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Abstract: Numerous endeavors have been dedicated to the development of composite polymer elec-
trolyte (CPE) membranes for all-solid-state batteries (SSBs). However, insufficient ionic conductivity
and mechanical properties still pose great challenges in practical applications. In this study, a flexible
composite electrolyte membrane (FCPE) with fast ion transport channels was prepared using a phase
conversion process combined with in situ polymerization. The polyvinylidene fluoride-hexafluoro
propylene (PVDF-HFP) polymer matrix incorporated with lithium lanthanum zirconate (LLZTO)
formed a 3D net-like structure, and the in situ polymerized polyvinyl ethylene carbonate (PVEC)
enhanced the interface connection. This 3D network, with multiple rapid pathways for Li+ that
effectively control Li+ flux, led to uniform lithium deposition. Moreover, the symmetrical lithium
cells that used FCPE exhibited high stability after 1200 h of cycling at 0.1 mA cm−2. Specifically,
all-solid-state lithium batteries coupled with LiFePO4 cathodes can stably cycle for over 100 cycles
at room temperature with high Coulombic efficiencies. Furthermore, after 100 cycles, the infrared
spectrum shows that the structure of FCPE remains stable. This work demonstrates a novel insight
for designing a flexible composite electrolyte for highly safe SSBs.

Keywords: PVDF-HFP/LLZTO; net-like structure; flexible composite electrolyte; PVEC

1. Introduction

The escalating demand for highly secure energy storage systems in wearable elec-
tronics and power batteries has underscored the imperative for advancements in lithium
batteries [1–5]. SSBs with higher safety can be a promising candidate for a spectrum of
issues associated with traditional liquid electrolyte systems [6–9].

Solid electrolytes are broadly categorized into two primary classes: organic and inor-
ganic [10–12]. Generally, inorganic electrolytes, exemplified by oxides such as Li7La3Zr2O12
(LLZO), exhibit notable mechanical strength and commendable thermal stability, while the
ionic conductivity exceeds 10−3 S cm−1 at room temperature [13–15]. Despite these merits,
the inherent rigidity of inorganic electrolytes poses challenges at the electrode–electrolyte
interface, resulting in elevated interface resistance [16]. Conversely, polymer electrolytes,
typified by materials like polyethylene oxide and polyvinylidene fluoride (PVDF), establish
favorable interfacial contacts with diverse electrodes [17]. However, their lithium-ion
conductivity at room temperature, approximately ~10−6 S cm−1, is comparatively low,
hindering the advancement of organic polymer electrolytes to a certain extent [18–21].

A novel approach involves incorporating an inorganic electrolyte as an active filler into
an organic polymer electrolyte to formulate a polymer composite solid electrolyte [22,23].
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This strategy leverages the flexibility inherent in solid electrolytes, resulting in an im-
provement in ionic conductivity at room temperature [24]. Recent investigations have
demonstrated progress in the development of composite polymer electrolytes (CPE), partic-
ularly those incorporating LLZO as an active filler [25]. Such formulations exhibit superior
mechanical energy characteristics and enhanced ionic conductivity at room temperature
compared to other composite polymer electrolytes of similar compositions [26–28].

The method for preparing porous electrolytes typically involves the use of extru-
sion and casting, resulting in porous electrolyte films through solvent evaporation [29].
Y.L et al. [30] prepared a composite solid electrolyte using a solution casting method. How-
ever, the pores obtained using this method are often not sufficiently interconnected and
have relatively small diameters, making it difficult to store electrolyte materials within
these pores. As a result, the electrolyte is prone to consumption, leading to insufficient
stability in cycling performance. In recent years, phase transition methods have gained
research significance as a pore-forming technique [31]. This method involves a polymer
solution system where the solvent is the continuous phase, undergoing a process that
transforms into a swollen solid state. In simple terms, the polymer dissolves in a solvent,
solvent A, to form a homogeneous solution. When this solution is mixed with another
solvent, solvent B, which is miscible with A but does not dissolve the polymer, phase sepa-
ration and solidification occur within the homogeneous solution. If the phase separation
occurs rapidly, solvent A within the homogeneous solution is quickly replaced by solvent
B, resulting in the formation of pores within the solidified polymer [31–33].

J.Z et al. [34] utilized the phase transition method to prepare a composite solid elec-
trolyte with vertical microchannels. This electrolyte had a significant thickness, leading to
longer lithium ion transport distances and increased impedance. By reducing the thickness
of the electrolyte film, irregular three-dimensional interconnected large pores were obtained
using the phase transition method, creating abundant polymer-active filler interfaces. Ad-
ditionally, these interconnected large pores provided storage for gel electrolytes, further
accelerating lithium ion conduction in a three-dimensional space [35].

In these CPEs, lithium-ion (Li+) transport primarily occurs through a unique pathway
within the amorphous region of polymer, encompassing the polymer–filler interface and
the active filler [36]. It is always lead to an insignificant increase in ionic conductivity by
simply mixing the polymer matrix with ceramic particles due to particle agglomeration
and lack of a well-defined ceramic–polymer interface [35,37–39]. The isolated ceramic
particles within polymer fail to create a lithium-ion conductive network, resulting in low
conductivity. Recent studies show that constructing a three-dimensional (3D) net-like
structure with LLZO filler can reduce particle agglomeration [40]. However, a substantial
improvement in ionic conductivity close to ~10−4 S cm−2 at room temperature still remains
challenging [41]. To address these issues, establishing a 3D packing network through in
situ polymerization within the polymer electrolyte is crucial, which ensures continuous
lithium-ion conductivity throughout the structure [42,43]. Thus, precisely optimizing the
morphology and content of active ceramic fillers plays a crucial role in enhancing the
electrochemical and mechanical properties of CPE [44].

Herein, a flexible composite electrolyte composed of pores 3D net-like structure and
fast ion channels was developed. The polyvinylidene fluoride-hexafluoro propylene (PVDF-
HFP) and lithium lanthanum zirconate (LLZTO, Li6.4 Al0.2La3Zr1.4Ta0.6O12) based pores
3D net-like structure created a well-defined ceramic–polymer interface which give the
electrolyte high mechanical strength and improved ion conductivity. The filled PVEC-
based electrolyte in the pores can collect ions on the porous walls, further providing a fast
ion migration channel which further enhances the ionic conductivity at room temperature.
This approach, permeating ionic conductive species within a three-dimensional network,
demonstrates superior electrode–electrolyte interface contact compared to conventional
composite solid-state electrolytes. The as prepared FCPE exhibits a high ionic conductivity
of about 1.21 × 10−4 S cm−1 and cycle stability for 1200 h for a lithium-symmetrical
battery at a current density of 0.1 mA cm−2. Importantly, when applied in an all-solid-state
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Li|FCPE|LiFePO4 coin cell, it maintains a high specific capacity of 148.5 mA h g−1, even
after 100 cycles, demonstrating robust cyclic stability. Furthermore, characterization of the
solid electrolyte membrane after 100 cycles and 1200 h using FT-IR spectroscopy revealed
that the structure of membrane remains stable. This underscores significant prospects for
practical applications in the field of solid-state electrolytes.

2. Materials and Methods
2.1. Materials

Dimethyl sulfoxide (DMSO, >99.9%), Lithium bis(trifluoromethanesulphonyl)imide (LiTFSI,
99.0%), 4-Vinyl-1,3-dioxolan-2-one (VEC, 99.0%), and 2,2’-Azobis(2-methylpropionitrile) (AIBN,
99.0%) were all purchased from Macklin, Shanghai, China. Li6.4 Al0.2La3Zr1.4Ta0.6O12 solid
electrolyte powder (LLZTO), Lithium iron phosphate (LFP, P198-S20), and Carbon nan-
otube dispersants (CNTs)were purchased from Shenzhen Kejing, Shenzhen, China. Poly
(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP, KynarFlex2801, Mw = 900,000)

2.2. Materials Synthesis

The phase conversion method was used to the preparation of an FCPE with a porous
structure. An appropriate quantity of PVDF-HFP was dissolved in dimethyl sulfoxide
(DMSO) and magnetically stirred for 60 min at 60 ◦C to yield a 10 wt% polymer clear
solution. Subsequently, LLZTO powder was added to the solution in varying ratios (x
LLZTO/y PVDF-HFP = 0%, 5%, 10%, 15%, denoted as PHxL where x = 0, 5, 10, 15). The
resulting mixture was further stirred for 20 min under vacuum conditions to achieve a
homogeneously dispersed slurry. The slurry was then cast onto a smooth glass plate at
40 ◦C, and the resulting membrane was transferred to a vessel filled with ultrapure water.
After 5 min, it was removed and dried in a forced-air oven at 60 ◦C for 12 h, yielding
the PVDF-HFP-LLZTO membrane. All membranes were subsequently transferred to a
glovebox. The membranes exhibit a thickness of PH10L approximately 19 µm and a
diameter of 19 mm.

For the PVEC-based electrolyte precursor, 2.5 M lithium hexafluorophosphate (LiPF6)
was added to vinylene carbonate (VEC), along with 0.02 wt% azobisisobutyronitrile (AIBN)
as an initiator for polymerization. The solid electrolyte, filled with the PVEC-based elec-
trolyte precursor slurry during the battery loading process into the PHxL is denoted
as PHxLE.

In the preparation of the cathode electrode, lithium iron phosphate (LFP), PVDF-HFP
and Carbon nanotube dispersants (CNTs) (the mass ratio of the three is 8:1:1) were mixed
and stirred in DMSO for 6 h. The final slurry is poured onto an aluminum foil current
collector and dried at 100 ◦C for 24 h. The active material loading on the aluminum foil
current collector is about 2.0 mg cm−2.

2.3. Characterization

The morphological features of the specimens were assessed through scanning elec-
tron microscopy (SEM) utilizing the ZEISS Sigma 300 instrument. Transmission electron
microscopy (TEM) and elemental mapping images were acquired using a transmission elec-
tron microscope (JEM-2100P, JEOL, Tokyo, Japan). X-ray diffraction (XRD) patterns were
captured on the Smart Lab 9KW instrument with Cu Kα radiation. Thermogravimetric
analyses (TGA) were executed employing a PerkinElmer STA 6000 analyzer. Fourier-
transform infrared (FT-IR) spectroscopy was tested on a Nicolet 6700 spectrometer. Raman
experiments were performed at Horiba Labram Evolution and were measured from 1064
nm power excitation.

2.4. Electrochemical Characterization

Two meticulously polished stainless steel discs (SS) served as blocking electrodes to
encapsulate the composite solid electrolyte, establishing a blocking-type cell. The ionic
conductivity of FCPE at room temperature (25 ◦C) was quantified utilizing electrochemical
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impedance spectroscopy (EIS) in the spectral range of 0.01 to 105 Hz at room temperature
with an alternating amplitude of 10 mV. The ionic conductivity (σ) has calculated using the
equation σ = L/(Rb·S).

The electrochemical window of FCPE was determined by employing the linear sweep
voltammetry (LSV) technique, which is obtained using a Li/FCPE/SS cell configuration
with a scan rate of 10 mV s−1 and a scan range of 0 to 4.8 V. Li/FCPE/LiFePO4 coin cells
were assembled into all-solid-state batteries, and the LAND CT2001A meter was used to
perform a charge–discharge test within the voltage range of 2.5 to 3.65 V at 25 ◦C.

3. Results and Discussion

As depicted in Figure 1, after the phase conversion process, the solid electrolyte
exhibits a porous structure with PVDF-HFP encapsulating ceramic powder particles, form-
ing a rich PVDF-HFP-LLZTO interface, constituting a three-dimensional interconnected
channel. This porous structure is impregnated with a PVEC-based electrolyte single-ion
conductor through in situ polymerization. At the same time, the VEC has not undergone
complete polymerization, and free monomers still exist around the polymer chains. The
presence of the VEC monomers leads to a reduction in the crystallinity of the polymer,
resulting in a shorter polymer chain length, which further promotes the conduction of
lithium ions. Figure 2a shows the as-prepared solid electrolyte has a white appearance and
flexible characteristics. SEM images revealed that the porous flexible composite electrolyte
possesses an interconnected network structure characterized by nest-shaped polymer ducts
that are 3D interconnected (Figure 2b–d). The enlarged view of the red rectangular region
selected in Figure 2b is shown in Figure 2c, and the enlarged view of Figure 2c is shown
in Figure 2d. This distinctive architecture is attributed to the exchange of solvents and
non-solvents during phase conversion, driven by a reduction in the Gibbs free energy of the
system through the generation of a new phase (β phase) per unit volume from the parent
phase (α phase) [45,46]. Among them, white spots on the surface of the film can be further
observed in the red dotted circle in Figure 2d. It is believed that the white spots are ceramic
particles wrapped by organic matter. The microstructure of the PHxL 3D skeleton was
observed by TEM. As shown in Figure 2e, the skeleton is a porous structure with a pore
diameter of approximately 100 nm. It should be noted that nanoparticles with a diameter
of about 200 nanometers were embedded within the skeleton which is consistent with the
SEM result in Figure 2e. The interface between the LLZTO phase and the elastomer matrix
exhibited a smooth connection, elucidating the achieved structural integrity in the compos-
ite electrolyte. Further, high-resolution transmission electron microscopy (HRTEM) images
(Figure 2f) showed that the surface of pure LLZTO particles was uniformly coated with
amorphous PVDF-HFP. The spacing of the lattice fringes of the particles is 0.53 nm, which
is in good agreement with the (211) plane of LLZTO, indicating that the PVDF-HFP coating
of LLZTO does not destroy the crystal structure of LLZTO during the phase conversion
process [47]. It has been reported that a chemical reaction occurs between PVDF-HFP and
LLZTO, ultimately leading to the defluorination of PVDF-HFP [48]. Notably, PVDF-HFP
exhibits a propensity for defluorination in alkaline environments, a phenomenon exacer-
bated by the alkaline nature often exhibited by LLZTO ceramics in various solutions. This
study employed a phase transition method. During the transition process, PVDF-HFP
is insoluble in water and undergoes rapid solvent exchange upon contact. Uniformly
dispersed LLZTO particles are encapsulated within PVDF-HFP, forming numerous large
interconnected three-dimensional pores.
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Figure 2. (a) Digital image of PH10L; (b–d) the surface morphology SEM images of PH10L; (e) STEM
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The XRD pattern of the composite electrolyte is depicted in Figure 3a. XRD peaks of
pure PVDF-HFP film at 20◦ and 40◦ reveal the presence of polar β-phase and γ-phase [49].
Upon the incorporation of ceramic fillers, the XRD peaks associated with PVDF-HFP
weaken and broaden, indicating a reduction in the crystallinity of the PVDF-HFP com-
ponent in the electrolyte. Additionally, the introduction of LLZTO corresponds to a cu-
bic garnet crystal structure with the Ia3′d space group, matching the standard peaks of
Li7La3Nb2O12 (PDF#: 40-0894) [50] well. (The PDF profile of the Li7La3Nb2O12 which has
a similar cubic phase to LLZTO) [35]. The cubic phase of LLZTO is more favorable for
lithium-ion conduction compared to the amorphous phase of PVDF-HFP, contributing to
the stability of the composite material. Furthermore, with an increase in the LLZTO content,
the characteristic peaks associated with LLZTO gradually intensify. The FTIR spectrum
of the electrolyte membrane is depicted in Figure 3b. Vibrational peaks at 840, 1234, 1275,
and 1423 cm−1 corroborate the XRD results by corroborating the β- and γ-phases of PVDF-
HFP [51]. In the Raman spectrum (Figure 3c), as the LLZTO content increases, the peaks
at 1120 and 1510 cm−1 gradually intensify, likely attributed to C-C stretching vibrations.
This indicates that the PVDF-HFP backbone has been modified. This suggests that with the
incorporation of LLZTO, the main chain structure of PVDF-HFP undergoes dehydrofluo-
rination reactions [52]. Notably, the FT-IR spectrum of PVEC exhibited prominent peaks
corresponding to the C=O bond at 1795 cm−1 and the C-O bond at 1063 cm−1, indicative of
the stability of carbonate units during the thermal polymerization process (Figure S1) [49].
Furthermore, the incorporation of VEC into the framework of PH10L for polymerization
results in PH10LE, as shown in Figure 3d. The infrared spectrum of PH10LE exhibits almost
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identical characteristic peaks to those of PH10L and PVEC, indicating that its structure
remains unchanged after the formation of the composite.
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The thermal characteristics of the PH0L and PH10L films were elucidated through
TGA. As shown in Figure S2, below 400 ◦C, both pure PVDF-HFP membrane and PH10L
remain stable without decomposition. Both experience gradual weight loss and abrupt
decomposition around 450 ◦C, indicating a decrease in their thermal stability. However,
the network-like electrolyte film with LLZTO fillers exhibits a 20 ◦C higher temperature for
rapid thermal decomposition compared to pure PVDF-HFP after the addition of LLZTO
fillers, suggesting an improvement in thermal stability. Moreover, at temperatures as
high as 550 ◦C, pure PVDF-HFP completely decomposes, while PH10L still retains unde-
composed ceramic particles, demonstrating the beneficial effect of incorporating ceramic
powders. TGA curves illustrated the initial thermal decomposition of PH0L at 428 ◦C,
and both films exhibited commendable thermal stability, with no decomposition observed
up to 400 ◦C (Figure S2) [27,35]. Simultaneously, the issue of thermal runaway in lithium
batteries is a critically important safety concern. In this study, a combustion test was
employed to investigate the flame retardancy of PH10L and a commercially available PE
separator. As depicted in Figure 4a, the commercial PE separator was easily ignited, and
by the third second, it was completely consumed in flames, with observable dripping
of combustion by-products. In contrast, when a flame was introduced near PH10L, the
shrinkage rate significantly decreased. If the flame source was removed, PH10L ceased
combustion, as illustrated in Figure 4b. In addition, we have also provided video material
of the combustion experiments. This suggests that the introduction of LLZTO resulted in a
postponement of the separator’s combustion. Furthermore, the outstanding thermal stabil-
ity of PH10L was substantiated by storing the separators at different ambient temperatures.
As clearly observed in Figure 4c, a distinct trend emerged. With increasing temperature,
the commercially available PE separator exhibited pronounced curling, whereas at 120 ◦C,
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PH10L maintained a high level of flatness. This visually demonstrates the thermal stability
of PH10L, consistent with the earlier-discussed TG results and combustion tests.
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Electrochemical Performance

Systematic studies were conducted on the ionic conductivity of solid electrolytes using
SS blocking electrodes. Figure 5a displays the EIS impedance spectra of PHxL CPE at
room temperature. All curve shapes are consistent with a high-frequency region showing a
downward-bent semicircular arc and a low-frequency region corresponding to a sloping
straight line. The AC impedance spectra were fitted using an equivalent circuit through
least squares fitting, yielding the bulk resistivity of the electrolyte. With the continuous
increase in LLZTO content, the lithium-ion conductivity of the flexible electrolyte also
increases. The ion conductivity of PH0LE is only 4.0 × 10−5 S cm−1. However, when the
LLZTO content reaches 10%, the ion conductivity of PH10LE is maximized, reaching up to
1.21 × 10−4 S cm−1, which is much higher than that of PH0LE. This may be attributed to the
addition of ceramic powders affecting the crystallinity of the polymer, resulting in an overall
enhancement of the ionic conductivity [50]. Furthermore, the ionic conductivity of PH10LE
and PH0LE was further tested at different temperatures, as depicted in the Arrhenius
plot in Figure 5b. The temperature range for the FCPE electrolyte was set between 15 ◦C
and 60 ◦C. From this, it can be observed that with an increase in temperature, the ionic
conductivity of FCPE gradually increases. The ion conductivity of composite solid-state
electrolytes in all-solid-state lithium-ion batteries without the addition of liquid electrolyte,
as presented in Table S1 from recent reports, clearly indicates that the final results obtained
in this study are outstanding [45,50]. Combining the analysis with Figure 5c, the increase in
the amorphous region is also beneficial for the rapid migration of lithium ions. It elucidates
the temporal evolution of current throughout the polarization process. The accompanying
diagrams delineate the simulated equivalent circuit and impedance spectra, wherein Rs,
Rct, and R2 signify the resistances arising from the electrolyte bulk, grain boundaries,
and both electrode–electrolyte interfaces, respectively. CPE1 and CPE2 are associated
with constant phase elements at grain boundaries, LLZTO, and polymer interfaces. Ws
characterizes the impedance encountered by reactants diffusing from the electrolyte bulk
to the electrode reaction interface. The impedance response was meticulously computed
using ZView software [37]. The 10 wt% LLZTO ensures that the amorphous region of the
organic material is maximized without particle agglomeration, and the network structure
itself is interconnected. At this concentration, 10 wt% LLZTO is sufficient to form a three-
dimensional interconnected Li+ channel. Excessive LLZTO, on the other hand, can hinder
ion transport, thus reducing the conductivity of Li+ [48]. Within this porous structure
saturated with VEC precursors, the polymerized PVEC-based electrolyte serves as an ion
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conductor, intricately interacting with the 3D porous skeleton. This interaction results in the
creation of a unique channel, facilitating the rapid transport of lithium ions. Lithium ions
can not only be transported within the 3D net-like structure but also within the PVEC-based
electrolyte, further enhancing lithium ion conductivity [51]. As shown in Figure 5d, the
LSV measurements were measured with a voltage range of 0 to 4.8 V at room temperature.
Compared to the PH0LE, the potential of PH10LE begins to decompose because of oxidation
at as high as 4.7 V relative to Li+/Li which indicates that the PH10LE is very stable at
high voltage.
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Lithium plating/stripping experiments were conducted in a symmetrical cell to
demonstrate the interface stability of FCPE on the lithium metal. As shown in Figure 6a,
the voltage-time curve indicates that the battery with PH10LE CPE can maintain stability at
a current density of 0.1 mA cm−2, remaining stable even after 1200 h of cycling. In contrast,
the battery using PH0LE CPE experiences a short circuit within 600 h (Figure 6a). Further-
more, compared to other lithium batteries, the polarization voltage of the Li|PH10LE|Li
lithium battery is only 10 mV. These results suggest that this mesh-like FCPE is more effec-
tive in suppressing lithium dendrite growth and relatively regulating lithium deposition.

To further illustrate the advantages of the 3D net-like flexible composite electrolyte, a
solid-state lithium metal battery was constructed with LFP as the cathode and its electro-
chemical performance was tested. In Figure 6b, it depicts the reversible charge–discharge
capacities of the lithium metal battery at different rates (0.1 C–0.5 C). The stable capacities of
the Li|PH10LE|LFP battery at 0.1 C, 0.2 C, and 0.5 C are 155.8, 146.3, and 136.7 mA h g−1,
respectively. Upon switching back to 0.1 C, the capacity can recover to 152.1 mA h g−1,
demonstrating outstanding rate capability. Figure 6c compares the long-term cycling perfor-
mance and corresponding coulombic efficiency of the two batteries at 0.1 C. All-solid-state
batteries assembled with PH0LE are shorted directly after the 20th cycle. In contrast, the
Li|PH10LE|LFP battery achieves over 100 reversible electrochemical cycles and maintains
a high specific capacity of 148.5 mA h g−1. Figure 6d shows the charge–discharge curves of
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the Li|PH10LE|LFP battery at different cycles at 0.1 C. From the 5th to the 35th cycle, the
curves remain smooth, and the capacity stays relatively stable, indicating the absence of
side reactions within the battery.
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Figure 6. (a) Voltage profiles of Li|PH0LE|Li and Li|PH10LE|Li symmetrical cells at room tempera-
ture, and the inset in (a) shows magnified voltage profiles in an hour range of 340 h to 350 h. (b) Rate
performance of Li/PHxLE/LFP (x = 0 or 10) coin cells at room temperature. (c) Cycling performance
of Li/PHxLE/LFP (x = 0 or 10) coin cells at 0.1 C. (d) Charge–discharge curves of Li|PH10LE|LFP
cell at different cycle numbers. FT-IR spectrum of (e) FCPE after 100 cycles of Li/FCPE/LFP and
FCPE after 1200 h of cycling in Li/FCPE/Li. (f–h) Digital photograph of a blue LED light illuminated
by an Li/FCPE/LFP pouch cell.

To validate the practical performance of this approach, a Li/FCPE/LFP pouch cell
was assembled. After charging the pouch cell at a rate of 0.1 C to full capacity, no swelling
phenomenon occurred. As shown in Figure 6e–h, at room temperature, the pouch cell
was able to power a blue LED light normally. Furthermore, even when the pouch cell
underwent arbitrary bending and shearing, it continued to supply power to the blue
LED light without affecting its normal operation. This substantiates and underscores the
extensive potential application of FCPE as elucidated in the study, indicating its promising
utilization in flexible wearable electronic devices. In order to elucidate that no side reactions
occur in the formation of the SEI (solid electrolyte interface) film during the battery cycling
process in any component of the solid-state electrolyte, infrared tests were conducted on the
FCPE of Li/FCPE/LFP after 100 cycles and Li/FCPE/Li after 1200 h of cycling (Figure 6e).
The test outcomes reveal negligible deviation in characteristic peaks, signifying the ongoing
stability of the solid electrolyte diaphragm structure throughout the cycling process. This
further substantiates the cyclic stability of the solid electrolyte. The pouch cell assembled
using PH10LE also exhibits excellent performance, as shown in Figure S3, achieving a
capacity retention rate of 153.51 mA h g−1 at 0.1 C. This promising result suggests potential
applications in future wearable electronic devices.
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Based on the findings presented in the research, the augmentation mechanisms at-
tributed to FCPE in enhancing lithium battery performance can be distilled into several key
facets. First, ceramic particles enveloped within PVDF-HFP, culminating in the establish-
ment of a robust PVDF-HFP/LLZTO interface and provide sufficient mechanical strength.
The resulting three-dimensional network structure serves to intricately interconnect the
lithium-ion transport interface. Second, within the 3D net-like structure, the ion conductor
PVEC-based electrolyte permeates, adeptly gathering lithium ions along the pore walls.
This not only amplifies ion conductivity but also benefits from the advantageous properties
of VEC monomers, thereby fortifying Li+ ion conductivity and antioxidation capabilities.
Complemented by a passive layer founded on LiF, the entire system exhibits commendable
stability, both in the context of Li-metal interactions and overall operational endurance [49].

4. Conclusions

In summary, a universal and straightforward method has been developed for prepar-
ing a netlike flexible composite electrolyte. The results indicate that the 3D active nano-
fillers in the PVDF-HFP-based CPE exhibit high thermal stability and outstanding Li+

conductivity. After filling the network with a PVEC-based electrolyte, the ion conductivity
further increases to 1.21 × 10−4 S cm−1 at 25 ◦C. Moreover, the flexible composite elec-
trolyte membrane creates a 3D net-like structure with multiple rapid pathways for Li+

that effectively control Li+ flux, leading to uniform lithium deposition. Consequently, the
symmetrical lithium cells exhibited remarkable stability when using the FCPE, while the
assembled Li/FCPE/LFP battery showcased exceptional cycling performance. FT-IR spec-
troscopy analysis of the solid electrolyte membrane post-cycling reveals that its structure
remains stable, further confirming the structural stability of FCPE. This work introduces a
novel strategy for advancing the enhancement of flexible all-solid-state batteries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16050565/s1, Figure S1: The FT-IR spectrum of PVEC-based
electrolyte, Figure S2: The TGA curve of PH0Land PH10L, Figure S3: Charge–discharge curves
of Li|PH10LE|LFP pouch cell at 0.1 C, Table S1: Ionic conductivity in all-solid-state lithium-ion
batteries have been reported.
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