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Abstract: This review presents polyurea (PU) synthesis, the structure–properties relationship, and
characterization aspects for ballistic protection applications. The synthesis of polyurea entails step-
growth polymerization through the reaction of an isocyanate monomer/prepolymer and a polyamine,
each component possessing a functionality of at least two. A wide range of excellent properties such
as durability and high resistance against atmospheric, chemical, and biological factors has made
this polymer an outstanding option for ballistic applications. Polyureas are an extraordinary case
because they contain both rigid segments, which are due to the diisocyanates used and the hydrogen
points formed, and a flexible zone, which is due to the chemical structure of the polyamines. These
characteristics motivate their application in ballistic protection systems. Polyurea-based coatings
have also demonstrated their abilities as candidates for impulsive loading applications, affording
a better response of the nanocomposite-coated metal sheet at the action of a shock wave or at the
impact of a projectile, by suffering lower deformations than neat metallic plates.

Keywords: polyurea; composites; ballistic protections; step-growth polymerization

1. Introduction

Polyurea (PU) polymers were first mentioned in the literature in 1948, when authors
compared the thermal properties of different polymers/fibers [1,2]. However, despite the
patent application of Bayer in the 1950s [3,4], polyurea received real, intense commercial
attention in the late 1980s, following the efforts made by Barton and Schlichter [5] and
Texaco Chemical Company [6], which aimed to develop polyurea as a complementary
use of their patented raw material known as Jeffamine®. Polyurea synthesis entails step-
growth polymerization through the reaction of an isocyanate monomer/prepolymer and a
polyamine, each one possessing a functionality of at least 2, in accordance with the reaction
presented in Scheme 1. The advantage of this reaction is that it does not require heat or
a catalyst [7].

Commercial polyurea formulations differ according to the amine resin composition,
which consists of a long-chain diamine (soft segment), a short-chain diamine (chain exten-
der), and the diisocyanate component [8]. One of the key ingredients in the production of
polyurea is represented by isocyanates, which can be categorized as aliphatic, aromatic,
bifunctional, or heterobifunctional by nature. Toluene diisocyanate (TDI), 4,4’-diphenylene
methane diisocyanate (MDI), naphthalene diisocyanate (NDI), and p-phenylene diiso-
cyanate (pPDI) are examples of aromatic isocyanates used for obtaining polyurea coatings.
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The most commonly used aliphatic isocyanates are 1,6-hexane diisocyanate (HDI) and
isophorone diisocyanate (IPDI). High-molecular-weight amine-terminated polyethers are
employed in polyurea synthesis, but also low-molecular-weight amines, e.g., diethylen-
etriamine (DETA) and triethylenetetramine (TETA), are frequently utilized as chain ex-
tenders for aliphatic polyurea, while diethyl-toluenediamine (DETDA) or dimethylthio-
toluenediamine (DMTDA) is included in the formulations for aromatic polyurea. Aromatic
amines and the compounds that possess secondary amine functionalities slow down the
polymerization reaction remarkably [8], allowing the processability of the reaction mixture
and an easier application of the coating on the targeted substrate.
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Polyureas are amongst the most advantageous materials in the coatings industry and
are used in a variety of sectors due to their exceptional adherence to a wide range of surfaces,
fast drying time, chemical resistance, and low flammability. The applications of polyurea
include use as materials for wood, concrete, and steel coating with anticorrosive and scratch-
resistant properties. This type of polymer can be utilized both for indoor and outdoor
products resistant to weathering and UV degradation and displays adhesive properties
that facilitate its application. Furthermore, polyurea display good resistance properties
to different chemical reagents, oils, etc. [9]. Polyurea has a complex mechanical reaction
under both static and dynamic large-strain loading situations, which can be attributed to
its hierarchical microstructure [10].

Pure polyurea coatings constitute optimal insulation layers, making polyurea linings
one of the best options for flooring in buildings, with numerous benefits [8]. Due to their
many uses, including in parking lots, halls, swimming pools, factories, and coatings for
sport areas (such as outdoor playgrounds with shock absorbers), polyurea linings are highly
valued for their exceptional mechanical properties, wear resistance, and lack of sensitivity
to moisture during the curing process. The polyurea coating application processes fall into
two categories: hot polyurea and cold polyurea. The pure form of polyurea is called hot
polyurea, while cold polyurea, sometimes referred to as hybrid polyurea, is a mixture of
polyurethane and polyurea. Hot polyurea is utilized for specialized and industrial uses
(such as construction applications), while cold polyurea is typically used for domestic
applications. The utilization of complex equipment is not necessary when applying cold
polyurea. The application of the coating can be carried out with standard equipment like
rollers. However, pure polyurea must be applied using certain tools that provide heat and
allow spraying. Many applications, such as corrosion protection, lining, membranes, and
sealants, use this technique because of the unique curing profile and exceptional qualities
of the polymeric film [8].

Some of the general characteristics of typical polyurea are presented in Table 1 [8].
The US polyurea market is experiencing continuous development; the evolution for

2020–2023 and the prediction up to 2030 are presented in Figure 1 [11].
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Table 1. Performance characteristics of typical polyurea coatings.

Parameter Value Range

Tensile strength, MPa 7.5–27.5

Shore hardness A20–D65

Elongation, % 20–1000

Modulus, MPa 3.4–13.8

Water absorption, % 5–16

Abrasion resistance, mg weight loss 6–70

Impact resistance, in kg 25–90
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2. Polyurea Coatings for Ballistic Protection Applications
2.1. Overview

One of the most important applications of polyurea coatings is represented by ballistic
protection [12–14]. This is motivated by the existence of the present conflict areas. Ballistic
protection is frequently necessary for troops, police officers, and general security person-
nel. Ballistic protection includes apparel, vests, armors, and helmets, but also structural
reinforcement for vehicles [15].

The development of the formulation of a composition for the polyurea copolymer and
the mechanisms that arise during the detonation, deflagration, and impact moment should
be understood.

Nonlinear, high-amplitude, extremely short-lived acoustic pressure waves are known
as shock waves. Debilitating health effects arise from blast-induced traumatic injury caused
by exposure to high-energy explosives that generate shock waves [16]. Innovative methods
for shock wave energy dissipation (SWED) must be developed because conventional
impact-absorbing materials fail to attenuate shock waves adequately. Commercial polymers
with microphase-segregated hard and soft domains, such as polyurea, represent the state-
of-the-art materials for SWED nowadays. Impact-induced glass transitions, dynamic
hydrogen bonding, and wave scattering at hard/soft interfaces have all been associated
with the exceptional dissipative performances of polyurea matrix [17–19]. Similar to the
hard/soft domains of polyurea, semicrystalline materials like the ultra-high-molecular-
weight polyethylene (UHMwPE) fiber branded as Dyneema® have amorphous/crystalline
boundaries that can dissipate shock waves [20].

Relatively recent studies [21,22] sustain that the explosion shock wave determines
a reordering at a molecular level; thus, the molecular rearrangement and neutralization
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appear to be events dominated by energy dissipation during impact. This arrangement
process is associated with a viscoelastic dissipation of the deformation rate [2], leading to
improved mechanical properties and diminished effects of the stress rate and impedance
mismatch between support and polymer coating [23] (Scheme 2).
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Scheme 2. Schematic illustration of the shock wave mitigation effect of polyurea coatings (adapted
from [2]).

A significant amount of research was conducted on the energy dissipation mechanism
of polyurea coatings under the blast overpressure effect. However, there is a relatively
small number of published papers that explore the behavior of polyurea-coated metallic
substrates subjected to localized loads generated from bullet impact. When subjected to
high-velocity impact, polyurea coatings could improve the penetration/fragmentation
resistance of the underlying substrate, depending on the following parameters: thickness of
the polyurea coating [24], number of layers and configuration of the composite, dissipation
of the localized shock wave (Scheme 3) through multiple reflections as it traverses the
composite [25], Tg and a viscoelastic transition of the elastomer to its glassy state due to
the localized loading resulting from the impact of a high-speed projectile [23], dynamics of
hard/soft segments and hydrogen bonding [26,27], etc.
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Youssef [29] tested sandwich structures comprised of 1–2 mm thick polyurea layers as
an inner layer and glass, acrylic, polyurethane, Al, steel, and PMMA panels as outer layers
to evaluate the influence of the substrate on the polyurea response to dynamic loadings.
The transmitted stress wave amplitude was greatly decreased in both metallic polyurea
sandwich structures due to a considerable impedance mismatch between polyurea and
metal substrate, which effectively confined the stress wave within the incident substrate.
In contrast, a resonance phenomenon was observed when the polyurea layer was placed
between the acrylic or polycarbonate plates [29]. Two mechanisms have been reported to
explain the stiffening effect induced by the presence of a polyurea as an elastomeric coating
for steel plates subjected to impact: (i) its high energy absorption capacity due to resonance
between the polymer segmental dynamics and the impact frequency (approx. 10−5 s) and
(ii) lateral spreading of the force applied due to transient hardening of the coating due to
its transition from rubbery to glassy state [30].

2.2. Structure–Properties Relationships

The initial microstructure of polyurea, as well as microstructural changes during
deformation, has a significant influence on its mechanical properties [31].

By careful selection of the components, particularly by adding chain extenders to the
amine co-reactant side of the formulation, the mechanical properties of polyurea can be
adjusted. The establishment of urea linkages next to one another is promoted by chain
extenders, which leads to the development of H bonds in the hard segments. Even though
both aliphatic and aromatic chain extenders are frequently utilized, it seems that the ideal
ratio of the two drives the developing macromolecule to orient in a way that promotes
the best possible H bonding. The high polarity of the oxygen atoms, and the hydrogen
in the urea functional group, determines the formation of hydrogen bonds between the
polymer chains, thus explaining why the polyurea copolymers display two Tg domains, in
correlation with the microphase segregated structures they contain. The lower Tg value is
usually specific to the polyamine block (soft segment), while the higher value corresponds to
the isocyanate block (hard segment) that is incorporated in the first (Scheme 4) [32–34]. The
chemical incompatibility between the hard and soft segments is generally acknowledged
to be the cause of microphase-separated structure formation [35–37]. If the segments are
just mixed, this incompatibility could lead to macrophase separation. Copolymerization,
on the other hand, results in microphase-separated morphology by introducing covalent
linking between segments that avoids macroscopic phase separation. The hard domain is
often formed by the hard segments self-assembling. However, microphase separation is
typically not fully achieved, and some hard segments may be trapped or scattered within
the domains of soft segments [38]. A symmetric structure of the diisocyanate can facilitate
the self-assembly of the hard domains [39]. The influence of the diisocyanate type on
the properties of polyurea is presented in Table 2 [40]. For the presented data (Table 2),
it is evident that polyurea based on symmetric diisocyanates have much greater tensile
strengths in comparison to those based on unsymmetric diisocyanates. Thus, compared
to its homologs based on PPDI, HDI, and CHDI, polyurea based on MPDI, IPDI, and TDI
demonstrated much lower tensile strengths. Also, polyurea based on CHDI showed the
maximum tensile strength value of 30 MPa.

Hydrogen bonding is critical in the generation of hard domains and microphase seg-
regated structures. Monodentate hydrogen bonding typically characterizes a disordered
phase separation. The cohesive strength of the bidentate hydrogen bonding interaction
in urea is substantially stronger than the monodentate interaction, favoring mechanical
straightening in polyurea [41]. The degree of the tightly ordered hydrogen bond network
inside the hard domains and the long-range connectivity of the hard domains can be corre-
lated with stiffness, strength, and high energy dissipation during large deformation [42].
However, a high hardness is not desirable since the slow hard segment dynamics during
large deformation (resistance to blast testing) will cause material failure by not efficiently
dissipating the stress [43].
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Table 2. Tensile properties of poly(ether urea) formed by stoichiometric reaction of amine termi-
nated poly(tetramethylene oxide) (Mn = 1000 g/mol) and different types of diisocyanates (adapted
from [40]).

Isocyanate Type Hard Segment Content
(wt. %)

Tensile Strength
(MPa)

Ultimate Elongation
(%)

Isophorone diisocyanate (IPDI) 16.8 7.15 1070

Bis(4-isocyanatocyclohexyl)methane (HMDI) 19.3 19.6 925

2,6- and 2,4-toluene diisocyanate (TDI) 13.7 12.3 760

p-diphenylmethane diisocyanate (MDI) 18.5 16.9 670

1,3-phenylene diisocyanate (MPDI) 12.7 5.4 700

1,4-phenylene diisocyanate (PPDI) 12.7 19.5 540

1,6-hexamethylene diisocyanate (HDI) 13.2 24.7 760

1,4-cyclohexyl diisocyanate (CHDI) 13.1 30.0 980
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The hard segment dynamics significantly slow down due to the hydrogen bonding,
which causes the urea groups to be arranged head to tail (Scheme 5) [42,44]. Therefore, the two
glass transition temperatures of polyurea and, consequently, the hydrogen bonding pattern
are closely correlated with the existence of the microphase-segregated structure, which is
composed of hard nanodomains enclosed in a soft (elastically compliant) matrix [2,45–47].
The existence of one or two glass transition temperatures in polyurea matrices is attributed to
the degree of segregation of nanodomains, which depends on the volume fraction of hard
segments [45] and, subsequently, on the length of the aliphatic chains forming the soft regions,
and therefore also on the average distance between the hard nanodomains, which decreases
for shorter aliphatic chains. In general, the lowest glass transition is assigned to the aliphatic
chains which possess a higher mobility because they are not in the proximity of the hard
nanodomains, and the second glass transition temperature corresponds to the chains that have
a restricted mobility due to their closeness to hard segments. The stiffening and crosslinking
attributes of the hard domains perform as impediments that restrict the mobility of the soft
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segments in the vicinity of the interface, changing their dynamics [27,48]. To guarantee that the
material offers great strength while being able to withstand significant deformation, prevent
structural damage, and lower the fragmentation rate, the ratio of hard to soft segments in
polyurea should be rationally adjusted [2]. The stiffness of the polyurea changes as the hard
domain content increases [49]. Chen et al. [50] studied the two-phase morphology of polyurea
within the range 20–80 wt. % of hard segment concentration and showed that, at hard segment
concentrations higher than 50–60 wt. %, due to the higher degree of phase mixing in high
hard segment concentrations, the polyurea matrix tends to become brittle. The stiffness of the
hard domain can be attributed to hydrogen bonds between the C–O groups in urea and ether
and the N–H group in urea, as well as potential π–π interactions between adjacent aromatic
moieties [51]. The amount of ether–oxygen-bonded N–H diminishes as the hard segment
content increases, which implies that the amount of disordered N–H reduces and the amount
of ordered N–H grows [52]. To enhance microphase separation and decrease the formation
of hydrogen bonds between soft and hard segments, hard segment aggregation is primarily
responsible for the ratio shift in ether–oxygen-bonded N–H. When comparing their effects,
ordered hydrogen bonding arrangements tend to improve the mechanical characteristics more
than disordered hydrogen bonding stacks, which tend to improve self-repairing properties
more. Although ordered hydrogen bonds provide materials’ strength, disordered hydrogen
bonds have low bond energy and dissipate energy as sacrificial bonds [52].
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Scheme 5. Schematic representation of “ordered” and “disordered” hydrogen bonds (adapted
from [42]).

Figure 2 depicts the melting point dependence on the number of carbon atoms in
the repeating unit of various types of polymers capable of forming hydrogen bonds [1].
Polyurea present a higher melting point that can be explained by the hydrogen intermolec-
ular bonding between the polymer chains.

The detonation of an explosive charge causes an overpressure that consists of a shock
wave and a blast wind [53]. The ballistic protection efficiency is mostly determined by
the soft segment qualities rather than hard segment characteristics [54]. In this context,
the contribution of the hydrogen bonds is almost negligible. The mechanism most widely
acknowledged that explains the ballistic efficiency is the “rubber-to-glass second-order
transition” that takes place in the structure of the polyurea at high deformation rates [55]. In
these conditions, the rubbery polyamine tends to have a glassy behavior, and the polyurea
will suffer fragile cracks. The reorientation of the amorphous segments is not possible in
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the presence of the load, and a “freeze out” of the chains takes place (Figure 3). These
deformation rates lead to a process comparable to a high-Tg (but lower than the testing
temperature) polymer segment dispersion, which induces the transition from rubber to
glassy state, dissipating a significant amount of energy [56]. The hard domains act as a
panel (stiffening) as well as the crosslinking between the soft segments, and, in consequence,
the mobility of the polyurea molecule is constrained at the interface, thus modifying the
dynamic behavior of the material [27,48]. Obviously, the rubbery-to-glassy-state transition
influences the adhesion to the support on which the polyurea is deposited [57].
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The ratio between the soft and hard segments is extremely important for the ballistic
shielding capabilities of the material.

Hard Segment (%) =
miso + mext

miso + mext + mamine
× 100 (1)

where miso, mext, and mamine refer to the amount (g) of isocyanate, extender, and amine,
respectively.

The chain extender is usually a molecule with a low molecular weight that has the role
of increasing the molecular weight of the polyurea by establishing strong bonds between
the two types of segments [58]. In addition, it forces the urea bonds closer together and
thus facilitates the formation of hydrogen bonds between the hard segments [21,59,60].

2.3. Specific Properties of Polyurea Coatings Employed for Ballistic Protection Applications

The requirements for polyurea films employed in ballistic protection are as follows: [2]:
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• The ratio between the hard and soft segments must be optimized to guarantee a
high-strength material that can withstand high deformation and impede structural
deterioration;

• They must present high thermal resistance while maintaining their mechanical properties;
• They must display a high elasticity modulus and long plastic stage when subjected

to high-strain-rate loading and also a high loss modulus and storage modulus, thus
dispersing all the energy during the deformation process.

The main brands of polyurea marketed for ballistic protection and their mechanical
properties are presented in Table 3.

Table 3. Polyurea brands marketed for ballistic protection and their mechanical properties [2].

No. Brand Year
Mechanical Properties Details

ReferenceTensile Strength
(MPa)

Elongation
(%)

Tear Strength
(kN/m)

Shore
Hardness

1 EP JS 2008 20.34 350 87.5 [61]

2 Dragon
Shield-BC 2014 11.75 50 - - [62]

3 HM-VK 2016 10 500 - - [63]

4 Link-XS350 2019 22.39 163 - 60 ± 1 HD [64,65]

5 SWD562 2019 16.5 160 - - [66]

6 SPUA 306 2019 24 400 85 85–95 HA [14]

7 SPUA 307 2019 25 45 81 65–75 HD [14]

8 AMMT-53 2020 25 50 90 70 HD [28,67]

9 AMMT-55 2020 35 300 115 65 HD [28,67]

10 AP103 2021 16 450 - - [68]

11 - 2021 18 350 45 90–96 HA [22]

12 Qtech T26 2022 25.4 451.88 75.5 - [69]

2.3.1. Mechanical Properties of Polyurea-Based Films Designed for Ballistic Protection
Applications—Tensile Tests

Predictive design of PU materials, particularly with a focus on structure, becomes
difficult due to the likelihood of both high-pressure and high-strain-rate effects in response
to an explosion or bullet impact [70]. According to Leite et al. [71], ideally, the maximum
elongation should be as high as possible to allow for deformation and energy dissipation
(Figure 4). The stress–strain (elongation) curve presents two domains, an elastic region and
a plastic zone. In the elastic zone, the application of stress leads to continuous deformation
with recovery when the stress is removed. In the plastic zone, the recovery does not happen
when the stress is removed. After entering the plastic stage, the continuous application of
the stress leads to the material breaks [72].

The uniaxial strain was observed to considerably disrupt the phase-separated mi-
crostructure and chain orientation, resulting in a significant slowing and broadening of
the polyurea soft phase segmental relaxation. With increased strain in uniaxial tensile
loading, intersegment microphase separation is greatly diminished, increasing the inter-
mixing contribution to the scattering. Hard segments become more closely linked to the
soft phase when straining polyurea to significant values due to disruptions in the hard
domain orientation [73]. A common technique for investigating hard domain orientation
and any alterations in unlike segment mixing is small-angle X-ray scattering (SAXS). The 2D
SAXS results show that, in uniaxial tensile deformation, the hard domains, after relaxation,
maintain a significant orientation following their displacement by the applied strain [73].
Under compressive loading (hydrostatic compression), the SAXS peak’s loss indicates that
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polyurea rapidly changes from an ordered, phase-separated state to a disordered, inter-
mixed one, as demonstrated by Rosenbloom et al. [70]. Regardless of the deformation type
applied, surpassing the yield stress results in unrecoverable strain and domain orientation.
Additionally, the disruption of the hard domains leads to a decrease in the degree of phase
segregation [73]. Under compression, the mean spacing of the interchain hydrogen-bonded
network within the hard segment domains reduces; in certain situations, it recovers when
the load is removed [70]. Additionally, the length of the soft segment determines the degree
of microphase separation, which, in turn, determines how much the polyurea deforms and
rebounds. Polyurea with a longer soft segment deforms less and recovers more [70].
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2.3.2. Viscoelastic Properties of Polyurea-Based Films Designed for Ballistic Protection
Applications—Dynamic Mechanical Analysis

DMA experiments can be used to better understand the mechanical response of a
polymer under dynamic loadings [74]. Using DMA analysis, the storage modulus can be
determined (E′

p) (which describes the elastic behavior of the polyurea), along with the loss
modulus (E′′

p ) (attributed to the energy dissipation capacity of the material) [75]. Thus, the
complex Young’s modulus Ep can be expressed as:

Ep = E′
p + iE′′

p = E′
p
(
1 + iηp

)
(2)

ηp =
E′′

p

E′
p

(3)

where ηp is the damping loss factor of polyurea.
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The DMA testing results of polyurea sustain the increase in the storage modulus with
the frequency, but there is a decrease with the temperature augmentation, as presented
by Wang et al. [75]. The damping loss factor, at a set frequency, increases with the tem-
perature up to a maximum, after which it decreases. This maximum value represents the
Tg value [76]. It was determined that the soft segment length is directly correlated with
the frequency required to start the dynamic “rubber-to-glass” transition process. The loss
and storage modulus traces visibly shift toward higher temperature as the frequency of
the dynamic loading increases. It should be noted that increasing the testing temperature
has the same effect on mechanical characteristics as lowering the testing speed, i.e., the
frequency associated with dynamic tests. This unique relationship enables the evaluation
of mechanical properties over a broad frequency range by conducting tests at very narrow
frequencies. In general, the goal of DMA investigations of polyurea with varying soft
segment lengths is to determine the frequency required for the material to go through the
dynamic glass transition process. Even when exposed to blast loading conditions, polyurea
typically stays in the rubbery regime; as a result, the coating serves as a “catcher system”
for the resulting fragments. Concurrently, shock-wave-induced hard domain ordering and
crystallization, H bond reorganizations, and shock wave neutralization and/or capture all
enhance the capacity of polyurea to withstand blasts.

Based on the literature, the high modulus of elasticity of polyurea is responsible for
the self-sealing characteristic which causes the coating to close on itself in the event of
penetration damage [77,78]. Self-healing processes known as intrinsic mechanisms occur
inherently and without the involvement of a catalyst or healing agent. These mechanisms
rely on the reversible nature of the chemical bonds located in the polymeric matrix. Phys-
ical interaction and chemical interaction are two other categories of intrinsic processes.
Molecular interdiffusion occurs when molecules interact physically. Dynamic bonding
results from chemical interaction [79].

2.3.3. Thermal Properties of Polyurea-Based Films Designed for Ballistic Protection
Applications—Differential Scanning Calorimetry (DSC) and Thermogravimetric
Analysis (TGA)

Another precise method to determine the value of Tg consists of analysis by DSC [80]
(Figure 5). Both DSC and DMA have their limitations since the Tg value obtained from DSC
is heating rate dependent, and the Tg value obtained from DMA is frequency dependent.
Thus, the glass transition is a kinetic process that is heavily dependent on the technique
used for measurement as well as the process used to evaluate the results. Still, the thermal
lag can be adjusted via calibration in both techniques mentioned [81].

DSC analysis can also provide evidence of the microphase segregation of polyurea
through the presence of two step transitions on the DSC plots.

The heat generated during an explosion may rarely lead to the decomposition of the
polymeric coating designed for ballistic protection applications. The properties of surface
heat transfer resulting from the interaction between the shock wave and boundary layer
are not completely elucidated. Local heat transfer coefficients in the collision area can
increase by up to an order of magnitude, according to the literature [82]. Local heating
and the development of nonuniform temperature fields on the target surface result in large
temperature gradients [82]. Nevertheless, due to the short duration of contact between the
heat produced by a blast and the polyurea coating, only minor localized thermal damage
may happen [82].

The thermal resistance of the polyurea coatings as well as the weight loss domains can
be evaluated using TGA (Figure 6 and Table 4) [83].
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Figure 6. TGA analyses of polyurea samples (heating rate 10 ◦C/min, under nitrogen) (from [83]).

Table 4. The initial decomposition temperature (Tinitial), 50% weight loss temperature (T50%), and
final decomposition temperature (Tend) of polyurea samples (from [83]).

Sample
Decomposition Temperature, ◦C

Tinitial T50% Tend

PU-1 141 452 517

PU-2 155 387 642

PU-3 176 374 446

PU-4 164 409 700

PU-5 177 390 700

2.3.4. Impact Shielding Properties of Polyurea-Based Films Designed for Ballistic
Protection Applications—Dynamic Regime Tests

Fast deformation simulations, as well as impact and shock propagation models, are
becoming increasingly important in design engineering [84]. Hopkinson bar experiments
provide valuable insight into the material reaction when attempting to characterize the
polyurea material performance under a more realistic application setting. The fundamental
test setups for determining the elastic, plastic, and fracture properties of materials under
high strain rates are split Hopkinson bar tests. When there are no shock waves present
in the bars, simple elastic loading can produce high strains or limit loads, depending
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on the device. A specimen is said to be in a well-defined state of uniaxial stress. The
dynamic fracture toughness of brittle materials can be determined using modifications to
the standard Hopkinson bar approach [85]. An experimental setup is presented in Scheme 6
and Figure 7 [80].
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Figure 7. Hopkinson bar setup for experimental testing of the polyurea–polyurethane–MWCNTs-
nanocomposite-coated aluminum plates in dynamic regime: (a) spherical head projectile; (b) sam-
ple before the experiment (coated on the backside with polyurea (PU) or polyurea–polyurethane–
MWCNTs nanocomposite (PU-NC)); (c) image captured during the experiment, at the moment of the
impact of the projectile on the sample (from [80]).

Upon impact, the materials utilized for ballistic protection suffer deformation, or they
can crack or even break. Results of Hopkinson bar experiments are presented in Figure 8
and Table 5.

As can be observed from Figure 8b,c, the polyurea coating brings significant advan-
tages in terms of impact mitigation due to its great ability to dissipate the shock wave. Thus,
the polyurea coating has a critical contribution in maintaining the integrity of the metallic
plate on which it is applied. Moreover, reinforcing the polyurea coating with MWCNTs
(Figure 8b) led to a lower deformation of the coated metallic plate.

Based on the Hopkinson test results, an optimum filler (0.2% wt. % MWCNTs) concen-
tration was determined for the developed polyurea formulation by Toader et al. [80].
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Table 5. Maximum force values obtained during the impact tests with Hopkinson bar (from [80]),
PU-NC2—0.1% MWCNTs; PU-NC3—0.2% MWCNTs; PU-NC4—0.3 %MWCNTs (weight %).

Pressure (Bar)

Aluminum Plate
(Uncoated)

Aluminum Plate
(Coated with PU)

Aluminum Plate
(Coated with

PU-NC2)

Aluminum Plate
(Coated with

PU-NC3)

Aluminum Plate
(Coated with

PU-NC4)

Maximum Force
(kN)

Maximum Force
(kN)

Maximum Force
(kN)

Maximum Force
(kN)

Maximum Force
(kN)

0.2 2.0 2.0 2.1 - -

0.3 2.6 3.0 2.8 2.3 3.0

0.4 2.5 3.6 3.8 3.8 4.0

0.5 1.8 4.1 4.3 5.0 4.4

0.6 - 3.6 3.9 4.1 4.8

0.7 - - - - 4.0
Polymers 2024, 16, x FOR PEER REVIEW 14 of 38 
 

 

 

 

(b) 

 

(c) 

 

(a)  (d) 

Figure 8. Results of Hopkinson bar experiments: (a) maximum force values obtained during the 
impact—Hopkinson bar tests; (b) neat metal; (c) polyurea-coated metal; (d) polyurea–MWCNT-
coated metal (from [80]). 

As can be observed from Figure 8b,c, the polyurea coating brings significant ad-
vantages in terms of impact mitigation due to its great ability to dissipate the shock wave. 
Thus, the polyurea coating has a critical contribution in maintaining the integrity of the 
metallic plate on which it is applied. Moreover, reinforcing the polyurea coating with 
MWCNTs (Figure 8b) led to a lower deformation of the coated metallic plate. 

Table 5. Maximum force values obtained during the impact tests with Hopkinson bar (from [80]), 
PU-NC2—0.1% MWCNTs; PU-NC3—0.2% MWCNTs; PU-NC4—0.3 %MWCNTs (weight %). 

Pressure (Bar) 

Aluminum Plate 
(Uncoated) 

Aluminum Plate 
(Coated with PU) 

Aluminum Plate 
(Coated with 

PU-NC2) 

Aluminum Plate 
(Coated with 

PU-NC3) 

Aluminum Plate 
(Coated with 

PU-NC4) 
Maximum Force 

(kN) 
Maximum Force 

(kN) 
Maximum Force 

(kN) 
Maximum Force 

(kN) 
Maximum Force 

(kN) 
0.2 2.0 2.0 2.1 - - 
0.3 2.6 3.0 2.8 2.3 3.0 
0.4 2.5 3.6 3.8 3.8 4.0 
0.5 1.8 4.1 4.3 5.0 4.4 
0.6 - 3.6 3.9 4.1 4.8 
0.7 - - - - 4.0 

Based on the Hopkinson test results, an optimum filler (0.2% wt. % MWCNTs) con-
centration was determined for the developed polyurea formulation by Toader et al. [80].  

3. Synthesis Principles for Tailoring the Final Properties of Polyurea 
3.1. The Influence of Soft/Hard Segment Ratio on the Physical Properties of Polyurea 

As expected, the ratio between the length of the soft segment compared to the length 
of the hard segment directly impacts the physical properties of the synthesized polymers. 
The phase separation at the micro scale (the segregation) represents a key factor determin-
ing the material performances [49,86]. Many outstanding publications in recent years have 
extensively examined polyurea microphase separation, and there is perpetual interest due 
to the properties of the final materials. It is widely considered that the formation of mi-
crophase-separated structures results from hard and soft segmental chemical incompati-
bility. If the blocks or segments are simply blended, an incompatibility may lead to a 

Figure 8. Results of Hopkinson bar experiments: (a) maximum force values obtained during the
impact—Hopkinson bar tests; (b) neat metal; (c) polyurea-coated metal; (d) polyurea–MWCNT-coated
metal (from [80]).

3. Synthesis Principles for Tailoring the Final Properties of Polyurea
3.1. The Influence of Soft/Hard Segment Ratio on the Physical Properties of Polyurea

As expected, the ratio between the length of the soft segment compared to the length of
the hard segment directly impacts the physical properties of the synthesized polymers. The
phase separation at the micro scale (the segregation) represents a key factor determining the
material performances [49,86]. Many outstanding publications in recent years have exten-
sively examined polyurea microphase separation, and there is perpetual interest due to the
properties of the final materials. It is widely considered that the formation of microphase-
separated structures results from hard and soft segmental chemical incompatibility. If
the blocks or segments are simply blended, an incompatibility may lead to a macrophase
separation. When copolymerized, however, covalent bonds are formed between segments,
preventing macroscopic phase separation, resulting in microphase-separated morphology.
The hard segments usually self-assemble into the hard domain. However, the level of
microphase separation is frequently insufficient, and some hard segments are probably
dispersed as small “islands”, trapped in soft segment domains. Both the morphology and
the physical characteristics of the materials are impacted by segmental intermixing within
microphases [35]. In general, adding hard segments to the soft microphase can significantly
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increase the Tg of the soft microphase, which will restrict the use of the elastomers at
low temperatures. Conversely, adding soft segments to hard microdomains will result
in a decrease in the hard microphase temperature (Tg) and will have an impact on the
ordering behavior and crystallization of hard segments [35]. The extent of microphase
separation is dictated by thermodynamic and kinetic factors. Thus, the thermodynamic
factors arise from the differences between the structures of the hard and soft segments,
while the kinetic factors are related to mobility of the segments and viscosity in the system.
The kinetic factors depend on the: (i) polymerization method (use of prepolymers or shorter
molecules); (ii) concentration of the hard segment; (iii) chemical structure and symmetry of
the diisocyanate; (iv) chemical structure of the chain extenders (average chain length and
polydispersity of hard segments); and (v) reaction conditions [87,88].

One of the first studies that dealt with the hard/soft segment ratio [86] presented
the influence of different molecular weights of poly(tetramethylene oxide) (PTMO) on the
separation on the microphase scale and on the morphology and the transition temperatures.
The ratio between the two segments represented by the PTMO of two different molecular
weights, Mn1 = 1000 g/mol and Mn2 = 250 g/mol, was systematically modified followed
by bulk polymerization. The reaction components are presented in Scheme 7.
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Scheme 7. Synthesis of the two PTMO-based (Mn1 = 1000 g/mol and Mn2 = 250 g/mol) polyurea [86].

The ribbon-like glassy hard domain obtained by the self-assembly of the areas present-
ing the urea bond can be identified by AFM, like in the case of the soft segments based on
PTMO (Mn1 = 1000 g/mol) [86]. The overall microstructures were similar for the 100/0,
75/25, and 50/50 copolymer compositions. The hard domains became less evident as the
lower-molecular-weight PTMO percentage increased. The increase in the P250 fraction
up to 50% led to an increase of the mean inter-hard-domain spacing and a decrease in
the extent of hard/soft segment segregation, as revealed by the SAXS (small-angle X-ray
scattering) experiments. There was a further increase in P250 content for predominantly
(25/75) or completely (0/100) disordered materials. Considerable changes in the dynamic
Tg of the soft phase (or dominant mixed phase, in the case of polyurea with a high content
of P250) and E′ and 25◦ were also registered in unlike segment mixing.

3.2. The Influence of the Chain Length on the Mechanical Properties of Polyurea Films

A more recent study [74] highlights the influence of the diamine carbon chain length
on the physical properties of the final material. Scheme 8 presents the structure of the
involved components in the polymerization process.

Tensile strength is inversely related to soft segment length, whereas elongation is
directly proportional. The mechanical properties are the result of the phase separations
at the micro level caused by the heterogeneous dispersion of the hard and soft segments.
The Tg associated with soft segments decreased with their length increase (−43 ◦C for PU
2000 to −10 ◦C for PU 230), whereas the Tg associated with the hard segments remained
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practically constant. The DMA studies revealed that a higher frequency is required to stop
the movement of chains in the soft segments. Consequently, the dynamic glass transition
requires a higher frequency for the longer soft segments (1015 Hz for PU 2000 and 105 Hz
for PU 230) [74].
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The morphology and the dynamic response of a series of polyurea based on MDI and
PTMO (poly(tetramethylene oxide) with different molecular weights were investigated
by Castagna et al. [51]. The authors determined that hard segments self-assembled into
ribbon-like domains for P1000 and P650, while the degree of segregation determined by
SAXS was not complete. The polyurea based on P250 presented only one phase.

Diffuse reflectance spectroscopy (DRS) (also the so-called “modulation spectroscopy”
technique) provides the derivative of the spectral reflectivity (or of the imaginary part of the
dielectric constant E2) with respect to an external parameter [89]. Thus, the dynamic process
α decreases significantly when the molecular weight decreases, highlighting the mobility
decrease in the soft phase that is determined by the dissolution of the hard segments.
With the aid of DRS, two types of relaxation can be identified, one for the phase rich
in soft segments (α) and a slow segmental (α2) process. The α process is present in the
frequency range of the ballistic applications at ambient temperature. Thus, broadband
dielectric relaxation spectroscopy was used to probe the dynamics over a broad frequency
and temperature range [51].

Modifying polyurea by adding reactive chemical motifs, such as hydrolysable groups
or dynamic covalent bonds [90], either on the polymer backbone or serving as crosslinks, is
one strategy to enable the recycling of “unrecyclable” polymers [91]. Similar ideas have also
been successfully applied to polyurea, which were designed to be recyclable, reprocessable,
or healable by adding dynamic covalent hindered urea [92] or acylsemicarbazide [93],
introducing catalysts to increase the bond dynamics, or adding auxiliary weaker bonds.

Ma et al. [94] describe a flexible method for repurposing linear and crosslinked
polyurea, which are extensively employed due to their excellent chemical stability. Di-
vinylogous amide-terminated compounds (Scheme 9) can be produced in good yield by
treating these polymers or their composites with acetylacetone. These compounds can react
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with aromatic isocyanates, and, at high temperatures, the resultant aminoketoenamide
linkages are quite active.
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By incorporating the Diels–Alder dynamic covalent bond, a new crosslinked polyurea
with outstanding recycling and reprocessing capabilities was obtained [95].

3.3. The Influence of the Diisocyanate Structure on the Mechanical Properties of Polyurea Films

Wilkes’s group has studied the influence of the diisocyanate structure on the me-
chanical properties of polyurea [96–98]. Their studies showed that the increase in the
symmetry of the diisocyanate molecule leads to a better packing of the hard domains. Thus,
the increase in the diisocyanate symmetry affords enhanced mechanical properties (high
modulus under ambient conditions (approx. 108 Pa)), and a more rigorous segregation of
the microphase takes place [96]. The “service windows” of all the polyurea were observed
to be both much flatter and greater in breadth compared to their polyurethane analogs,
although both contained nearly the same number of HS (approx. 13 wt. %). This can be
attributed to a higher cohesiveness of the bidentate urea linkages relative to the analogous
monodentate urethane linkages. The careful selection of the type and characteristics of
the diisocyanate is important when attempting to anticipate/control the effect of hard
segment symmetry on the structure–property relationship of polyurea and to tune the
types of linkages established between the HS and SS [96]. Adhikari et al. [99] and Saralegi
et al. [100] studied the influence of the symmetric isocyanate ratio on the mechanical prop-
erties and microphase separation of polyurea. They observed that a higher ordering of
HS caused an increase in microphase separation in the PUs. Young’s modulus, hardness,
and thermal stability all increased as a result. Tensile strength, however, appeared to be
influenced by the degree of crystallinity of the HS as well as the capacity of the soft segment
to generate ordered structures under strain. Joseph et al. [101] investigated the effect of
altering the cis/trans-isomer distribution in poly(ether urethanes) based on 1,4-cyclohexane
diisocyanate (CHDI) and discovered a rise in hardness and melting temperature of HS
when the ratio of trans-CHDI was raised [101].

The 4,4′-methylenebis(phenyl isocyanate) (MDI), 4,4′-dibenzyl diisocyanate (DBDI), and
equimolar combinations of these diisocyanates were employed for polyurea synthesis by
Prisacariu et al. [102]. DBDI can assume a more symmetric conformation because of rotation
around the ethylene bridge, which encourages the creation of crystalline hard domains, in
contrast to MDI, in which the phenyl rings are linked by a methylene bridge [103]. Moreover,
the dislocation of HS by stress was observed to be accompanied by a higher hysteresis.

3.4. The Influence of Crosslinking on the Mechanical Properties of Polyurea Films

Crosslinking and curing are essential approaches to adjust the structure–property
connection in polyurea [9]. It has been reported [9] that the physical crosslinking caused
by intra- and intermolecular bidentate H bonds between the urea links is responsible for
the remarkable mechanical resistance of polyurea. The deliberate addition of a chemical
crosslink can modify the characteristics of polyurea even further. Adding a higher func-
tional amine (functionality > 2) and keeping a small isocyanate excess, or a combination of
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both, are the most common ways to crosslink polyurea/polyurethane. Chain extenders,
curing agents, or crosslinkers are aromatic or aliphatic low-molecular-weight molecules
(amine- or hydroxyl-terminated with a functionality ≥ 2) that react with polyisocyanates
to increase the volume of the segments with lower mobility (HS) to improve the final
properties of the PU and PUR products [104]. Even though both aliphatic and aromatic
chain extenders are frequently utilized, it seems that the ideal ratio of the two drives
the developing macromolecule to orient in a way that promotes optimal H bonding. By
adding both aromatic and aliphatic chain extenders to the formulation, the processability
of polyurea using spray coating technology can be enhanced [59].

Recently, the mechanical relaxation properties of polyurea networks with various de-
grees of crosslinking have been studied. In terms of the crosslinking process, the hydrogen
bonds specific for the hard domains determine the behavior of samples during mechanical
testing. In these systems, rigid domains that are nano-segregated and connected to each
other by flexible chains appear due to hydrogen bonding between urea groups. Different
mechanical constraints to the chain configurations can be imposed by varying the length
of the latter. The segmental motions can be restrained by chemical crosslinking, which
typically induces an increase in the glass transition temperature. Moreover, crosslinking sig-
nificantly increases the chemical resistance of polyurea, evidenced by the reduced swelling
ratio in several organic media [9].

Two distinct segmental relaxations can be distinguished in the less constrained systems;
one is linked to the embedding matrix and is faster, while the other is related to a stiffer layer
that surrounds the hard domains, each of which has a different glass transition temperature.
Because the soft polymer segment has less mobility when it is pulled from both extremes by
the interfacial polymer layer and is well transmitted along the soft segment, these processes
tend to combine into one in the sample with the shortest flexible chain, and the glass
transition temperature of the softer component rises noticeably [105].

The dependence of polyurea properties on the soft segment length was described by
Iqbal et al. [74]. They demonstrated that the length of the soft segment is directly correlated
with the frequency required to initiate the dynamic “rubber-to-glass” transition process.
The optimal length of the soft segments in polyurea induces an elastomeric response at the
high frequencies typical of blast loadings [74].

3.5. The Influence of the Chain Extender on the Mechanical Properties of Polyurea Films

The existence of a chain extender leads to the formation of closer urea bonds favoring
the establishing of bidentate hydrogen bonds. Chain extenders are compounds with a
small molecule presenting a functionality equal to or greater than two which influences the
mechanical properties of the synthesized material.

Due to the immiscibility between the soft and hard segments, a phase segregation
takes place at the micro scale that determines, in the end, the properties [106]. These
systems are comparable to the polymer mixtures, exhibiting excellent adhesion between
the phases, which is due to the formation of hydrogen bonds between the chains [107].
The chain extenders induce the phase segregation processes [108]; either they interfere or
complete the formation of the hard segments [109]. The bidentate hydrogen bonds between
the polyurea units determine the formation of the hard domains, which present a dual
function, physical crosslinking and the reinforcing of the polymeric material [110].

Tripathi et al. [60] highlighted the influence of the molecular weight of the chain
extenders on the properties of the synthesized polyurea. The materials employed and their
properties are presented in Table 6.

The composition of the samples prepared with the components depicted in Table 6
is presented in Table 7. The reactivity of the aromatic chain extender (DETDA) is higher
than that of the aliphatic ones; thus, by controlling the ratio between aromatic and aliphatic
chain extenders, enhanced mechanical properties can be obtained compared to examples
in the literature. The sample PU230Ar-63 was determined to display the best mechanical
properties [60]. To enhance the microphase separation of aromatic polyurea, hydrogen
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bonding and π–π stacking interactions between the aromatic rings can be synergistically
combined [33]. Polyurea elastomers are also made by reacting a new diisocyanate with a
pyrene side chain with poly(propylene oxide) diamine, as reported in a recent study [111].
The tensile strength was increased because of the strong π–π stacking between pyrene
groups and the amino group anchoring effect.

Table 6. Characteristics of components used in polyurea formulations (adapted from [60]).

Component Role Equivalent
Number neq

Viscosity
η30 ◦C

(MPa s−1)

Density
ϱ (g

cm−3)
Structure

SUPRASEC 2054 Major monomer 3.6 880 1.09
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Table 7. Formulations for the polyurea prepared using the components from Table 6 (adapted
from [60]).

Sample Code

Amine (Part per Unit Volume)

HS (%)
Contribution of
Aromatic Chain

Extender (%)
Chain Extender

D-2000
EDA D-230 D-400 DEDTA

PUAr-76 — — — 21.22 78.78 60.86 76

PU230Ar-63 — 5.48 — 17.52 77.00 61.65 63

PU230Ar-36 — 16.41 — 11.05 72.54 63.72 36

PU230Ar-10 — 27.35 — 2.68 69.97 64.84 10

PU230Ar-0 — 31.30 — — 68.70 65.43 —

PU400Ar-62 — — 10.94 17.25 71.81 64.25 62

PU400Ar-47 — — 21.88 13.28 64.84 66.65 47

PU400Ar-33 — — 32.82 9.3 57.88 71.06 33

PU400Ar-19 — — 43.76 5.53 50.91 74.49 19

PU400Ar-0 — — 58.42 — 41.58 79.1 —

PUEDAr-32 a 5.65 — — 9.85 84.50 61.74 32

PUEDAr-0 a 8.65 — — — 91.35 54 —
a Prepared using a batch process.
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The optimized mechanical properties of the polyurea samples are determined by a
modification of the hard/soft segment ratio and also an increase in the vicinity between
the urea linkages induced by the introduction of the chain extenders (Figure 9) [60].
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4. Self-Healing Polyureas

Supramolecular self-healing entails the use of non-covalent bonds and transient
bonds, such as hydrogen bonds, π–π stacking, and metal–ligand coordination bonds,
to generate the network [79,112,113]. This network can then undergo repetitive break-
ing and reformation, allowing multiple healing/repairing events. For dynamic covalent
self-healing, covalent bonds such as disulfide bonds, Diels–Alder reactions, and imine
bonds are used [114,115]. Dynamic chemical crosslinks based on exchangeable disulfide
bonds were produced by reacting diamine chain extenders containing disulfide bonds with
di- or triisocyanates [116,117]. The presence of disulfide bonds causes a decrease in the
strength of hydrogen bonds, which can facilitate their dissociation and, in turn, promote
topological network rearrangement. Furthermore, the use of aromatic disulfides can allow
modification of the hard-to-soft-segments ratio, leading to enhanced mechanical properties
and self-healing characteristics [116].

The reversibility of the physical crosslinking can be enhanced by using chemical
agents that lead to the formation of chemical bonds that assure a higher mechanical and
chemical resistance. The implementation of a chemical crosslinking determines the impos-
sibility of the material recycling, which represents an important drawback; therefore, a
reversible chemical crosslinking (debonding and re-bonding, depending on the external
conditions) [90] would bring multiple benefits. Thus, the incorporation of aromatic disul-
fides in the hard segments and as chain extenders could offer a solution for the recyclability
characteristics [90,118,119].

Li et al. [117] presented the utilization of a diisocyanate with disulfide bonds used as
chemical crosslinker. The synthesis is presented in Figure 10.

To demonstrate the rearrangement of this dynamic network, the dynamic hysteresis
(cyclic stress–strain testing with or without treatment) was registered (Figure 11). When
comparing the first load–unloading cycle test with the second cycle test, which appears
unmodified but it also involves the exchange reaction, network reformation can be observed.
In contrast with the PUM control sample that had an incomplete recovery, the loss registered
being 14%, the PUA demonstrated the ease with which the bond can be reformed in a
dynamic regime.
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without any treatment. N = 2 or 3 means the second or third tensile cycle of PUA and PUM after
heating at 150 ◦C for an hour. NR = 2 and NR = 3 represent the second or third tensile cycle after
recovery at room temperature for 1 h and 24 h, respectively (adapted from [117]).
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A more recent study [119] presents the influence of type of diisocyanate employed
and the chain extender influence on the self-healing capacity of the polyurea. The synthesis
route for the four polyurea samples is presented in Scheme 10.
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Li et al. [119] determined that the structure of the diisocyanate has a greater influence
on the self-healing capacity compared to the disulfide bond. The combination between
steric hindrance due to the isocyanate groups and the existence of disulfide bonds favors
the packing of the hard segments and the self-healing capacity.

5. Polyurea-Based Nanocomposites

The introduction of multiwall carbon nanotubes (MWCNTs) in the polyurea matrix
leads to an increase in the glass transition temperature (Tg) in addition to the enhancement
of the mechanical properties [8]. Materials with mechanical properties that are better than
epoxy resin can be created by using this reinforcing technique [120].

5.1. Polyurea Nanocomposites Based on Functionalized Nanofillers

Carbon nanotubes can be employed pristinely or after prior functionalization. In
a relatively recent study [121], the influence of unfunctionalized nanotubes on polyurea
properties was studied. The nanocomposites exhibited a tensile stress approximately
100 times higher than that of polyurea. The enhancement of the mechanical properties
can be explained by the increase in the crosslinking density determined by the MWCNTs,
which facilitates the formation of hydrogen bonds and secures/locks/immobilizes the
polymer chains.

Gao et al. [122] used MWCNTs functionalized with amino groups, as presented in
Scheme 11.

Using the approach presented in Scheme 11, Gao et al. [122] observed the formation
of a core–shell morphology, demonstrating by TEM analysis the twisting of the polymer
matrix around the MWCNTs. The MWCNTs’ Raman characteristic signals were strongly
attenuated in the presence of the polymer, which confirms their functionalization, while
the SEM analysis revealed the formation of arc, flat, rose flower-like structures, which
constitutes a new insight into supramolecular chemistry assemblies [122].
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Scheme 11. Schematic illustration of the MWCNT functionalization by the in situ polycondensation
approach (A) and the chemical structure of the MWCNT–polyurea obtained using MDI and 1,6
hexamethylene diamine (B) (adapted from [122]).

A more recent study [123] presents the synthesis and characterization of a nanocom-
posite with carbon nanotubes as reinforcing agent which displays self-healing capacity,
making it an ideal candidate for recycling processes (Scheme 12).
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Scheme 12. Schematic representation of the fabrication steps for crosslinked polyurea—(A) obtaining
of crosslinked polyurea by photo-induced polymerization using acrylic acid, 2-(tert-butylamino)ethyl
methacrylate, toluene 2,4-diisocyanate, and polytetramethylene ether glycol (Mn = 1000 g/mol);
(B) schematic illustration of the hydrogen bonds inside the nanocomposite matrix (adapted
from [123]).
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Zhou et al. [123] obtained a polyurea–MWCNT composite with self-healing charac-
teristics and memory shape properties (Scheme 13) by photo-induced polymerization and
hot molding to enhance the compatibility between the functionalized carbon nanotubes
and the polymer matrix [123]. The obtained nanocomposites displayed excellent thermal
properties, including self-healing after near-infrared irradiation. The authors established
that the optimum nanofiller concentration is 1%.
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Another type of functionalization of the carbon nanotubes employed in polyurea com-
posites involved the introduction of oxirane groups by grafting poly(glycidyl methacrylate) to
the MWCNTs’ surface [120], which afforded an efficient dispersion in the polyurea matrix in
conjunction with poly(propylene glycol) bis(2-aminopropyl ether) (PPG) (Mn = 2000 g/mol)
and 4,4′ -diamino diphenylmethane (Scheme 11).

The tensile tests confirmed an important mechanical properties enhancement up to
a filler concentration of 0.2% (weight %), after which a decrease was observed. These
nanocomposites presented a high thermal stability of over 300 ◦C [120].

Jagtab et al. [124] presented the synthesis of microcapsules with the tunable mechan-
ical properties necessary for applications that are sensitive to pressure. MWCNTs are
incorporated in the walls of the microcapsules by polymerization at the interface. The
specific reactions are presented in Scheme 14.
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Layered silicates are another type of compound used to reinforce polyurea, to increase
the Young’s modulus and the elongation. Cai and Song [125] demonstrated that the
macromolecular structure is crucial to reinforcing the polyurea. Thus, the addition of C20
organoclay has a more significant impact on the mechanical properties as the crosslinking
density is higher.
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The excellent resistance to impact and the high thermal resistance are properties that
can be optimized through the use of polyhedral oligomeric silsesquioxane nanoparticles
(POSS) [126]. Also, the polyurea/eutectic composites (those exhibiting negative Poisson
ratio values) can enhance the blast resistance of the specific formulations [8].

The studies were focused on comparative analyses between the different influences of
exfoliated graphene nanoparticles and POSS on the polyurea matrix. Thus, impact traces
were investigated by 3D tomography analysis [127]. The analyses showed that the polyurea
with POSS have a larger number of voids, but the voids have smaller dimensions. Through
computational techniques, the authors showed that the stress is not uniformly distributed;
the voids have an aleatory size and shape.

The existence of the nanoparticles in the polyurea composition affects the segmental
mobility [128,129], which is reflected in the values of the Tg, and subsequently in the
response to the blast impact. The comparative influence of MWCNTs, POSS, and nanoclay
was investigated by Roland et al. [130]. The authors calculated the amount of energy
dissipated by the materials using the peak areas from the DMA analysis. The glass transition
temperature and loss modulus curves obtained by Roland et al. [130] are presented in
Table 8.

Table 8. Glass transition temperatures for polyurea composites with MWCNTs, POSS, and nanoclay
and penetration velocity (V-50) (from [130]).

Coating Tg (◦C) Peak G′′ (Mpa) V-50 a

Neat −68.7 62 1.3

5% Nanoclay −68.7 67 1.29

2% POSS −63.9 76 1.34

1% MWCNT −63.2 62 1.30
Note: a Relative to 7 mm RHA.

The glass transition temperature was not influenced by the introduction of nanoclay,
while MWCNTs determined a similar modification at half the concentration [130]. The
penetration velocity did not vary significantly, except in the case of POSS, which exhibited
an increase explainable by the active participation in the polycondensation reaction [130].

In the case of supersonic projectiles, Dewapriya and Miller presented simulated
ballistics tests of multilayer polyurea/silicon carbide (SiC) nanostructures using molecular
dynamics [131]. Dewapriya et al. [131] demonstrated through a mathematical molecular
dynamics model that the ballistic limit velocity and the specific penetration energy of the
polyurea/SiC multilayers are significantly higher than the experimentally measured values
of other protective materials.

5.2. Self-Healing Nanocomposite Polyurea

Impact-resistant materials are resilient to impact due to their high modulus or ability
to absorb energy (cushion role) [132–135]. Based on this behavior, they can be catego-
rized into two groups: soft materials, such as foams and gels, and hard materials, such
as metals, ceramics, and composites. Taking all these into account, it is possible to create
self-healing polyurea-based protection materials through a proper polymer network de-
sign [136]. Considering that the reaction between the diisocyanate and the polyamine is
quite fast, the application requires special attention or the use of a solvent to decrease the
reaction rate. As a result, controlling the rate of polymerization is a challenge that can be
met by using a secondary amine; however, this reduces the number of hydrogen bonds,
which impacts the mechanical properties. Another way to control the reaction rate is to
use Schiff bases that can block the amine in the absence of humidity (Figure 12) to allow
its release and also facilitate the self-healing process in the presence of water [115]. Thus,
the polyurea materials obtained by using the diamines blocked by Schiff bases present the
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advantage of self-healing capacity and good impact force attenuation coupled with good
tensile resistance [115].
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Figure 12. Components of the one-component polyurea with blocked amines sensible to humidity
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In Figure 13, the self-healing process is quantified as the variation of the materials’
performance with time [79,137]. Thus, the material repairing/regeneration process can
be achieved by the incorporation of the healing agents in microcapsules embedded in
the polymer matrix that release their content upon breaking and restore the chemical
bonding [137]. In terms of the mechanism, the self-healing process can also involve inter-
molecular diffusion [138,139], non-covalent supramolecular interaction [140], or dynamic
covalent bonds [42].
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A very intriguing family of materials with a Tg value significantly lower than room
temperature is polyurethane elastomers. These materials have appealing mechanical and
thermal qualities that make them useful for a variety of applications. In materials sci-
ence and polymer composites, graphenes became the “superstar” nanofiller, demanding
particular attention for both chemical and non-chemical functionalization. The covalent
or non-covalent functionalization of the graphenes is necessary to facilitate the compat-
ibilization between the carbon-based nanofiller and the polymer matrix. The covalent
functionalization is more efficient and can ensure that the nanofiller has a homogeneous
distribution in the polymer matrix. Using a polyisocyanate modified with graphenes, Meng
et al. [141] demonstrated the synthesis of polyaspartic polyurea elastomers (Scheme 15).
In comparison to pure polyurea, the presence of functionalized graphenes of 0.05 vol% of
IP-GNPs resulted in a tensile strength increase of 108.2% and outstanding resistance to
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acidic and alkali corrosion. Thanks to the hydrogen bonding, the final graphene-based
polymer nanocomposite exhibited an 80% healing efficiency after 9 h of treatment at 60 ◦C.
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Scheme 15. Polyaspartic polyurea-functionalized graphene nanocomposites (polyurea/IP-GNP) 
(adapted from [141]). 
Scheme 15. Polyaspartic polyurea-functionalized graphene nanocomposites (polyurea/IP-GNP)
(adapted from [141]).

5.3. Hybrid Polyurea—Polyurethane Matrices from Renewable Sources

A current trend in materials science is to introduce renewable components into the
formulation. Qian et al. [142] presented an example of the utilization of encapsulated
lignin to achieve self-healing characteristics. By this application, it was demonstrated
that the lignin capsules are stable to UV light, which prolongs the reactivity and therefore
increases the lifetime of the polyurea self-healing coatings. The microcapsules are obtained
by reacting a lignin sulfonate presenting a high number of hydroxyl groups with the
isocyanate groups of the prepolymer to generate the shell (Scheme 16).

Polymers 2024, 16, x FOR PEER REVIEW 29 of 38 
 

 

5.3. Hybrid Polyurea—Polyurethane Matrices from Renewable Sources 
A current trend in materials science is to introduce renewable components into the 

formulation. Qian et al. [142] presented an example of the utilization of encapsulated lig-
nin to achieve self-healing characteristics. By this application, it was demonstrated that 
the lignin capsules are stable to UV light, which prolongs the reactivity and therefore in-
creases the lifetime of the polyurea self-healing coatings. The microcapsules are obtained 
by reacting a lignin sulfonate presenting a high number of hydroxyl groups with the iso-
cyanate groups of the prepolymer to generate the shell (Scheme 16). 

 
Scheme 16. Synthesis strategy of the self-healable polyurea based on lignin sulfonate microcapsules 
(adapted from [142]). 

In materials engineering, the synthesis of hybrid polyurea for biobased formulations 
is another current research focus. An example of several studies related to water-borne 
polyurea modified by aniline trimer was developed by Zeng et al. [143]. A hydroxyl-rich 
alkyd intermediate based on biobased linoleic acid along with polyether polyol N-210, 4, 
4′-dicyclohexylmethane diisocyanate, 2,2-Bis (hydroxymethyl) propionic acid, isophorone 
diamine, and an aniline trimer (as a partial chain extender) was used to prepare biobased 
air-drying water-borne polyurea dispersions (Scheme 17). The studies were focused on 
the correlation between the self-healing performance of the biobased air-drying water-
borne polyurea dispersions and paint films and the content of alkyd intermediate and 
aniline trimer [143]. 

Scheme 16. Synthesis strategy of the self-healable polyurea based on lignin sulfonate microcapsules
(adapted from [142]).

In materials engineering, the synthesis of hybrid polyurea for biobased formulations
is another current research focus. An example of several studies related to water-borne
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polyurea modified by aniline trimer was developed by Zeng et al. [143]. A hydroxyl-rich
alkyd intermediate based on biobased linoleic acid along with polyether polyol N-210, 4,
4′-dicyclohexylmethane diisocyanate, 2,2-Bis (hydroxymethyl) propionic acid, isophorone
diamine, and an aniline trimer (as a partial chain extender) was used to prepare biobased
air-drying water-borne polyurea dispersions (Scheme 17). The studies were focused on the
correlation between the self-healing performance of the biobased air-drying water-borne
polyurea dispersions and paint films and the content of alkyd intermediate and aniline
trimer [143].
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Diisocyanates production is continuously increasing considering the market growth
of polyurethanes and polyurea, while the necessities of environment protection and human
health have driven research studies to the synthesis of biobased isocyanates for biobased
polyurea formulations. As an example, Vencorex Chemicals (Saint-Priest, France) released
into the market an aliphatic diisocyanate called Tolonate™ X FLO 100 derived from palm
oil [144]. In Table 9, a list of the most interesting structures for the biobased isocyanates is
presented in accordance with the literature data [144].

Nevertheless, the recycling and reprocessing of polyurea remain important chal-
lenges, especially at temperatures below 100 ◦C. An innovative method for improving the
reuse/recycling of polyurea-based materials was proposed by Wei et al. [95] by introducing
polyurea Diels–Alder capable groups into the structure for the implementation of dynamic
covalent bonds. As a result, the tensile strength and elongation at the break of crosslinked
polyurea could reach up to 15.24 MPa and 529.2%, respectively, keeping the mechanical
properties almost unchanged even after repeated processing. As expected, (Scheme 18), the
synthesis route highlighted the concept of the reactions that involve cyclic destruction and
regeneration steps of a 3D structure.
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Table 9. Biobased isocyanates for biobased polyurea formulations envisaged by Niesiobędzka and
Datta [144].

NCO% Biomass (%) Viscosity
(mPa·s/25 ◦C) Company Ref.

Tolonate™ X FLO
100

13 ± 1 25 140 ± 80 Vencorex

[145]
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Thus, the use of dynamic covalent bonds (based on Diels–Alder cycloadditions or
transesterification) introduces new possibilities for polyurea recycling processes on the one
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hand, while the introduction of biobased components reduces the stress on non-renewable
raw materials on the other (Figure 14).
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must. Thus, the improvement of polyurea-based materials for blast protection will receive 
much attention with the development of novel composites with self-healing and reversible 
crosslinking capacity. The second research direction that will certainly receive an increas-
ing amount of attention is the integration of renewable components to reduce the envi-
ronmental impact of the materials. Considering the current geopolitical situation, the bal-
listic application must receive continuous attention. Nonetheless, environmental consid-
erations must also be considered when synthesizing materials for the future; the use of 

Figure 14. Closed loop from production to recycling achieved by material design—the introduction
of dynamic covalent bonds (based on, for example, Diels–Alder cycloadditions or transesterification)
facilitates the recycling process, while the introduction of biobased components reduces the stress on
non-renewable raw materials (from [148]).

6. Conclusions and Perspectives

Polyureas constitute one of the most important classes of polymers with applications in
different domains such as coatings, adhesives, sealants, and insulation materials. In general,
for many applications, polyurea is preferable to polyurethanes due to a high reaction rate
and some physical properties such as resistance to chemical agents and thermal resistance.
Regarding ballistic applications, there are two large classes of compounds used: the very
rigid ones and the flexible ones. The advantage of the flexible ones is that, after the impact,
they do not respond as violently as the rigid ones. Polyureas are an extraordinary case
because they contain both rigid segments, which are due to the diisocyanates used and to
the hydrogen points formed, and a flexible zone, which is due to the chemical structures of
the polyamines.

The problems that arise during the usage of polyurea consist primarily of the difficulty
in restoring a defect, which can appear on impact, and controlling the reaction rate during
deposition. This aspect was, to a small extent, tackled through the development of self-
healing films, but the mechanical properties are not so important. Thus, the first future
development direction would go towards this area, and the second towards the fully
biobased ones, because we are at a stage where fossil resources are limited, greatly reduced,
and sometimes not environmentally friendly. For this reason, it seems extremely attractive
to create polyurea that are biobased and also have remarkable mechanical properties. Due
to the current conflicts, the use of polyurea from a ballistic point of view is a must. Thus, the
improvement of polyurea-based materials for blast protection will receive much attention
with the development of novel composites with self-healing and reversible crosslinking
capacity. The second research direction that will certainly receive an increasing amount of
attention is the integration of renewable components to reduce the environmental impact
of the materials. Considering the current geopolitical situation, the ballistic application
must receive continuous attention. Nonetheless, environmental considerations must also
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be considered when synthesizing materials for the future; the use of renewable, non-toxic
(isocyanate free) raw materials and the facilitation of recycling and or repurposing must be
at the core of the material design.
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