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Abstract: We constructed phase diagrams of conformationally asymmetric diblock copolymer A-
B melts using the polymer self-consistent field (SCF) calculations of both the dissipative particle
dynamics chain (DPDC) model (i.e., compressible melts of discrete Gaussian chains with the DPD non-
bonded potential) and the “standard” model (i.e., incompressible melts of continuous Gaussian chains
with the Dirac δ-function non-bonded potential) in the χN-ε plane, where χN and ε characterize,
respectively, the repulsion and conformational asymmetry between the A and B blocks, at the A-block
volume fraction f = 0.2 and 0.3. Consistent with previous SCF calculations of the “standard” model,
σ and A15 are the only stable Frank–Kasper (FK) phases among the five FK (i.e., σ, A15, C14, C15 and
Z) phases considered. The stability of σ and A15 is due to their delicate balance between the energetic
and entropic contributions to the Helmholtz free energy per chain of the system, which, within our
parameter range, increases in the order of σ/A15, Z, and C14/C15. While in general the SCF phase
diagrams of these two models are qualitatively consistent, A15 is not stable for the DPDC model at
the copolymer chain length N = 10 and f = 0.3; any differences in the SCF phase diagrams are solely
due to the differences between these two models.

Keywords: Frank–Kasper phases; diblock copolymers; conformational asymmetry; self-consistent
field theory

1. Introduction

Recently, we proposed a model system (referred to as the dissipative particle dynamics
chain (DPDC) model hereafter) that can be readily used in DPDs simulations of conforma-
tionally asymmetric diblock copolymer (DBC) A-B melts and performed the corresponding
self-consistent field (SCF) calculations to study the stability of the Frank–Kasper (FK)
phases formed by such A-B melts [1]. Our SCF phase diagrams of the DPDC model were
constructed in the χN-ε plane, where χN and ε ≡ (bA/bB)2 ≥ 1 characterize, respectively,
the repulsion and conformational asymmetry between the A and B blocks, with bP (P = A,
B) being the effective bond length of the P block at the copolymer chain length N = 10
and the A-block volume fraction in the copolymer f = 0.2 and 0.3; among the five FK (i.e.,
σ, A15, C14, C15 and Z) phases considered, only σ was found to be stable [1]. Since A15
has been reported to be stable in previous SCF calculations [2–4] of the “standard” model
(i.e., incompressible melts of continuous Gaussian chains, CGCs, with the Dirac δ-function
non-bonded potential) [5,6] of A-B melts, to which our DPDC model reduces in a certain
limit of N→∞ [1], here we construct an SCF phase diagram of the DPDC model at N = 20
and f = 0.3, where A15 is also found to be stable, and compare our phase diagrams of
the DPDC model with those of the “standard” model also constructed in the χN-ε plane.
Such comparisons highlight the effects of model differences on the SCF results of these two
commonly used models.

As pointed out in our previous work [1], while the “standard” model has been most
commonly used in the study of block copolymer self-assembly due to its least number
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of model parameters, it simply cannot be used in molecular simulations and also causes
ultraviolet divergence that is difficult to handle in field-theoretic simulations (FTSs) [7].
Given that the mean field approximation of the SCF theory neglects the system fluctuations
and correlations, which are important to the low-molecular-weight DBC melts forming FK
phases in experiments [3,8–24], the only way to unambiguously quantify its consequences
is to directly compare the SCF results with those of molecular simulations or FTSs based on
the same model system, thus without any parameter-fitting.

For the rest of this section, we give a brief overview of the relevant work in addition to
those cited in our recent paper [1], again limiting our discussion to the spherical FK phases
formed in neat A-B melts. The σ phase is reported in a new sample of poly(trifluoroethyl
acrylate)-poly(dimethylsiloxane) by Ryu and co-workers [22], consistent with their previous
work [9,19]; the formation of stable C14 in this system [9,19], however, cannot be explained
by SCF calculations of neat A-B melts. Dong and co-workers synthesized a series of
discrete (i.e., monodisperse) A-B melts with various block lengths, where the A block is
an oligo lactide homopolymer and the B block is an oligo (γ-alkyl-α-hydroxyglutaric acid)
homopolymer [23,24]; they achieved three ε-values (about 2.1, 3.4 and an “even larger”
value) by increasing the side alkyl chain length in the B block [24] and found only σ at
ε ≈ 2.1 [24] but both σ and A15 for larger ε-values [23,24].

Using SCF calculations of the “standard” model, Collanton and Dorfman performed
geometric and thermodynamic analyses and found that a decrease in the A-B repulsion
drives the phase transition from the body-centered cubic spheres to σ, leading to more
polyhedral micelle cores, as well as that from σ to hexagonally packed cylinders as f further
increases [25]. Fredrickson and co-workers reported SCF phase diagrams in the ε-f plane at
χN = 60 for incompressible A-B melts of the “standard” model and of two discrete-chain
(i.e., the discrete Gaussian chain and the freely jointed chain) models at N = 50 with the
Dirac δ-function non-bonded potential [26] (we note that the SCF calculations of A-B melts
using discrete-chain models with the Dirac δ-function non-bonded potential may lead to
some unphysical results [27,28]); increasing χN in the “standard” model (compared to their
previously reported SCF phase diagrams of this model [3]) expands the stable region in
f of A15 into those of σ and cylinders, as well as the stable region in f of σ into that of
body-centered cubic spheres, and replacing CGCs with discrete chains expands the stable
region in f of A15 into that of σ [4]. The latter is also found for the SCF phase boundaries
in f computed by Lequieu, who used a compressible model system similar to our DPDC
model but with the Gaussian (instead of DPD) non-bonded potential, for N = 50 and 100
at ε = 9 and χN = 40, where the stable region in f of cylinders also expands into that of
A15 [29].

Lequieu also proposed the “multi-representation” simulation (MRS) that combines
particle-based (e.g., molecular dynamics, MD) simulation with field-based simulation (e.g.,
SCF calculation or FTS [30]) subject to the constraint that their spatial density profiles are
the same; with his discrete-chain model at ε = 9 and N = 50, Lequieu demonstrated the
usefulness of the MRS for (1) the accelerated equilibration of A15 at f = 0.3 and χN = 40
and (2) the study of single-chain dynamics in σ at f = 0.2 and χN = 40~80 both in MD
simulations by mapping the SCF density profile to particle-based configurations, and
for (3) the free-energy calculation along the evolution of a randomly initialized particle-
based configuration to σ at f = 0.2 and χN = 35 in MD simulations by mapping each
of the configurations taken from the MD trajectory to a field-based representation and
computing the SCF free energy [29]. Note that a cut-off was used for the Gaussian non-
bonded potential and that a particle-to-mesh approach was used to calculate the density
profile in his MD simulation (which was needed to impose the constraint in the above
mapping) [29]; the latter modified the non-bonded potential to be both position-dependent
and anisotropic [31].

Finally, we note two recent reviews on FK phases formed by block copolymers [32]
and by homogeneous soft matter [33] in general.
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2. Models and Methods
2.1. The DPDC Model and Its SCF Calculations

Our DPDC model (referred to as the DPD model in our previous work [1,28]), which is
a compressible system of discrete Gaussian chains with the DPD non-bonded potential, for
conformationally asymmetric diblock copolymer A-B melts was explained in detail in our
recent paper [1]. As also described there, we have extended the newly released C++/Cuda
version [34] of PSCF [35], an open-source code for SCF calculations of the “standard” model
for block copolymer self-assembly, to include our DPDC model. We therefore refer the
readers to our recent work [1] for details.

2.2. The “Standard” Model and Its SCF Calculations

The “standard” model [5,6], which is an incompressible system of continuous Gaussian
chains with the Dirac δ-function non-bonded potential, has been the most commonly
used in SCF calculations of block copolymer self-assembly; we therefore refer the readers
to Refs. [2,3,15] for its SCF calculations and just mention here that in the limit of the
copolymer chain length N→∞, the effective bond length of the P(=A, B) block bP→0 (at
finite R ≡

√
N/6bB, conformational asymmetry between A and B blocks ε ≡ (bA/bB)2 ≥ 1

and bB/rc with rc denoting the range of the DPD potential) and the generalized Helfand
compressibility parameter [36] κ→0, the DPDC model reduces to the “standard” model [1].

We have also improved the numerical performance of PSCF [35]. In particular, we
have implemented the so-called Richardson extrapolated pseudo-spectral (REPS) methods
for solving the one-end-integrated chain propagators from the modified diffusion equations
(MDEs). With R taken as the unit of length, the forward propagator q(r,s), for example, satis-
fies the MDE ∂q

∂s = ε∇2q − ωA(r)q for the normalized chain-contour variable 0 ≤ s ≤ f with
the initial condition of q(r,s = 0) = 1, where ωA(r) is the conjugate field interacting with A
segments at spatial position r and f the A-block volume fraction in the copolymer; the MDE
has the formal solution of q(r, s + ds) = exp

[(
ε∇2 − ωA(r)

)
ds

]
q(r, s). Uniformly discretiz-

ing the chain contour into ns steps each of size ∆s = 1/ns, the 2nd-order pseudo-spectral (PS)
method [37] gives q(r, s + ∆s) ≈ exp(−ωA(r)∆s/2) exp

(
∆sε∇2) exp(−ωA(r)∆s/2)q(r, s),

which has a global error of O(∆s2). Morse and co-workers first pointed out that the error of
the PS method contains only even powers of ∆s and thus proposed a 4th-order method,
which is used in PSCF [35], by linearly extrapolating the two results of q(r,s + ∆s) obtained
via the PS method with the step sizes of ∆s and ∆s/2, respectively, to the limit of ∆s→0 [38].
This is similar to the (composite) trapezoidal rule for numerical integration, the error of
which also contains only even powers of the step size. The Kth-order polynomial extrapo-
lation of the K + 1 results obtained via the trapezoidal rule with successively halved step
sizes to the limit of zero step size then give the commonly used Romberg integration [39],
with K = 1 corresponding to (composite) Simpson’s 1/3 rule. We, therefore, refer to the
PS method and that proposed by Morse and co-workers [38] as the REPS-0 and REPS-1
method, respectively, and have implemented the REPS-K methods for K = 0, . . ., 4. Note that
the REPS-K method has a global error of O(∆s2(K+1)); this requires Romberg integration [39]
of the same (or higher) order to calculate, for example, the volume-fraction field of A
segments, ϕA(r) =

∫ f
0 ds q(r, s)q†(r, s)/q̂(q = 0, s = 1), where q†(r,s) denotes the backward

propagator and q̂(q, s) ≡
∫

dr exp(−iq·r)q(r, s)/V is the 3D Fourier transform of q(r,s)
with q being the wavevector and V the system volume (for example, Simpson’s 1/3 rule
is used in PSCF [35] to match the REPS-1 method), which in turn requires nsf (as well as
ns(1 − f )) to be an integer multiple of 2K.

3. Results and Discussion
3.1. Unit-Cell Discretization and Accuracy of βfc

As explained in our recent paper [1], the SCF equations, including those for the
minimization of the dimensionless (mean-field) Helmholtz free energy per chain βfc, where
β ≡ 1/kBT with kB denoting the Boltzmann constant and T the thermodynamic temperature
of the system, with respect to the (up to six) unit-cell parameters θ, are written as f(x) = 0
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and solved via the Anderson mixing (AM) [40] to an accuracy of |f|max < ε0 [41]. For the
DPDC model, we set ε0 = 10−10 and choose the spatial discretization parameter m = 64
in our SCF calculations, which gives the accuracy of βfc for this model ∆(m) ≡ |βfc(m) −
βfc(m = 128)| < 10−8 in all the cases at χN = 40 (and even smaller ∆ for lower χN); see
Figure 1 of Ref. [1] for details.

For the “standard” model, we set ε0 = 10−6. Figure 1 shows how the accuracy of βfc for
this model, denoted by ∆(m, ns, K = 4) ≡ |βfc(m, ns, K = 4) − βfc(m = 128, ns = 512, K = 4)|,
varies with m and the chain-contour discretization parameter ns for various ordered phases,
including regular-hexagonally packed cylinders (C), body-centered cubic spheres (Sb),
face-centered cubic spheres (Sf) and three FK phases (i.e., σ, A15 and Z), where we use the
REPS-4 method to solve the MDEs. We see that in most cases ∆ decreases with increasing
ns as expected; that ∆ levels off with increasing ns at small m = 32 for σ, A15, Z and Sf
indicates that the error caused by the real-space discretization dominates ∆ in these cases.
Furthermore, the ∆-curves for m = 64 and 128 nearly overlap in all the cases, indicating that
m = 64 gives sufficient real-space discretization for all the ordered phases, the error of which
is smaller than that caused by the chain-contour discretization (at the largest χN-value of
40 used in this work). We therefore also choose m = 64 in our subsequent SCF calculations
of the “standard” model.
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Figure 1. Logarithmic plot of the accuracy in the dimensionless (mean-field) Helmholtz free energies
per chain βfc of (a) σ, (b) A15, (c) Z, (d) Sb, (e) Sf and (f) C at f = 0.25, χN = 40 and ε = 4. The
periodic unit cells of C, σ and all other phases (i.e., A15/Z/Sb/Sf) are uniformly discretized into m2,
2m × 2m × m and m3 grid points, respectively, and the chain contour is uniformly discretized into
ns subintervals. The REPS-4 method is used to solve the MDEs. Note that the same unit-cell size,
chosen to be very close to that in bulk (i.e., minimizing βfc of the corresponding phase), is used for
each phase here. See the main text for more details.

Figure 2 shows how ∆(m = 64, ns, K) ≡ |βfc(m = 64, ns, K) − βfc(m = 128, ns = 512,
K = 4)| varies with ns and K for various ordered phases, where we use the REPS-K methods
to solve the MDEs; note that, since the REPS-K method requires nK ≡ 2K+1 − 1 pairs of fast
Fourier transforms to obtain the propagators in each step along the chain contour (with a
step size of 1/ns), we use nKns as the horizontal axis in Figure 2 in order to compare the
efficiency of various REPS-K methods. We see that in all cases ∆ decreases with increasing
ns as expected, and that the REPS-K methods with K = 3 and 4 are less efficient than those
with K = 1 and 2 (at least for the system parameters used in Figure 2), although the larger
the K-value, the smaller the ns-value (thus the less the GPU memory) required to achieve
a certain ∆. Based on Figure 2, we choose K = 2 with ns = 256 (at f = 0.25), which gives
∆ < 10−5 (at the largest χN-value of 40 used in this work), in our SCF calculations of the
“standard” model; in comparison, ns = 512 is needed for REPS-1 to reach this βfc-accuracy.
Note that since each block must be uniformly discretized into an integer multiple of 2K

subintervals in the REPS-K method, for f = 0.2 and 0.3 studied below, we use slightly larger
ns-values of 260 and 280, respectively, in our subsequent SCF calculations.

Comparing Figure 1 of Ref. [1] with Figures 1 and 2 here, we see that the SCF cal-
culations of the DPDC model can achieve much higher βfc-accuracy than those of the
“standard” model, due to the model differences. In particular, as pointed out in our recent
paper [1], N in the DPDC model is much smaller than the ns (=100~1000) typically needed
to achieve good βfc-accuracy for the “standard” model; SCF calculations of the DPDC
model therefore are faster and use less memory, both by at least one order of magnitude,
than the latter. In addition, βfc of an ordered phase in the DPDC model depends only on
the spatial discretization, making its accuracy much easier to study than in the “standard”
model.
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f = 0.25, χN = 40 and ε = 4 for the “standard” model. The periodic unit cells of C, σ and all other
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is used to solve the MDEs. Note that the same unit-cell size, chosen to be very close to that in bulk
(i.e., minimizing βfc of the corresponding phase), is used for each phase here. See the main text for
more details.

3.2. Phase Diagrams

Figure 3 shows our SCF phase diagrams of the “standard” model in the χN-ε plane
at f = 0.2 and 0.3, where the phase boundaries are solved via Ridders’ method [42] by
equating, to an accuracy of 10−5, βfc of the two phases having the smallest βfc at given ε
and the obtained χN. Table 1 quantitatively compares eight of our phase boundary points
with those obtained by Fredrickson and co-workers [3]; note that their phase diagrams are
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in the χN-f plane at ε = 9 and in the ε-f plane at χN = 40. Our phase boundary points are in
good agreement with theirs, with the largest relative deviation being about 2%. Since they
considered but did not find C14 and C15 to be stable in their phase diagrams [3], we do not
include these phases in our SCF calculations of the “standard” model. On the other hand,
we have included but not found the Z phase to be stable. From Figure 3a, we see that at
f = 0.2, increasing χN expands the stable region in ε of σ into that of Sb, consistent with the
phase diagrams for the “standard” model at χN = 40 [3] and 60 [4] obtained by Fredrickson
and co-workers. From Figure 3b, we see that at f = 0.3, increasing χN < 28.580 expands
the stable region in ε of C into those of σ and A15, but increasing χN > 28.580 expands the
stable region in ε of A15 into that of C; the latter is also consistent with the phase diagrams
at χN = 40 [3] and 60 [4] obtained by Fredrickson and co-workers.
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Figure 3. Phase diagrams of the “standard” model at (a) f = 0.2 and (b) f = 0.3, where “D” denotes
the disordered phase. The periodic unit cells of C, σ and all other ordered phases (i.e., A15/Z/Sb/Sf)
are uniformly discretized into 642, 128 × 128 × 64 and 643 grid points, respectively, and the chain
contour is uniformly discretized into (a) 260 and (b) 280 subintervals. The REPS-2 method is used to
solve the MDEs, and the phase boundaries are solved to an accuracy of 10−5 in βfc. The triple points
are at (ε, χN) = (2.434, 16.944) and (6.752,25.321) in (b). See the main text for more details.

Table 1. Comparison of various phase boundaries obtained in this work and by Fredrickson and
co-workers [3].

This Work Ref. [3]

f = 0.2 and χN = 40

C/Sb ε = 1.874 ε = 1.882

Sb/σ ε = 2.667 ε = 2.722

f = 0.2 and ε = 9

D/Sf χN = 24.225 χN = 24.155

Sf/Sb χN = 26.261 χN = 26.177

Sb/σ χN = 30.746 χN = 30.483

f = 0.3 and χN = 40

C/A15 ε = 6.210 ε = 6.249

f = 0.3 and ε = 9

Sb/σ χN = 17.303 χN = 17.257

σ/A15 χN = 25.629 χN = 25.629

For completeness, we reproduce in Figure 4a,b our SCF phase diagrams of the DPDC
model at N = 10 reported in Figure 2 of Ref. [1], where σ is the only stable FK phase.
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Figure 4c further shows our SCF phase diagram of this model at N = 20 and f = 0.3,
where A15 emerges as another stable FK phase. Here, the phase boundaries are solved via
Ridders’ method [42] by equating, to an accuracy of 10−7, βfc of the two phases having the
smallest βfc at given ε and the obtained χN [1]. As mentioned in Ref. [1], for the nearly
incompressible melts studied here, our previous work for conformationally symmetric A-B
shows negligible differences between the SCF phase boundaries determined by equating
βfc, where the two phases have the same density, and those by equating the chain chemical
potential and pressure, where the two phases have different densities and the two-phase
coexisting region could appear [43].
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Figure 4. Phase diagrams of the DPDC model at (a) f = 0.2 and N = 10, (b) f = 0.3 and N = 10,
and (c) f = 0.3 and N = 20, where “D” denotes the disordered phase. The periodic unit cells of C,
C14, σ and all other ordered phases (i.e., Sb/Sf/A15/C15/Z) are uniformly discretized into 642,
64 × 64 × 128, 128 × 128 × 64 and 643 grid points, respectively. The phase boundaries are solved to
an accuracy of 10−7 in βfc [1]. The triple points are at (ε, χN) = (3.045, 36.428) in (a), (3.290, 17.263)
in (b), and (7.840, 25.037) in (c). N/κ = 50π and bB/rc =

√
3/2 in all the cases. See the main text for

more details.

Comparing Figures 3 and 4, we see that at f = 0.2, the SCF phase diagram of the DPDC
model at N = 10 is qualitatively consistent with that of the “standard” model, but they are
qualitatively different at f = 0.3 (where A15 is not stable for the DPDC model); the latter
and any quantitative differences in the SCF phase diagrams are solely due to the differences
between these two models. Changing the “standard” model to the DPDC model expands
the stable regions of C and Sb into that of σ at both f -values and the stable region of C into
that of A15 at f = 0.3. On the other hand, that A15 becomes stable for the DPDC model at
f = 0.3 as N increases to 20 is consistent with the fact that the DPDC model reduces to the
“standard” model [5,6] in the limit of N→∞, bP→0 (at finite R, ε and bB/rc) and κ→0.



Polymers 2024, 16, 372 9 of 14

3.3. Curves of βfc and Its Components

As an example, Figure 5a compares the βfc of various ordered phases obtained from
our SCF calculations of the DPDC model at N = 20, f = 0.3 and ε = 9, where we see that A15
becomes stable over σ for χN > 25.529 and that their difference in βfc is about 2 × 10−5 or
smaller in the figure. Figure 5b–e compare the various components of βfc, including the
dimensionless internal energy per chain βuc,χ due to the A-B repulsion, the dimensionless
internal energy per chain βuc,κ due to the system compressibility and the dimensionless
entropy per chain sc,P/kB of the P block, for various ordered phases. Same as the cases of
N = 10 shown in Ref. [1], we see that the stability of σ (and A15) at intermediate χN is due
to its delicate balance between βuc = βuc,χ + βuc,κ and sc/kB = sc,A/kB + sc,B/kB, and that
βfc = βuc − sc/kB of the FK phases increase in the order of σ/A15, Z, and C14/C15 with
their differences being on the order of 10−3 or smaller. In addition, our results show that
βuc,κ accounts for only 0.3~0.5% of βuc, thus indicating that our DPDC model at N/κ = 50π
is nearly incompressible.
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(b) the dimensionless internal energies per chain due to the A-B repulsion βuc,χ and (c) those due to
the system compressibility βuc,κ , and (d) the dimensionless entropies per chain of the A block sc,A/kB

and (e) those of the B block sc,B/kB, of various ordered phases obtained from our SCF calculations
of the DPDC model, with the σ phase taken as a reference. Due to their too large βfc, the Sb and
Sf phases are not shown here. Similarly, since for χN = 25~26 sσc,A/kB − sC

c,A/kB = 0.1322 ∼ 0.1316
and sσc,B/kB − sC

c,B/kB = −0.110 ∼ −0.115, the C phase is not shown in (d,e). N = 20, f = 0.3, ε = 9,
N/κ = 50π and bB/rc =

√
3/2. See the main text for more details.

3.4. Effects of N in the DPDC Model

As mentioned in our recent paper [1], at finite R, ε and bB/rc, as N→∞ (thus, bP→0
and rc→0), our (compressible) DPDC model becomes the Edwards model [44] (i.e., a
compressible diblock copolymer melt, or equivalently a solution in an implicit good sol-
vent, of continuous Gaussian chains with the Dirac δ-function non-bonded potential).
Figure 6 shows that for all the ordered phases considered in this work, uc,χ/fc, −Tsc,A/fc
and −Tsc,B/fc, as well as βuc,κ and βfc for N ≳ 30, of the DPDC model approach their
corresponding value of the Edwards model monotonically as N increases. In addition, as N
increases from 10 to 20, uc,χ/fc (and −Tsc,A/fc) exhibits the largest change. Figure 6a shows
that uc,χ/fc increases as N increases for all the ordered phases considered here; in particular,
we note that at f = 0.3, ε = 9 and χN = 26, as shown in the figure, C is the stable phase at
N = 10, while σ becomes more stable than C at N = 20 (note that at both N-values, A15 is
slightly more stable than σ with a ~10−5 lower βfc). Given the small changes in βfc of these
phases shown in Figure 6e as N increases from 10 to 20, our finding that βuc,χ increases
as σ becomes more stable than C is consistent with that of Collanton and Dorfman [25],
who recently found that βuc,χ increases as the stable phase changes from C to σ while f
decreases in their SCF calculations of the “standard” model. Finally, Figure 6b again shows
that our DPDC model at N/κ = 50π is nearly incompressible.
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the copolymer chain length N = 20 and the A-block volume fraction f = 0.3. Together with 
our SCF phase diagrams of this model at N = 10 and f = 0.2 and 0.3 reported recently [2], 
we find that σ and A15 are the only stable Frank–Kasper (FK) phases among the five FK 
(i.e., σ, A15, C14, C15 and Z) phases considered here. The stability of σ and A15 is due to 
their delicate balance between the energetic and entropic contributions to the dimension-
less (mean-field) Helmholtz free energy per chain βfc. Within our parameter range, βfc of 
the FK phases increase in the order of σ/A15, Z, and C14/C15, with their differences being 
on the order of 10−3 or smaller. 

We have also constructed SCF phase diagrams of the “standard” model [6,7] (i.e., 
incompressible melts of continuous Gaussian chains with the Dirac δ-function non-
bonded potential) in the χN-ε plane at f = 0.2 and 0.3, and compared them with those of 
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4. Summary

To summarize, we have constructed a self-consistent field (SCF) phase diagram of
the dissipative particle dynamics chain (DPDC) model (i.e., compressible melts of discrete
Gaussian chains with the DPD non-bonded potential) of conformationally asymmetric
diblock copolymers A-B proposed in our recent paper [1] in the χN-ε plane, where χN and
ε ≡ (bA/bB)2 ≥ 1 characterize, respectively, the repulsion and conformational asymmetry
between A and B blocks with bP (P = A, B) being the effective bond length of the P block at
the copolymer chain length N = 20 and the A-block volume fraction f = 0.3. Together with
our SCF phase diagrams of this model at N = 10 and f = 0.2 and 0.3 reported recently [1], we
find that σ and A15 are the only stable Frank–Kasper (FK) phases among the five FK (i.e.,
σ, A15, C14, C15 and Z) phases considered here. The stability of σ and A15 is due to their
delicate balance between the energetic and entropic contributions to the dimensionless
(mean-field) Helmholtz free energy per chain βfc. Within our parameter range, βfc of the
FK phases increase in the order of σ/A15, Z, and C14/C15, with their differences being on
the order of 10−3 or smaller.

We have also constructed SCF phase diagrams of the “standard” model [5,6] (i.e.,
incompressible melts of continuous Gaussian chains with the Dirac δ-function non-bonded
potential) in the χN-ε plane at f = 0.2 and 0.3, and compared them with those of the DPDC
model. At f = 0.2, the SCF phase diagram of the DPDC model at N = 10 is qualitatively
consistent with that of the “standard” model, but they are qualitatively different at f = 0.3
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(where A15 is not stable for the DPDC model); any differences in the SCF phase diagrams
are solely due to the differences between these two models. On the other hand, A15
becomes stable for the DPDC model at f = 0.3 and N = 20, consistent with the fact that
the DPDC model reduces to the “standard” model in the limit of N→∞, bP→0 (at finite√

N/6bB, ε and bB/rc with rc denoting the range of the DPD potential) and the generalized
Helfand compressibility [36] κ→0.

As pointed out in our recent paper [1], SCF theory inherently neglects the effects of
system fluctuations/correlations, which are important to the low-molecular-weight diblock
copolymer melts forming FK phases in experiments, and direct comparison between SCF
and molecular simulation or field-theoretic simulation [30] results based on the same
model system, thus without any parameter fitting, is the only way to unambiguously
quantify such effects. Since the “standard” model cannot be used in these simulations,
this work provides the necessary mean-field reference for unambiguously quantifying
the fluctuation/correlation effects with the DPDC model that can be readily used in both
molecular and field-theoretic simulations.
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