introducing additional controllable parameters.
Such technical solutions include the so-called pulsed vacuum infusion process, the use
of a post-infusion dwell for about 2 h at high temperature [17–22], which allows reduced
porosity and increased strength to be obtained. Nevertheless, the most effective and fairly
widespread solution to the problem of improving the vacuum infusion process seems to
be through the technology of controlled post-infusion external pressure, proposed and
studied on samples in [23,24]. This modification involves applying varying pressure to
the exposed surface of a preform being filled and placed in an insulated chamber, and/or
varying the outlet pressure. The features and capabilities of this technology are discussed
below in relation to the problem of molding fairly large aircraft composite structures
using various grades of resins and reinforcing fabrics. The experimental dependencies
of the compressibility and permeability of preforms, thermokinetics and the rheology of
resins currently obtained on samples make it possible to clarify the corresponding model
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dependencies. The use of these data in the described simulation tool provides a reliable
prediction of the quality and performance of a real production process. The results of
experiments with real full-size composite structures will be presented in our next article.

This article presents the formulation, finite element implementation and results of
solving the problem of modeling two successive processes: filling a thin-walled dry com-
pressible preform with a liquid resin, the rheology of which depends on the temperature
and time, and the subsequent application of controlled pressures in three modes, differing
in the magnitude and time instants of these post-infusion external pressure applications.
A thin-walled structure with double curvature, reliably fixed on the surface of a form-
building composite mold, is studied as an infused preform. These assumptions allow us to
significantly simplify the formulation of the modeling problem, considering the preform
as a shell of variable thickness with a fixed back surface. The results show that the correct
consideration of the liquid resin front propagation, the thermokinetics and the viscosity
of the thermosetting resin moving along the preform with changing permeability, with
exothermal heat generation, allow, through a rational choice of modes, the significant
improvement of such quality indicators of the vacuum infusion process. These are the
uniformity of thickness distribution, fiber volume fraction and, ultimately, the accuracy of
the geometry and strength properties of the molded shell-like structure.

2. Modeling of Sequential Vacuum Infusion and Post-Infusion Molding of
Composite Preforms

The problem of modeling the process under study was solved using the example of
a composite preform with transversal anisotropy of an elastic porous frame and a wall
thickness of 3 mm. Its general view (see Figure 3a) shows the resin supply ports and the
vacuum port. Local coordinate systems (see Figure 3b) are introduced on the front surface
of the preform and are used to describe the movement of liquid resin in an anisotropic
medium. The material of the forming mold is assumed to be isotropic.
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The forward problem of modeling the evolution of the infusion and subsequent post-
infusion stages of the process was solved in the environment of a finite element package,
Comsol Multiphysics 6.1. For the statement of the modeling problem, we mainly used the
approach previously developed and presented in articles [13,16], but with significant modi-
fications caused by the need to correctly describe the spatial anisotropy of compressibility,
the permeability of the preform and the flow of a viscous fluid in a thin-walled porous
body bounded by curved surfaces. The system of governing equations included the phase
field Equation (1) that models the propagation of the liquid resin front along the preform:

∂φ/∂t + u · ∇φ = ∇ · γ∇G, (1)

where the dependent variable φ ∈ [−1; 1] determines the local resin filling Vr according
to Vr = (φ + 1)/2 ∈ [0; 1], G is the chemical potential, γ is the phase mobility, and u is the
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resin superficial velocity. The initial condition for Equation (1) corresponds to the empty
preform volume

φ(0) = −1, (2)

and the conditions at the boundaries of an impenetrable vacuum bag covering the preform,
inlet and outlet are taken as (3), (4) and (5), respectively:

nbag · ∇ϕ(t) = 0; (3)

ϕinl(t) = 1 ⇒ Vinl
r = 1; (4)

ϕout(t) = −1 ⇒ Vinl
r = 0. (5)

The heat transfer Equation (6) is defined in the body of the preform:

ρprCpr∂T/∂T +∇ ·
(
−kpr∇T

)
= Qexo. (6)

The initial value (7) for Equation (6) corresponds to a uniform temperature distribution,
assumed to be 75 ◦C, taking into account the rheological properties of the thermosetting
resin used. The same temperature is maintained in the inlet. All open surfaces of the
preform and mold are subject to convective heat exchange with the air flow at temperature
Text, which in numerical experiments varied in the range of 80. . .90 C (see Equation (8)).
The convective heat transfer coefficient h was assumed to be 10 W/(m2·K). The condition
of ideal thermal contact was assumed between the surfaces of the preform and mold.

T(0) = Tinl(t) = 75 C, (7)

−n · q = q0 = h
(
Text − T

)
. (8)

The thermophysical properties of the preform contained in this equation, mass density
ρpr, specific heat capacity Cpr and thermal conductivity kpr, are determined using the mixing
rule for the thermal properties of the air–resin mixture (ρgr, cgr, kgr = krVr + kg(1 − Vr)),
dry preform (ρf, cf, kf), local distributions of porosity ϕ or fiber volume fraction Vf = (1 − ϕ)
and resin filling Vr [16,25]:

ρpr = ρ f · Vf + (1 − Vf ) · ρgr, (9)

Cpr = ρ f Vf · c f + (1 − Vf ) · ρgrcgr, (10)

kpr =

(
(1 − Vf )

krVr + kg(1 − Vr)
+

Vf

k f

)−1

. (11)

The heat transfer equation for a mold made of polymerized carbon fiber also has the
form (6), but with other thermophysical properties (ρm, Cm and km) that are independent of
time and temperature.

The source term Qexo in Equation (6) represents the intensity of the exothermal heat
generated per unit volume of the curing epoxy resin and depends on the cure rate ∂α/∂t
according to the following relationship:

Qexo = Qtotρr

(
1 − Vf

)
· Vr · ∂α/∂t, (12)

where Qtot is the total amount of exothermal heat released during the curing of a unit mass
of resin, and ρr is the resin mass density.

The spatiotemporal evolution of the degree of cure α is described by the convec-
tion/diffusion/kinetics Equation (13) defined in the preform area filled with resin,

∂α/∂t − ([K]/µ) · ∇p · ∇α −∇ · (cα∇α) = F(α, T), (13)
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where [K] is the permeability tensor of the porous preform, and the diffusion coefficient of
degree of cure cα is expressed by the empirical formula

cα = 5 · 10−7 1 + exp((α − 0.35)/0.25)
1 + exp((α − 0.85)/0.25)

m2/s, (14)

and source term in Equation (13).

F(α, T) = A · (w exp(−E1/RT) + exp(−E2/RT) · αm)

1 + exp((α − 0.75)/0.25)
· (1 − α)n, (15)

takes into account the change in cure rate and in diffusion coefficient cα when the reac-
tion becomes diffusion-controlled towards the end of curing [26–28] (see Figure 4). In
Equation (9), R is the universal gas constant, T is the Kelvin temperature, and the values
of the parameters E1, E2, A, w, m and n, characterizing the thermokinetic properties of the
thermosetting resin, were determined using a genetic algorithm based on the results of
differential scanning calorimetry [29].
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For Equation (13), the initial and boundary conditions are as follows. Initial state:

αΩpr (0) = 0. (16)

For closed boundaries, the condition that the flux is equal to zero is accepted:

n · (cα∇α) = 0. (17)

Dirichlet condition on resin injection gates:

αinl(t) = αinj

(
Tin
)

, (18)

and the free α-flux Sout
α boundary condition on the vacuum vent:

Sout
α = n · (cα∇α)(n · u), (19)

where u is the resin superficial velocity through vacuum vent and n is the unit normal
vector to its boundary.

The fourth equation of the problem is Darcy’s equation, specified in curvilinear coordi-
nate systems in the preform, relating the velocity u of the gas–fluid mixture to the pressure
gradient ∇p {

∂
∂t
(
ϕρgr

)
+∇ ·

(
ρgru

)
= Qm

u = − [K]
µgr

∇p
, (20)
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where
ρgr = ρrVr + (1 − Vr)ρg, (21)

µgr = µrVr + µg(1 − Vr) (22)

are the mass density and dynamic viscosity, respectively, of the moving gas–fluid mixture,
depending on the filling of the pores with liquid resin Vr, and determined by the mixing
rule: Qm is the volumial source/sink of mass taken equal to zero.

For the studied transversely isotropic material of the preform, all components of
the permeability tensor [K], which are accepted in diagonal form, satisfy the Kozeny–
Carman model [29], where the minimum permeability parameter k̃n normal to the preform
surface is taken to be 4 times less than the in-plane minimum permeability accepted as
k̃t = 4 · k̃n = 2 · 10−10 m2. The value of the fiber volume fraction Vf, which significantly
affects the properties of the preform in accordance with Formulas (9)–(11), is a function of
compressive pressure, equal to the difference between the pressure applied to the preform
from the outside and the pore pressure, and also depends on the filling of the pores in the
preform with liquid resin Vr. Our study uses the rule of mixtures to quantitatively describe
this relationship:

Vf = 1 − ϕ = Vr · Vwet
f + (1 − Vr) · Vdry

f , (23)

where the dependencies of Vdry
f and Vwet

f on compressive pressure pcomp(r) = pappl − p(r)
(see Figure 5) are described by similar empirical formulas, differing only in the values of
the coefficients:

Vdry,wet
f = Vdry,wet

f _min + bdry,wet · a cosh
(

1 + pcomp/adry,wet
)

. (24)
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Correct accounting of the dependence of resin viscosity µr(T, α, t) on time, the degree
of cure α(T, t) and temperature T is provided by the empirical model (25), which is a
satisfactory approximation of experimental data in the used ranges of α(T, t) and T. The
coefficients υ1, υ2 are determined from the results of viscometry.

µr(T, α, t) = µ0
r (T

in) · exp
(

υ1 · (T(t)− Tin) + υ2 · α(T, t)
)

. (25)

At the initial time instant, the pore pressure p(0) in the preform and the outlet pressure
are equal to the vacuum pressure taken as 20 kPa. The pressure applied to the external
surface of the preform pappl(0) is equal to atmospheric patm = 100 kPa.

p(0) = pout(0) = pvac = 20 kPa, (26)
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pappl(0) = pinl(0) = patm = 100 kPa. (27)

Below are the results of modeling four process control scenarios (Modes 1–4) at the
post-infusion stage, which always begins from the moment the minimum level of resin
filling of the preform is decreased to a value of 0.1. The duration of the simulated process
was assumed to be 6 h for all studied modes. Modes 1–3 are implemented with open
inlets through which the resin is supplied under atmospheric pressure, and in Mode 4 the
injection gates are blocked at the beginning of the post-infusion stage of the process. All
these modes are presented in Figure 6 in the form of time dependencies of applied pappl(t),
inlets pinl(t) and outlet pout(t) pressures. In these diagrams, the triangular icons on the time
axis indicate a start–stop raise in external pressure
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Mode 1 is a conventional vacuum infusion without changing any controlled pressures.
Mode 2 includes, at the post-infusion stage, a gradual increase in pressure in the

vacuum port from vacuum to atmospheric in order to equalize the pore pressure and
thickness of the preforms,

pout(t) = pout
in + (patm − pout

in ) · H
(
tout
start, ∆tstart, t

)
, (28)

where tout
start is the moment the pressure rise begins, ∆tstart is the duration of the pressure

rise to the final value, and H is the smoothed Heaviside function. It is important to note that
the moment tout

start at which the outlet pressure begins to increase is selected at the final stage
of the process, when the viscosity of the resin has significantly increased, but its hardening
has not yet occurred. This is necessary to prevent air from being introduced back into the
preform through the outlet.

Mode 3 differs from Mode 2 in that the increase in outlet pressure is preceded by an
increase in external pressure compressing the preform,

pappl(t) = patm + padd · H
(

tappl
start, ∆tstart, t

)
, (29)
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where the time tappl
start of the compressive pressure application differs from the moment

of increase in outlet pressure by approximately an hour, as is customary in this work:
tlag = tout

start − tappl
start

∼= 60 min. The results presented below correspond to an additional
compressive pressure padd = 80 kPa.

Mode 4 differs from Mode 3 only in that at moment tappl
start both injection ports are

closed, eliminating the flow of resin into the preform.
All parameters of the mold material and resin included in Equations (1)–(25) were

determined similarly to our previous works [13,16].
After eliminating holes and curved joints of surface patches that disimprove the mesh,

the geometry of the preform assembled with the mold was imported into the finite element
package Comsol Multiphysics 6.1. Following the separation of the areas of the injection
and vacuum ports, a FE mesh was constructed, as shown in Figure 7.
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The simulated process time for all modes studied was set to 6 h, when the resin was
intensively polymerized. The simulation of the transient process in Modes 1–3 was carried
out in one stage, during which only the values of the controlled pressures could change. In
contrast, the simulation of Mode 4 was carried out in two stages. The second stage began
immediately before the application of external pressure at the moment tappl

start − ∆tstart when
the boundary condition at the injection ports changed to blocking.

Two significant features of the system under consideration significantly reduce the
computational complexity of its modeling, abandoning the solution to the problem of
mechanics of a three-dimensional porous deformable body. This is the thin-walledness
of the infused preform, which allows it to be considered as a shell [30], compressible in
thickness, and the fixation of the inner surface of this shell on a non-deformable mold. The
second circumstance allows us to neglect the deformation of the preform in the tangent
plane to its surface. Thus, the deformation of the preform in the direction normal to its
surface should be studied as one-dimensional.

An experimental study of the preform material compressibility, the results of which
are presented in Figure 5, and empirical dependencies (24), make it possible to use these
dependencies when operating a computer model of the process. It allows a determination
of the local fiber volume fraction Vf on each simulation time step from the calculated values
of pore pressure p and external pappl. Then, the dependence of the preform thickness h on
Vf is determined from the simple relation

h = hin · Vf ,in/Vf , (30)

where hin and Vf,in are the initial thickness and the fiber volume fraction of the uncom-
pressed preform, respectively.
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For a detailed analysis of the evolution of process parameters during simulation and
a presentation of the results in a visual form, the probes of the minimum, maximum and
average values of the parameters of interest and their integrals over these areas were
defined in the preform volume and on its surfaces.

3. Results and Discussion

All numerical experiments, the results of which are presented below, were performed
with an unchanged thermosetting resin and reinforcing matrix of the molded composite
structure. This is due to the fact that the purpose of our study is only to identify the features
of each of the four modes under consideration, which should be taken into account when
choosing an optimization strategy. When producing thin-walled composite structures using
vacuum-infusion technology, it is necessary to achieve the maximum value of the fiber
volume fraction with its minimum variation in the body of the structure. This will also result
in minimizing the preform wall thickness and its variations. When choosing controlled
parameter values for each of the scenarios under study, it is necessary to eliminate the
occurrence of undesirable situations, such as the reverse penetration of air into the resin-
filled preform through the vacuum port, and also, if possible, reduce the duration of the
process until the resin is completely cured.

To understand the mechanics of the processes occurring in each of the molding modes,
the most informative is the dependence of pore pressure on the modes. The importance
of this characteristic of the processes is due to the fact that pore pressure p has a decisive
influence on the fiber volume fraction Vf (see Equation (24)), and that, in turn, on the wall
thickness h (30). Figure 8 shows the time dependencies of the average pore pressure over
the preform and its average deviation. Until the time point of 105 min, when the increase
in external compressive pressure started, all four dependencies coincided. In addition, all
the time dependencies and 3D screenshots presented below for Modes 1 and 2 coincided
up to the moment of 165 min, when the pressure in the vacuum port began to increase.
The general difference between controlled Modes 2, 3 and 4 from the uncontrolled vacuum
infusion (Mode 1) is that by the time of 240 min, the average pressure <p> in the preform
in these modes had reached a constant value of 100 kPa, and its variation <|δp|> tended
to zero, which indicates a uniformity of pore pressure distribution in the preform. On
the other hand, both the average pore pressure and its variation in uncontrolled Mode 1
changed significantly until the end of the simulated process duration.
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Figure 8. Time dependencies of the average pore pressure in the infused preform (a) and its average
variation (b) for the four studied modes of the vacuum-infusion process.

The dependencies presented in Figure 8 demonstrate that the change in pore pressure
is always somewhat delayed after a change in pressure both on the outer surface of the
preform covered with a vacuum bag and in the vacuum port, although the duration of
the change in controlled pressure is quite significant, amounting to 30 min. Obviously,
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this inertia depends on the viscosity, that is, the fluidity of the resin and the permeabil-
ity of the preform. With higher viscosity and higher compression pressure, this inertia
will increase, which should be taken into account when assigning moments of change
in controlled pressures.

A more detailed idea of the processes occurring in the preform during the entire
infusion stages is given by Figures 9–12, which present screenshots combining images
of pore pressure distribution, resin fill levels and streamlines indicating the directions of
liquid resin flow. The size of the arrowheads is proportional to the resin superficial velocity
in the indicated direction.
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filling with resin Vr and streamlines u at characteristic times in the process implemented in Mode 1
(uncontrolled vacuum infusion).

Figure 10c,d, Figures 11f and 12b,d clearly show that the consequence of increasing
pressure in the vacuum port is a slowing down and then a complete stop of the movement
of the resin at some point in time. This increase in pressure in the vacuum line, necessary
at the final stage of the process, when the resin has begun to harden but still retains some
fluidity, makes it possible to equalize the pore pressure in the preform and, consequently,
the distribution of Vf and h before the complete hardening of the resin. A certain increase
in the average pore pressure at the moment of external compression application, and then
its decrease and settling, is due to the redistribution between the pressures of the liquid
resin and those in the elastic porous frame of the preform, the sum of which counteracts
the applied outside pressure.
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Figure 11. Screenshots depicting the distribution of pore pressure p in the preform, the levels of its
filling with resin Vr and streamlines u at characteristic times in the process implemented in Mode
3 (gradual increase in pressure on the outer surface of the preform covered with a vacuum bag
from patm to patm + padd from 105 to 135 min and in the vacuum port from pout

in to patm from 165 to
195 min).
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are the same, which confirms the correct description of the physics of the simulated 

Figure 12. Screenshots depicting the distribution of pore pressure p in the preform, the levels of its
filling with resin Vr and streamlines u at characteristic times in the process implemented in Mode 4
(simultaneous closing of both resin gates at 120 min and gradual increase in pressure in the vacuum
vent from pout

in to patm from 165 to 195 min).

Figure 13 shows the fluid resin average velocity module |u| for all studied control
modes. It should be noted that this velocity is not the velocity of the resin flow towards the
vacuum port, but is an indirect characteristic describing the average mobility of the resin
at each time. However, it predicts with a sufficient degree of reliability the moment when
the resin flow stops. From the graphs in Figure 13, it can be seen that all controlled modes
shorten the period of intensive resin movement, but the resin movement stops first in Mode
3. This result suggests that this mode may provide the best performance. However, it is
necessary to ensure that the preform is completely filled with resin before gelation, which
suggests the advisability of a later application of controlled pressures.
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Figure 13. Time histories of the fluid resin average velocity module |u| for control Modes 1–4.

A visual representation of the dynamics of filling the preform with resin is given by
the time diagrams of the mass flows of the resin–air mixture passing through the injection
gates and vacuum vent, shown in Figure 14. Diagrams in Figure 14b show that at the
final stage of the process, when the preform is almost completely filled with resin and
the controlled pressures are constant, the mass flows through the injection and vacuum
ports are the same, which confirms the correct description of the physics of the simulated
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processes. In addition, the flow of resin in Mode 1 becomes steady, and the flow in Modes
2–4 stops almost simultaneously. Thus, non-zero values of resin velocities in Modes 2–4
after ~200 min (see Figure 13) are caused by some of its movements inside the preform, and
not directed towards the outlet (see Figures 10–12).
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Meanwhile, the most important information about the achievable quality of the process
is provided by the dependence of the fiber volume fraction and the wall thickness of the
molded preform. These diagrams, presented in Figures 15 and 16, are constructed using
the initial values of the Vf,in = 0.45 and thickness hin = 3.05 mm experimentally measured
in the eight-layer carbon fiber preforms under study. A comparative analysis of the
diagrams for Vf shows that the best results are demonstrated by Mode 3: <Vf> = 0.58;
max(|δVf|) = 0.027. Modes 3 and 4, which use the application of external compressive
pressure and provide the highest value of <Vf> compared to Modes 1 and 2, even before
the pressure in the vacuum port is equalized, lead to a significant homogenization of <Vf>
in the preform volume. This also allows us to predict better reliability and repeatability of
the molding process results with Modes 3 and 4. Despite the best Vf uniformity in Mode
2, the low value of <Vf> = 0.51 makes it unsuitable for use in the production of critical
composite structures. The customary vacuum infusion in Mode 1 showed the worst result.
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The last two figures show that the final time interval between 240 and 360 min is 
characterized by a practically unchanged average value of Vf in controlled modes 2–4, 
which is explained by the slowing down and stopping of the resin flow. During this time, 
intensive polymerization of the resin occurs and its viscosity increases. This can lead to a 
critical situation in which the area of the preform around the outlet that is not completely 
filled with resin is blocked from resin flowing out. This results in an unacceptable in-

Figure 16. Screenshots depicting the combined distribution of the fiber volume fraction Vf, levels 0.5
(yellow) and 0.9 (red) of preform filling with resin Vr and streamlines u at characteristic times in the
process implemented in Mode 3.

The functional relationship (20) between Vf and h leads to the conclusion that such
indicators of process quality as the thickness and homogeneity of the preform thickness
will also be better for the process implemented in Mode 3 (see Figure 17).
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Figure 17. Evolution of the average preform thickness (a) and its deviation (b) during the vacuum
infusion process for all studied modes.

The last two figures show that the final time interval between 240 and 360 min is
characterized by a practically unchanged average value of Vf in controlled modes 2–4,
which is explained by the slowing down and stopping of the resin flow. During this time,
intensive polymerization of the resin occurs and its viscosity increases. This can lead to a
critical situation in which the area of the preform around the outlet that is not completely
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filled with resin is blocked from resin flowing out. This results in an unacceptable increase
in porosity around the outlet of the finished part. The state of the output port at the final
stage of the process is shown in Figure 18 for all studied modes. The viscosity distribution in
the preform at the final stages of the process implemented in mode 3 is shown in Figure 19.
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Figure 19. Screenshots showing the joint distribution of resin viscosity µr, resin fill levels Vr and
streamlines u at the final stages of the process implemented in Mode 3.

Obviously, the best situation at the final stage of the process should be one in which
the level of resin filling of the exit port Vout

r is maximum, and its viscosity around the
outlet µout

r is minimal. At the same time, this viscosity µout
r should approach the onset of

solidification in order to prevent air from entering the preform when the pressure at the
outlet port increases. Such a rational choice of process modes should ensure the stability
and repeatability of quality indicators. It is important to note that although the resin fill
level at the outlet port in Mode 3 is less than in Modes 1 and 2 (see Figures 18 and 19),
Mode 3 provides significantly better fiber volume fraction levels. When discussing the
influence of process modes on the nature of the resin flow (see Figure 14), it was found
that changing the control pressures of pappl(t) or pout(t) always led to a slowing down
and complete stop of the resin flow. This allows us to conclude that a slight shift in the
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beginning of the growth of these pressures towards later times can significantly increase
the filling of the vacuum port zone with resin at the final stage of the process. Such a shift
cannot worsen the stability of the process due to an increase in the viscosity of the resin at
the outlet, since the result of some acceleration of its flow will be the entry of a resin with a
lower degree of cure into the outlet zone. The result of stopping the resin later is a slight
widening of the cure rate curve towards the later time, as shown in Figure 20.
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4. Conclusions

The numerical experiments carried out in comparison with the experimental data
presented in works (28,29) showed that the finite element modeling tool developed makes
it possible to predict with a high degree of reliability the behavior and results of the
considered types of vacuum-infusion processes, including those with a post-infusion stage,
under which the boundary conditions at the injection and vacuum ports can be changed.
Our simulations results confirmed the effectiveness of using controlled pressures at the
post-infusion stage of the process. Using the correct strategy to control the external pressure
applied to the open surface of the preform and the pressure in the vacuum line allows you
to obtain the maximum achievable values of the fiber volume fraction and the uniformity
of its distribution in the molded composite part. The dependence of the speed of liquid
resin propagation in a compressible porous preform on temperature and the pressure
gradient causing the movement of the resin, as well as permeability, which depends on
the compressive pressure, make it possible to control the performance of vacuum infusion
processes by regulating temperature, external and vacuum pressures. This method of
molding composite structures can be implemented in special chambers isolated from the
external atmosphere, or in autoclaves with a vacuum line supplied to the preform.

Vacuum infusion processes, as well as resin transfer molding, are also successfully
modeled using the presented software, which requires the entire set of properties of the
molded preform components and the forming equipment. The use of CAD model geometry
allows you to simulate and optimize the processes of forming composite parts of arbitrary
complexity and size. This conclusion is confirmed by the quite acceptable duration of
simulation of each of the above considered process modes, which is 40–55 min on an
average-performance computer. The main direction of our further research is related to the
use of developed numerical and experimental methods in the manufacture of a wide range
of aircraft structures of various sizes and complexity. Our next publications are devoted to
the results of applying the proposed methodology, confirmed by full-scale experiments.
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