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Abstract: It is known that 3D printable concrete mixtures can be costly because they contain high
dosages of binder and that the drying-shrinkage performance may be adversely affected. Mineral
additives and fibers are generally used to control these negative aspects. In this study, the use of
silica fume, a natural viscosity modifying admixture, was investigated to improve the rheological
and thixotropic behavior of 3D printable concrete mixtures reinforced with polypropylene fiber
(FR-3DPC). The effect of increasing the silica fume utilization ratio in FR-3DPC on the compressive
strength (CS), flexural strength (FS), and drying-shrinkage (DS) performance of the mixtures was also
examined. A total of five FR-3DPC mixtures were produced using silica fume at the rate of 3, 6, 9,
and 12% of the cement weight, in addition to the control mixture without silica fume. As a result of
the tests, the dynamic yield stress value decreased with the addition of 3% silica fume to the control
mixture. However, it was found that the dynamic yield stress and apparent viscosity values of the
mixtures increased with the addition of 6, 9, and 12% silica fume. With the increase in the use of silica
fume, the CS values of the mixtures were generally affected positively, while the FS and DS behavior
were affected negatively.

Keywords: fiber-reinforced 3D printable concrete; polypropylene fiber; silica fume; rheology;
thixotropy; drying-shrinkage performance

1. Introduction

With current production technologies of Industry 4.0, 3D printing has started to
be widely used in the construction sector [1–3]. Production of 3D printable concrete
(3DPC), which is applied layer by layer without the use of molds [4,5], results in a faster
production process compared to traditional concrete [6]. Additionally, various researchers
have reported several advantages, including lower labor requirements [7], reduced risk of
work accidents [8], higher architectural freedom [9], and partially lower costs [10]. However,
it was emphasized that there is no existing standard for 3DPC mixtures [10] and there are
constraints such as the need to meet certain fresh-state requirements during production [10].
Serious requirements, especially regarding the rheology of 3DPC, have been noted [11].
While fresh concrete should have relatively lower yield stress and viscosity values during
the pumping and extrusion process, it was reported that after extrusion it should have
a higher yield stress, viscosity value and an optimum structural build-up rate in order
to resist parameters that may cause possible deformation [10,12]. Şahin and Mardani [9]
reported that the parameters that can create deformation mentioned are as follows: (i) own
weight, (ii) weight of the upper layers, and (iii) high extrusion pressure, respectively.

This is one of the leading comparisons in the development of 3DPC technology,
that meets these requirements in 3DPC mixtures in need of rheological care, which is

Polymers 2024, 16, 556. https://doi.org/10.3390/polym16040556 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16040556
https://doi.org/10.3390/polym16040556
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-8915-879X
https://doi.org/10.3390/polym16040556
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16040556?type=check_update&version=2


Polymers 2024, 16, 556 2 of 22

contradictory with comparison to conventional concrete [13–17]. In order to overcome
this difficulty, [18] used two parts (i) to accelerate the hydration of fragmented cementi-
tious materials with an interventional process before extrusion and (ii) with the use of a
thickening agent. In the first method, it was understood from the literature that nozzle
expansions/changes in nozzle shape and cost-increasing additional technologies must be
used [19–22]. In the second method with a thickening agent, the agent is generally added
to the mixture with properties such as viscosity-based admixtures [23], silica fume (SF) [24],
and nanoparticles [25]. Several studies on the subject are summarized in Table 1.

In studies conducted in the literature, it can be seen that both the thixotropic properties
and strength properties of 3DPC mixtures can be positively affected by the addition of these
agents [12]. SF and hydroxypropyl methylcellulose were proven to be effective viscosity
modifying materials that positively affect the buildability and thixotropic behavior of
3DPC mixtures [26]. The impact of utilizing fly ash and silica fume on the fresh-state
performance of 3DPC mixtures was examined in [24]. It was found that the inclusion of
fly ash lowers the yield stress and viscosity values of 3DPC combinations, much like in
conventional concretes. In contrast, a reversal of this effect was noted when adding silica
fume. Furthermore, it was found that the mixture roughness increased. It was highlighted
that the ability to deposit more layers without distortion is made possible by an increase
in roughness. According to reports, the addition of silica fume improved the mixture
printability in terms of buildability parameter and yield stress.

Table 1. Examples of studies in the literature on the subject.

Reference Fiber Type
Supplementary
Cementitious

Materials (SCM)

SCM Utilization
Ratio Highlights

[27] polypropylene
(PP) nano silica (NS) 0.005% and 0.01%

(of total volume)

The use of NS and PP fiber can decrease the
setting time and reduce the collapse of 3DPC.
Additionally, the increase in NS and PP fiber

usage rate causes the CS values of 3DPC
mixtures to decrease.

[28] - SF
6%, 10%, and 16%

(of cement
weight)

With increase of SF dosage, static yield stress
(SYS), dynamic yield stress (DYS), and viscosity
values of 3D printable foam concrete increase.

[29] polypropylene
(PP) SF 3% (of cement

weight)

The change in PP fiber usage rate significantly
affects the viscosity and DYS. The resistance of
concrete against cracking is improved by the
addition of PP fiber. Concrete using PP fiber

can be printed with a low shrinkage when the
DYS varies between 250 and 500 Pa and the

viscosity varies between 22 and 60 Pa·s.

[30] steel fiber SF

5%, 10%, 15%,
20%, and 25%

(amount of
cement)

3DPC mixtures produced using 10% to 15% SF
have the highest fiber-matrix bond, tensile and
flexural properties. By image analysis the SF
content at these rates leads to lower viscosity

and more evenly distributed fibers.

In another study by [31], the effect of nano-silica usage rate (1, 2, and 3%) on the
reflocculation value of 3DPC was examined. The highest reflocculation value was measured
in the mixture containing 1% NS. With the increase in nano-silica usage rate, the thixotropic
behavior of 3DPC was negatively affected and the reflocculation rate decreased. It was
reported that this might be due to the increase in the total surface area because of the
high specific surface area value of nano-silica and the insufficient fluidizing admixture to
disperse the particles in the system. Researchers attempted to impart self-strengthening
properties to 3D printable concrete by adding fibers, aiming to eliminate the use of steel in
3D printable buildings [32].
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It has been reported by various researchers that in 3D printable concrete mixtures,
pozzolan materials such as fly ash, slag, and silica fume are used by substituting them to
increase the performance of fresh and hardened properties and especially to reduce the
production cost. While the use of pozzolan in 3D printable concrete mixtures positively
affects workability and mechanical properties, it causes a decrease in early age strength.
It was stated by Marchon et al. [33] that this situation imposes limitations on the use of
pozzolans. The complementary material feature and usage rate used in fiber-reinforced
3DPC mixtures (FR-3DPC) seriously affect the rheology and mechanical properties [34].
The use of nanomaterials in fiber-reinforced cementitious systems shortened the hardening
time by reducing fluidity [32]. In the literature, it was determined that there are several
studies on the effect of SF usage rate change on the fresh- and hardened-state properties of
3DPC mixtures, but conflicting results were obtained among the studies. This study aimed
to resolve these contradictions. Additionally, it was understood that limited research had
been conducted on the change in silica fume utilization rate, especially in fiber-reinforced
3DPC (FR-3DPC) mixtures, but the rheological properties and thixotropic behavior of
3DPC mixtures were generally not investigated in the studies. In this study, the use of
silica fume, a natural viscosity modifying admixture, was investigated in order to improve
the rheological properties and thixotropic behavior of 3DPC mixtures reinforced with
polypropylene fiber. In addition, the effect of increasing the silica fume usage rate in
FR-3DPC on the CS, FS, and DS performance of the mixtures was also examined.

2. Material and Method
2.1. Materials

F type fly ash in accordance with ASTM C618 Standard [35], silica fume with a
diameter of 0.15 µm in accordance with ASTM C1240 Standard [36], and CEM I 42.5R type
cement with EN 197-1 Standard [37] were employed as binders in this investigation. The
binder materials used within the scope of the study were obtained from Vezirhan Concrete
Company in Bilecik province. Table 2 displays components of the binders.

Table 2. Components of the binders.

Oxides (%) Cement Fly Ash Silica Fume

SiO2 18.00 58.79 79.13
Al2O3 4.75 22.51 0.71
Fe2O3 3.58 7.89 0.33
CaO 63.00 3.70 0.21
MgO 1.40 2.18 7.73

Na2O + 0.658 K2O 0.70 1.93
SO3 3.11 0.29 0.97

Specific gravity 3.06 2.35 2.10
Specific surface (cm2/g) 3441 4000 18,000

Setting Time (min) Initial 170 - -
Final 240 - -

Compressive
Strength (MPa)

7-Day 42.80 - -
28-Day 51.80 - -

Pozzolanic activity
index (%)

28-Day 77.70 100
90-Day 92.50 132

Crushed limestone aggregate with Dmax of 1 mm was utilized as the aggregate in the
creation of 3DPC mixtures. According to the EN 1097-6 Standard [38], the aggregate’s spe-
cific gravity value and water absorption capacity were found to be 2.58 and 0.4, respectively.
In the study, polycarboxylate-ether-based high-range water-reducing admixture (HRWR)
was used. Table 3 lists some features of the HRWR that was supplied by the manufacturer.
It is recommended by the manufacturer to use a ratio of 0.5% to 2% by weight of the total
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binder in the mixture design for fluid consistencies in all types of concrete classes. This
ratio varies depending on the cement, aggregate, mineral additive, and water components
used in the concrete mixture design, as well as the desired fresh and hardened concrete
properties. For this reason, before determining the usage rate, laboratory tests should be
carried out according to the properties expected from fresh and hardened concrete, and the
mixing ratio should be determined according to these tests.

Table 3. HRWR properties.

Density (g/cm3) Solid Matter (%) pH Na2O (%) Chlorine (%)

1.060 32 2–5 <10 <0.1

Polypropylene fiber with an aspect ratio of 200 was used in all mixtures at the rate of
0.4% of the total volume. It was emphasized by Bentur [39] that in mixtures where 3 mm
long short fibers are used, the strength performance of the mixtures may be negatively
affected as a result of the increase in local porosity due to the increase in the possibility of
multifilament structure formation during mixing.

However, various researchers reported that when longer (12 mm) fibers are used,
the strength performance may decrease as a result of curling and clumping [40–44]. On
considering the results of the studies in the literature, the length of the fiber used in this
study was chosen as 6 mm. Several properties of the polypropylene fiber supplied by the
manufacturer are given in Table 4.

Table 4. Polypropylene fiber properties.

Aspect Ratio
(Length/Diameter) Fiber Length (mm) Modulus of

Elasticity (MPa)
Tensile Strength

(MPa) Specific Weight Surface Area
(m2/kg)

200 6 4861 500 0.91 140

2.2. Mixtures Ratio

The mixing ratios of fiber reinforced 3DPC concretes (FR-3DPC) were determined by
taking into account the extrudability, buildability, and shape stability criteria suggested
by [45]. In order to understand the criteria mentioned more clearly, the workflow used is
shown in Figure 1. A similar workflow was applied by Kazemian et al. [46]. Additionally,
images of the produced layers are shown in Figure 2. The print quality parameter was
examined under two headings: extrudability and buildability criteria. Mixtures that can be
pressed without causing any clogging in the nozzle are considered extrudable [9]. Among
extrudable mixtures, mixtures that can be printed as a 5-layer structure and have no
roughness on the surface are defined as buildable [9]. For example, in Figure 2(a1,a2),
mixtures that cannot produce a 5-layer structure and collapse are shown.

The problem was evaluated as a situation caused by the excessive fluidity of the mix-
tures, and the amount of HRWR used in the mixtures was revised. Figure 2(a3) shows the
situation where the mixture is excessively cohesive, causing clogging in the nozzle, and the
buildability criterion is not met because the 5-layer structure cannot be produced. Figure 2b
shows mixtures that can be extruded but whose constructability criteria are not met because
they have indentations and protrusions on the surface and are not dimensionally suitable.
Figure 2c shows an example of a mixture in which dimensional conformity and consistency
are achieved and there is no roughness on the surface. The shape stability criterion was
investigated in mixtures selected as appropriate in terms of print quality (2d). Mixtures
with a shape-stability value greater than 95%, calculated according to Equations (1) and (2),
are considered to be suitable in terms of 3D printability criteria. Mixtures suitable for shape
stability are shown in Figure 2d. In order to determine the shape stability of the printed
mortar mixtures, a 5-layer structure was printed for each mixture. Since it is known that
the shape stability is affected by the characteristics of the injection gun or printer used, as
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well as the mixture properties, care was taken to ensure the same device and environmental
conditions were used for the shape stability of each mixture. Past experiences and visual
reasoning results were considered in determining this ratio. Since the nozzle width used in
the study was 42 mm, it was accepted that the shape-stability criterion was met if the layer
width was between 40 and 42 mm.
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Similar assumptions were made by other researchers [46,47]. In a study by Saruhan
et al. [47], it was reported that the shape-retention ability of 3D printable concrete mixtures
was calculated by dividing the substrate filament width by the extruder nozzle width.
Researchers have stated that the buildability of a mortar mixture increases as the shape
retention coefficient approaches 1. It is emphasized that it should be noted that this method
actually focuses only on shape retention ability.

SSb(%) =
blayer

bnozzle
·100 (1)

SSh(%) =
hlayer

hnozzle
·100 (2)
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where,
SSb; shape stability of layer width, SSh; shape stability of layer height (%), blayer; layer

width after extrusion (mm) and bnozzle represents the nozzle width (42 mm), hlayer; layer
height after extrusion (mm) and hnozzle represents the nozzle height (15 mm).

450 kg cement, 350 kg fly ash, 1024.2 kg aggregate, 7.1 kg polypropylene fiber and
8.5 kg HRWR were used in 1 m3 FR-3DPC mixture, which does not contain silica fume
and where the mentioned criteria are met. FR-3DPC combinations were generated in five
different series by adding silica fume to the control mixture at varied rates of 3, 6, 9, and
12% of the cement weight. This was done to investigate the impact of silica fume usage and
usage rate on several properties of the mixtures in fresh and hardened states. The amount
of material used in the production of 1 m3 FR-3DPC mixtures is shown in Table 5. The
naming of the mixtures is made according to the silica fume usage rate. For example, the
mixture containing 6% silica fume is named SF-6%.

Table 5. Amounts of component used in the production of 1 m3 FR-3DPC (kg/m3).

Mix Cement Fly Ash Silica Fume Aggregate Polypropylene Fiber HRWR w/b

Control 450

350

- 1024.2

7.1

8.5

0.35
SF-3% 436.5 13.5 1016.6 9.5
SF-6% 423 27 1007.7 11.0
SF-9% 409.5 40.5 1001.3 11.5
SF-12% 396 54 994.9 12

The w/b ratio was kept constant at 0.35. In order to meet the compliance criteria,
HRWR was added at different rates. HRWR requirement in mixtures increases with the
addition of silica fume. HRWR requirement of the SF-12% mixture containing 12% silica
fume increased by 71% compared to the control mixture. This was due to the increase in
the total surface area of the matrix with the addition of silica fume.

2.3. Method
2.3.1. Preparation of Mixtures

The mixtures were prepared in three different stages. In the first stage, binder materials
(cement, fly ash, and silica fume), fine aggregate, and fiber were mixed at 62.5 rpm for
1 min. In the 2nd stage, water and HRWR were added to the mixture and mixed at 62.5 rpm
for 1 min. In the 3rd stage, the mixture preparation process was completed by mixing the
mixture at 125 rpm for 2 min. Three samples were prepared for each experiment. The
specimens were prepared by injection gun extrusion with the nozzle output for mortars
being 42 mm wide and 15 mm high [45]. The injection tool has a cylindrical container
(Ø65 × 300 mm). FR-3DPC samples were printed using an injection gun at a printing
speed of approximately 5 mm/s. Similar devices and procedures have been used by many
researchers [47,48]. The produced samples were kept in a curing cabinet with a temperature
of 20 ± 1 ◦C and a relative humidity of 90 ± 5% immediately after casting. After 24 h, the
sample was subjected to water cure of 20 ± 1 ◦C until the day of the experiment.

2.3.2. Rheological Procedure

Rheological measurements of the mixtures were carried out immediately after produc-
tion, without waiting. For this purpose, the MCR52-Anton Paar rheometer (Figure 3a) with
a ball diameter of 8 mm was used. Figure 3b shows the image of the mixture subjected to
rheology testing. A rheological measurement process consisting of 7 periods shown in Fig-
ure 4 was applied to determine the rheological parameters. The rheological measurement
method used was created by modifying two different rheological measurement methods
suggested by Mardani-Aghabaglou [49] and Yao et al. [50].
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1st Period: This period was applied to eliminate shear history during mixing in the
mixer. With a constant deformation rate of 5 s−1, the ball was rotated in the mixture for
30 s.

2nd Period: This period was used to create the output part of the flow curve. The
deformation rate was increased from 0 to 30 s−1. Measurements were taken every 5 s for a
total of 150 s.

3rd Period: This period was made to create the downward part of the flow curve.
Shear rate is reduced from 30 to 0 s−1. Measurements were taken every 5 s for a total of
150 s. Dynamic yield stress (DYS) and apparent viscosity values of FR-3DPC mixtures were
obtained from this period. To determine the DYS values, the flow curve was drawn for each
mixture, taking into account the raw data from the 3rd period obtained from the rheometer.
As a result of analyzing the flow curve data with the help of the Herschel–Bulkley model,
DYS and final viscosity values were calculated for each mixture. The values obtained from
the model were taken as DYS values. The point where each curve intersects the y-axis is
defined as the “DYS”. Shear stress–shear rate and viscosity–shear rate graphs for each
mixture were obtained in Equation (3), using the raw data determined in the 3rd period.
In this model, the viscosity value is measured instantly. However, when the viscosity curve
is taken into consideration, it is seen that the viscosity value does not change after a certain
shear rate. This value was taken as the final viscosity value of that mixture. Figure 4a shows
the shear stress–shear rate and viscosity–deformation rate graphs of the FR-3DPC mixture.

τ = τ0 + b
.
γ

p (3)

Here, τ: the shear stress (Pa), τ0: yield stress (Pa), b: the Herschel–Bulkley consistency
coefficient,

.
γ: shear rate (s−1) and p: the Herschel–Bulkley index.

4th Period: This period was applied to recover the FR-3DPC mixtures before static
measurement. The mixtures were kept for 30 s without being exposed to any shear rate.

5th Period: In this period, moment measurements were taken every 2 s for a total of
15 times for 30 s with a constant shear rate of the mixture (0.02 s−1). During this period, the
SYS of the material was measured.

6th Period: In this period, the mixtures were kept for 480 s without being exposed to
any deformation rate in order to measure the structural build-up rate.

7th Period: In this period, moment measurements were taken every 2 s for a total of
15 times for 30 s with a constant shear rate of the mixture (0.02 s−1). During this period, the
SYS was measured.
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Figure 4. (a) Rheological measurement process. (b) Determination of DYS and viscosity values from
the 3rd period. (c) Determination of τi and τe values required to calculate the Ithix value from the 5th
and 7th periods. (d) Determination of the SYS required to calculate the Athix value from the 5th and
7th periods.
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2.3.3. Thixotropic Measurement

Three different methods, one dynamic and two static, were used to determine the
thixotropic properties of FR-3DPC.

In method 1, which is the dynamic approach, the thixotropic behavior of the mixtures
was measured in accordance with the method proposed by [11]. In this study, in the method
called dynamic structural build-up (D-SBU), the thixotropic properties of mixtures were
examined by measuring them in the 3rd and 2nd periods (Equation (4)):

D − SBU =
τ3.p

t2.p
(4)

Here,
D − SBU dynamic structural build-up, τ3.p dynamic yield stress (Pa) obtained from

the 3rd period. and τ2.p dynamic yield stress obtained from period 2 (Pa).
In order to perform the second method, which is the static approach, the mixture was

left for 30 s immediately after the dynamic measurements. Then, initial static measurements
were carried out at a constant shear rate of 0.02 s−1 for 30 s. Immediately after waiting for
480 s, the final static measurements of the mixture were carried out at a constant shear rate
of 0.02 s−1 for 30 s. Using the SYS values obtained as a result of this test, the structural build-
up (Athix) of the mixture was determined with the help of Equation (5). Figure 4b shows the
procedure for determining the SYS required to calculate the Athix value. Accordingly, the
highest shear stress obtained from the shear stress–time graph of the mixture was recorded
as the SYS of the mixture. The Athix value of the FR-3DPC mixture was calculated using
the SYS obtained from the data in the 5th and 7th periods.

Athix =
τs,f − τs,i

td
(5)

Here,
Athix structural build-up (Pa/s), τs,f SYS value (Pa) obtained from the 7th period, τs,i

SYS value (Pa) obtained from the 5th period, and td represents the duration time (480 s).
As is known, the typical shear-stress behavior of cementitious systems under a con-

stant shear rate begins with a rapid increase to a maximum value (τi), followed by a
gradual decrease until it reaches the equilibrium value (τe). It was reported by Qian and
Kawashima [51] that this situation is associated with thixotropy. A number of theories have
been proposed to assess thixotropy and explain the exponential decline of shear stress over
time. In this study, in the 3rd method, which is the static approach, the thixotropic behavior
of the mixtures was evaluated with the thixotropic index (Ithix) value calculated by Equation
(6). Figure 4c shows the procedure for determining τi and τe values required to calculate
the Ithix value. Accordingly, the highest shear stress obtained from the shear stress–time
graph of the mixture was recorded as τi and the lowest shear stress was recorded as τe. The
Ithix value of the FR-3DPC mixture was calculated using the τi and τe values obtained from
the data in the 5th and 7th periods:

Ithix =
τi

τe
(6)

where,
Ithix: thixotropic index, τi: maximum shear stress needed to initiate flow, and τe:

steady-state flow.

2.3.4. Hardened State Properties

The 7- and 28-day CS, three-point FS and DS performance properties of FR-3DPC
mixtures were measured as hardened state properties. The strength performance of the
samples was determined by making some changes in the dimensions and loading directions
specified in the EN 196-1 Standard [52]. For this purpose, the samples were loaded on
40 mm × 40 mm surfaces and their CS was determined. Also, the FS of the printed samples
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was determined by performing a three-point bending test on 40 mm × 40 mm × 160 mm
prism samples.

Prismatic samples of 25 mm × 25 mm × 285 mm were produced to examine the DS
behavior of the mixtures. Unlike the curing condition in other tests, the samples were kept
in a cabin with a relative humidity of 55% after 24 h of water cure. The length change of
prismatic samples was calculated according to ASTM C 596-01 as shown in Equation (7):

S =
L1 − L

L0
·100 (7)

where,
S; percent shrinkage of the sample, L1; initial measurement value after being removed

from the curing pool, L; refers to the periodic measurement value and L0 refers to the
effective measurement length.

3. Results and Discussion
3.1. Setting Time of Mixtures

The initial and final setting times of the paste mixtures produced within the scope of
the study are shown in Figure 5. As can be clearly seen from the figure, it is understood
that adding 3, 6, 9, and 12% silica fume to the control mixture generally causes the initial
and finish time to decrease. It was determined that the decrease in setting time was more
obvious due to the increase in the silica fume usage rate. It was also determined that the
decrease in the initial and final setting time of the mixtures was highest in the SF-12%
mixture, and the decrease occurred by 13% and 16%, respectively. It is thought that this
situation is due to the increase in the rate of water consumption due to the increase in
the heat of hydration caused by the increase in the fineness of the silica fume. Similar
statements were also reported by Şahin et al. [53].
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3.2. Rheological Properties and Thixotropic Behavior

DYS, apparent viscosity, and structural build-up values are shown in Tables 6 and 7.
As explained before, the DYS and viscosity values of the mixtures were calculated with the
data obtained from the 3rd period of the rheological measurement process. The DYS value
decreased by 25% with the addition of 3% silica fume to the control mixture. Similarly, the
thixotropic behavior of the SF-3% mixture was found to decrease by 27, 49, 14, and 11%
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according to the D-SBU, Athix, Ithix in the 5th period and Ithix in the 7th period methods,
respectively. It is thought that this is due to the fact that when energy is applied to the
mixture during measurement, the spherical silica fume particles act as ball bearings and
lubricate the mixture, providing more mobility than mixtures with similar slump values.
Similar results were expressed by [54].

Table 6. Rheological properties of FR-3DPC mixtures.

Mixture
DYS in the
2nd Period

(Pa)

DYS in the
3rd Period

(Pa)

Maximum
SYS in the
5th Period

(Pa)

Equilibrium
SYS in the
5th Period

(Pa)

Maximum
SYS in the
7th Period

(Pa)

Equilibrium
SYS in the
7th Period

(Pa)

Viscosity in
the 3rd

Period (Pa·s)

Control 138.7 143.3 420.06 289.95 641.62 494.88 17.62
SF-3% 142.28 107.11 257.36 205.7 369.12 321.42 24.44
SF-6% 258.14 201.97 573.19 363.84 1055.7 805.26 48.38
SF-9% 306.1 476.63 999.69 615.01 1865.9 1256 42.18
SF-12% 139.9 144.15 461.55 268.53 879.68 671.24 40.06

Table 7. Thixotropic behavior of FR-3DPC mixtures.

Mixture D-SBU Athix (Pa/s) Ithix in the 5th
Period (Pa)

Ithix in the 7th
Period (Pa)

Control 1.03 0.46 1.45 1.30
SF-3% 0.75 0.23 1.25 1.15
SF-6% 0.78 1.01 1.58 1.31
SF-9% 1.56 1.80 1.63 1.49
SF-12% 1.03 0.87 1.72 1.31

It was determined that by adding 6, 9, and 12% silica fume to the control mixture,
the DYS and apparent viscosity values of the mixtures increased by 25–38%, 40–175%,
233–139%, 0.5–127%, respectively. In addition, the thixotropic behavior of FR-3DPC mix-
tures generally improves (increases) with the increase in silica fume content in mixtures
with silica fume addition above 3%. The highest increase in thixotropic behavior compared
to the control mixture was obtained in the SF-6% and SF-9% mixture and the Athix method.
In a similar study involving SF by [55], it was reported that SF has an optimum usage
rate on its rheological properties. It was declared by the authors that substituting up to
10% of cement with SF increases the buildability of 3D printable concrete mixtures by
providing higher SYS without affecting their extrudability. It was emphasized that silica
fume addition has two different effect mechanisms on the flow performance of cementitious
systems [56]. On the one hand, silica fume improves the flow performance of mixtures by
acting as a ball bearing due to its spherical shape. However, on the other hand, since it is
very thin, it increases the surface area in the matrix, causing an increase in internal surface
forces [57]. It was reported that this situation causes the concrete to become more cohesive
and the DYS and viscosity value of the mixture to increase [58]. It was also understood
from the experimental results that the first mechanism was more dominant when silica
fume was used at low dosage, and the second mechanism was more dominant when it was
used at a higher rate.

It was emphasized in the literature by various researchers [59,60] that concretes pro-
duced using SF are stickier and more difficult to segregate than normal concrete, even in
flowable concretes. The reduction in segregation tendency is known to be an important
parameter for mixtures with high fluidity, such as 3D printable concrete mixtures.

It was determined that pumpability and extrusion properties are positively affected
by adding a small amount of SF to the 3D printable concrete mixture. In a study by
Inozemtcev [61], the use of SF in 3D printable concrete mixtures was found not only
to increase the CS and ultimate working capacity by 53% and 88%, respectively, but
also to allow the creation of a highly mobile structure. In another study by [62], it was
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determined that the use of 10% SF in 3D printable geopolymer concrete mixtures improved
structural build-up rates that would meet the rheological requirements of 3D printing
in the flocculation and polycondensation stages. In another study by [63], the effect of
SF usage rate change (4, 8, 12, and 16%) on the rheological properties and interlayer
bonding strength of 3D printable concrete mixtures was examined. With the increase in
SF usage rate, the initial yield stress value of the mixtures increased, and the thixotropic
behavior was positively affected. However, increase in the use of SF from 12% to 16% did
not have a significant effect on the rheological properties of the mixtures. Additionally,
it was emphasized by the authors that with the increase in the use of SF, the interlayer
adherence increased by 40% due to the yield stress of 3DPC not increasing too much. It was
emphasized that, in cases where the workability of the mixture is not negatively affected
by the addition of SF, the interlayer adherence is positively affected.

The correlation between four different thixotropy measurement methods used in this
study is summarized in Table 8. When the data in Table 8 are examined, it is understood
that the methods with the highest r value (0.94) are Athix-Ithix in the 7th period.

Table 8. Relationship between thixotropy measurement methods.

Method D-SBU-
Athix

D-SBU-Ithix in
the 5th Period

D-SBU-Ithix in
the 7th Period

Athix-Ithix in
the 5th Period

Athix-Ithix in
the 7th Period

Ithix in the 5th
Period-Ithix in the

7th Period

Multiple R 0.81 0.50 0.89 0.70 0.94 0.73
R2 0.66 0.25 0.79 0.49 0.89 0.53

Standard Error 0.22 0.32 0.17 0.50 0.23 0.14

The layer width-height and shape-stability values obtained depending on the silica
fume usage rate in the mixtures produced within the scope of the study are shown in
Figure 6. As can be seen from the figure, all mixtures produced are considered suitable in
terms of shape stability. It was determined that the mixtures with the highest SSb and SSh
values were SF-6%, SF-9%, and SF-12%, respectively, and the mixture with the lowest value
was SF-3%. Considering that the SF-3% mixture is the mixture with the lowest dynamic
yield stress, D-SBU, Athix, and Ithix values, it is understood that the rheological properties
and shape stability of the mixtures are highly interconnected. In this case, as a result of the
materials used and the tests performed within the scope of this study, it was determined
that the lower limit of the values of DYS, D-SBU, Athix, and Ithix in the 5th period and
Ithix in the 7th period should be 107.11, 0.75, 0.23, 1.25, and 1.15, respectively, in terms of
shape stability. In addition, it was measured that the SF-9% mixture, which had the highest
values in terms of DYS, D-SBU, Athix, and Ithix in the 5th period and Ithix in the 7th period,
had a SSb value of 99.5%. In this case, it was determined that the optimum value in terms
of rheological properties and thixotropic behavior belongs to the SF-6% mixture, and the
shape stabilities of mixtures with a value above this value are negatively affected. When the
relationship between shape stability and rheological properties and thixotropic behavior
was examined (Table 9), it was understood that SSb was most affected by the viscosity of
the mixture and least affected by the D-SBU value. It was seen that SSh was most affected
by the Ithix in the 5th period value and least affected by the D-SBU value.
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Table 9. Relationship between rheological properties and shape stability.

Method SSb-DYS in the
3rd Period

SSb-Viscosity in
the 3rd Period SSb-D-SBU SSb-Athix

SSb-Ithix in the
5th Period

SSb-Ithix in the
7th Period

Multiple R 0.53 0.82 0.30 0.73 0.72 0.69
R Square 0.29 0.67 0.09 0.54 0.52 0.48

Adjusted R Square 0.05 0.55 −0.21 0.39 0.37 0.30

Method SSh-DYS in the
3rd Period

SSh-Viscosity in
the 3rd Period SSh-D-SBU SSh-Athix

SSh-Ithix in the
5th period

SSh-Ithix in the
7th period

Multiple R 0.53 0.80 0.48 0.79 0.96 0.78
R Square 0.28 0.64 0.23 0.62 0.92 0.61

Adjusted R Square 0.04 0.52 −0.02 0.49 0.90 0.48

3.3. Hardened State Properties
3.3.1. Compressive Strength

The 1, 2, 7, and 28-day CS results are shown in Figure 7. According to the 1- and 2-day
compressive strength of the produced mixtures, it was determined that the use of silica
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fume generally caused the compressive strength value of the mixtures to decrease compared
to the control mixture. Similarly, in a study conducted by Özen et al. [64], it was found that
the use of silica fume caused the 1-day strength of the mixtures to decrease. It was reported
that this situation was due to the decrease in the amount of cement. CS performance was
positively affected by the addition of silica fume to the control mixture at 7 and 28 days.
This behavior became even more pronounced with an increase in the silica fume usage rate
up to 9%. It was seen that by adding 3, 6, 9, and 12% silica fume to the control mixture, the
28-day CS values of the mixtures increased by 15, 25, 27, and 6%, respectively. The strength
performance in cementitious systems is positively affected due to the physico-chemical
effect created by the addition of SF [65]. It was reported by various researchers that the
use of SF increases the homogeneity in the cement paste and reduces the number of large
pores due to the higher fineness value (physical effect) [66]. In addition, it increases the
strength performance by creating a denser structure due to the increasing C-S-H phase
as a result of the chemical pozzolanic reaction [67]. The increased strength performance
as a result of the addition of SF is due to the stronger interfacial transition zone (ITZ) in
mixtures with SF [68,69]. It was emphasized that this enhanced bond results from the
transformation of CH, which tends to form on the surface of aggregate particles, into C-S-H
in the presence of reactive silica. In a study conducted by Siddique [70], it was emphasized
that the use of SF increased the strength value of the system by strengthening the cement
paste–aggregate bond and creating a less porous and more homogeneous microstructure in
the interface region. In another study [71] in which the effect of the use of SF on the strength
properties of fibrous concrete mixtures was investigated, it was reported that the strength
performance increased with the use of fiber. It was emphasized that this situation was due
to the more homogeneous distribution of the fibers in the matrix with the addition of SF.
Additionally, it was reported by many researchers that fiber-matrix adrenaline increases
with the addition of SF, especially in fiber-containing mixtures [72].
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Figure 7. The 7- and 28-day CS results of FR-3DPC mixtures.

It was interpreted from the results that there was an optimum silica fume usage rate
in terms of the strength performance of the mixtures. In this study, it was previously
emphasized that the optimum usage rate is 9%. This is due to the fact that the length
change due to DS is also high in mixtures with high amounts of silica fume. Similarly,
it was declared by many researchers that the optimum usage rate of SF for conventional
concrete is 10% [56]. It was emphasized that this situation is due to the high fineness
value of SF and the formation of a more porous structure as a result of increasing the risk
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of agglomeration formation by increasing the water requirement when used above the
optimum rate [56,57]. It was reported that the use of SF significantly increases the height
change caused by DS at the early ages [73]. In a study conducted by [55], the effect of
changing the SF usage rate on the CS of 3D printable concrete mixtures was examined. It
was determined that the CS values of mixtures containing 5% and 10% SF were lower than
the control mixture. Researchers stated that fly ash is the parameter that determines the CS
of the samples in mixtures containing SF and fly ash [74].

3.3.2. Flexural Strength

The 1, 2, 7, and 28-day FS results of the mixtures are shown in Figure 8. It is understood
from the figure that, contrary to the trend in CS values, the change in silica fume usage
rate has a different effect on the FS value of FR-3DPC. It is thought that this is due to the
fact that the pressure and flexural test setups are different, and the FS is more sensitive
to microcracks caused by shrinkage. It was found that the addition of silica fume to the
control mixture did not have a significant effect on the 7-day FS of the mixtures, while the
flexural strength of the 1- and 2-day mixtures generally caused a decrease. However, the
28-day FS of the mixtures was negatively affected by increasing the silica fume usage rate.
It was measured that by adding 3, 6, 9, and 12% silica fume to the control mixture, the
28-day FS values decreased by 2, 4, 11, and 28%, respectively. This is due to the increase
in length change due to shrinkage during early drying because of the high fineness value
of silica fume. DS test results of the mixtures proved this claim. In a study conducted
by [75], it was determined that the tensile strength of the mixtures was not significantly
affected by substituting SF at 0, 5, 10, 15, 20, and 25% of the cement weight. However, in
another study conducted by [76], it was seen that the increase in the use of SF increased
both the CS and FS of cementitious systems. Similarly, in a similar study conducted by [77],
it was found that the tensile strength of cementitious systems was not affected by 8% SF
substitution. However, researchers reported that the pozzolanic and filling effect of SF
improves especially the CS properties of cementitious systems.
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3.3.3. Drying-Shrinkage Performance

Cracks in cementitious systems generally develop over time due to various reasons
such as plastic shrinkage during pre-hardening as well as DS in hardened concrete. In
future time, these cracks negatively affect the permeability properties of concrete, causing
a decrease in durability performance [78]. The DS performance of FR-3DPC mixtures is
shown in Figure 9. Not surprisingly, while the shrinkage-induced length-change increase
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rate of the mixtures was high in the first days, this rate decreased over time. The length
change due to DS increased with the addition of silica fume to the control mixture, re-
gardless of the silica fume usage rate. It was determined that by adding 3, 6, 9, and 12%
silica fume to the control mixture, the length change due to DS increased by 0.4, 5, 15,
and 38%, respectively. Shrinkage in cementitious systems is a physicochemical process,
and it was emphasized that hydration reactions begin with the hydration of the mixing
water [43]. Capillary voids form within the cement paste as it begins to harden. After
this stage, hydration reactions continue with the recall of pore water. A physical effect
dominates the shrinkage of spaces that lose water. On the other hand, it was reported that
structural shrinkage accelerates during the period when the heat released during hydration
development is highest [43]. It was found that silica fume is effective in early DS due to its
very high pozzolanic activity and fineness mechanism, and that the increase in the amount
of use negatively affects the DS performance. As it is known, the increase in the amount
of silica fume usage seriously affects the DS behavior of cementitious systems. However,
this effect is in complex balance. In the literature, it was understood that the effect of SF
use on the performance of concrete varies depending on the amount of use, the type and
amount of cement used, the amount of fiber use, the amount of aggregate, and the chemical
additives employed [72]. When previous studies were examined, it was seen that SF was
generally used to improve the performance of cementitious systems strengthened using
polypropylene [56]. In the study conducted by [68], cement was substituted with 10% SF to
provide high strength and durability properties in cementitious systems where polypropy-
lene and steel fiber were used as a hybrid. It was found that the use of polypropylene fiber
and SF causes significant decreases in the water absorption of concrete. It is thought that
this situation may also positively affect the DS values.
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4. Conclusions

As a result of the experiments, the following conclusions were obtained:

1. The measured DYS value and thixotropic behavior decreased with the addition of 3%
silica fume to the control mixture.

2. DYS and apparent viscosity values of the mixtures generally increased with the
addition of 6, 9, and 12% silica fume to the control mixture.

3. The thixotropic behavior of FR-3DPC mixtures generally improved with the increase
in silica fume content.

4. The highest increase in thixotropic behavior compared to the control mixture was
obtained in the SF-6% and SF-9% mixture and the Athix method.

5. It was found that the methods with the highest Multiple R value (0.94) were Athix-Ithix
in the 7th period.
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6. It was determined that the lower limit of the values of DYS, D-SBU, Athix, and Ithix in
the 5th period and Ithix in the 7th period should be 107.11, 0.75, 0.23, 1.25, and 1.15,
respectively, in terms of shape stability.

7. It was apparent that adding silica fume generally caused the initial and finish time
to decrease.

8. It was found that the use of silica fume generally caused a decrease in the 1- and 2-day
compressive strength of the mixtures.

9. It was shown that the addition of silica fume to the control mixture generally caused
a decrease in the 1- and 2-day flexural strength of the mixtures.

10. The 7–28-day compressive strength values of the mixtures increased by adding 3, 6, 9,
and 12% silica fume to the control mixture.

11. The 28-day flexural strength of the mixtures was negatively affected by increasing the
silica fume utilization ratio.

12. Adding 3, 6, 9, and 12% silica fume to the control mixture caused the length change
due to drying-shrinkage to increase by 0.4, 5, 15, and 38%, respectively.
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