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Abstract: Vitrimers, as dynamic covalent network polymers, represent a groundbreaking advance-
ment in materials science. They excel in their applications, such as advanced thermal-conductivity
composite materials, providing a sustainable alternative to traditional polymers. The incorporation of
vitrimers into composite fillers enhances alignment and heat passway broadly, resulting in superior
thermal conductivity compared to conventional thermosetting polymers. Their dynamic exchange re-
actions enable straightforward reprocessing, fostering the easy reuse of damaged composite materials
and opening possibilities for recycling both matrix and filler components. We review an overview of
the present advancements in utilizing vitrimers for highly thermally conductive composite materials.

Keywords: vitrimer; thermal conductivity; nanocomposite; sustainability

1. Introduction

Vitrimers are covalent adaptable network (CAN) polymers capable of undergoing
dynamic covalent bond exchange reactions while maintaining their high crosslinking den-
sity [1–4]. They have received increasing attention as materials that combine thermosetting
resins’ stability with thermoplastic resins’ processability. This innovative polymer is co-
valently bonded and possesses the unique ability to undergo dynamic bond exchange in
response to external stimuli [5–7]. During this process, while CAN bonds break and form, a
consistent bond density is maintained, allowing for a rearrangement of the high-topological
network [8,9]. This bond exchange process proceeds slowly at room temperature, rendering
vitrimers with mechanical properties similar to thermosetting resins. However, when
the temperature surpasses the topological freezing transition temperature (Tv), the bond
exchange reaction accelerates, endowing vitrimers with thermoplastic-like characteristics,
including reprocessing, remolding, and recycling [10–12].

The preparation of vitrimers requires the presence of dynamic covalent bonds capable
of forming a CAN that facilitates exchange reactions. Hence, vitrimer systems exhibit
the capacity for reversible reactions, allowing for the breaking and formation of bonds
in response to external stimuli while maintaining the overall count of chemical bonds.
This distinctive characteristic arises from the investigation and study of various dynamic
covalent bonds, encompassing ester [13,14], carbonate [15], carbamate [16–18], acetal [19,20],
imine [21–23], boron ester [24–26], diboroxine [27], silyl ether [28,29], disulfide [30,31],
triazolium [32], and others [33], within this system.

The versatility of vitrimers is underscored by their unique combination of stability
and processability, leading to applications in reprocessable [34,35] and recyclable poly-
mers [36,37] that contribute to sustainable practices. Additionally, vitrimers find use in
coatings [38], adhesives [39,40], and reshapable polymers [41,42], showcasing easy pro-
cessability for adjustments and repairs. Their shape memory properties offer utility in
3D printing [43–45]. Vitrimers play an especially significant role in the field of compos-
ites [46–50], showing a wide range of impacts in a variety of applications, thanks to their
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recyclability that traditional composite materials do not have. Consequently, vitrimers
can serve as alternative materials to sustainable polymers currently used in composite
materials. The versatile utilization of vitrimers across diverse fields highlights their broad
impact on advancing scientific applications (Figure 1). Ongoing research endeavors are
focused on exploring novel applications and optimizing the performance of vitrimer-based
materials, contributing to sustained progress in materials science.
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Figure 1. Diagrammatic representation of dynamic covalent linkages employed in vitrimer materials
and their applications.

Recently, to propel the advancement of the next generation of compact, integrated,
functional, and portable smart devices, swift and efficient heat dissipation is imperative.
This is critical due to the substantial heat generated within these devices, which has
the potential to adversely affect the safety and performance of electronic components
throughout the operational lifespan of the device [51,52]. Polymer-based composites find
extensive application as a solution to this issue. Polymer-based thermally conductive
composite materials are fabricated with polymer (matrix) and high thermal conductive
ceramic material (filler), as shown in Figure 2. Utilizing polymer composites with high
crosslinking density and oriented fillers is an effective strategy for producing composites
with superior thermal conductivity [53–55]. By enhancing these two factors, the mean free
pathway of phonons is extended, minimizing phonon scattering and ultimately improving
the thermal conductivity of the composite [56].
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Figure 2. High thermal conductive polymeric composite materials are produced by integrating
polymer and ceramic fillers with excellent thermal conductivity properties.

In this review, we present a study of recent advancements in a novel academic domain.
Specifically, we focus on excellent thermal-conductivity composites while simultaneously
utilizing the characteristics of vitrimers, such as reshaping and recyclability, thereby pur-
suing eco-friendliness. We explore the latest advancements in the field, emphasizing the
potential for environmentally friendly solutions through the creation of composites with
enhanced thermal properties and the distinctive characteristics of vitrimers.

2. Vitrimer-Assisted Filler Orientation for the Highly Thermal Conducting Pathway
of Nanocomposites

Research has been conducted on vitrimers used as high thermal conductivity nanocom-
posites, specifically focusing on composites involving the chemical bonding of 1,3,5-triazine.
Within the 1,3,5-triazine chemical group, attention has been directed towards substances
from the poly(hexahydrotriazine) (PHT) series. PHT, initially reported by IBM in 2014, is
synthesized through the polycondensation of 4,4′-oxydianiline or p-phenylenediamine with
paraformaldehyde (as shown in Figure 3), showcasing exceptional mechanical properties
and mechanical strength, resulting from a high crosslink density [57,58].
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In this review, a nanocomposite is fabricated by utilizing PHT synthesized by p-
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nitride (h-BN) is chosen as the filler due to its advantageous plate-like structure, proving
superior to spherical fillers [59]. The interfacial affinity between the filler and the matrix is
crucial for maximizing properties such as thermal conductivity while minimizing molecular
voids [58–61]. A computational analysis is employed to assess the intermolecular affinity
between PHT and the comparative matrix (the geometry-optimized structures of the PHT
matrix and analogous molecules, replacing nitrogen atoms with carbon atoms) with h-
BN, comparing the oligomeric units of each molecule. The analysis revealed a favorable
interaction between the nitrogen in the matrix and the boron in h-BN (Figure 4), leading to
the flattening of the overall molecular structure of PHT and a reduced molecular distance
between the heteromolecules.
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Figure 4. Geometry optimization is performed to model the interaction between nitrogen atoms in
the PHT matrix and the h-BN surface. The comparative matrix involved examining the geometry-
optimized structures of the PHT matrix and analogous molecules, replacing nitrogen atoms with
carbon atoms near the h-BN surface, with oligomer units, for simplification, depicted in (a), and
detailed views are provided (b). Reproduced from Ref. [61]. Copyright 2023, Elsevier.

The isotropic thermal conductivity of the h-BN/PHT composite materials is measured,
showing a gradual increase with the rise in h-BN content, as shown in Figure 5a. At the
highest h-BN content, the thermal conductivity reaches 13.8 Wm−1K−1, aligning with the
graphical representation of the Nielson model. The Nielsen model for thermal or electrical
conductivity of composites is a predictive model that considers the influence of both the
composition and structure of the composite material. It quantitatively models the conduc-
tion properties by incorporating factors such as the type and arrangement of components,
providing a detailed understanding of how these parameters affect the overall conductivity
of the composite. Consequently, this model indicates that enhancing the filler loading can
improve thermal conductivity [59,61]. The Nielsen model is expressed as Equation (1):

Kc

Kp
=

1 + ADφ

1 − Dλφ
(1)

where Kc, Kp, and φ are the thermal conductivities of the composite and the polymer matrix
and the filler volume fraction, respectively. The geometry factors, A, D, and λ, relate to
the filler orientation ratio, the maximum filler volume fraction, and a significant amount
of voids. Following the Nielsen model suggests that the h-BN/PHT composite material
easily achieves thermal conductivity within the suitable range of 2 to 8 Wm−1K−1 for
high thermal dissipation applications. To visually demonstrate the enhanced thermal
conductivity, a thermal IR image camera monitors the temperatures with different h-BN
loadings (Figure 5b). Samples with higher thermal conductivity exhibit a faster temperature
increase, indicating more efficient thermal energy conduction through these thermally
conductive samples.
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Figure 5. (a) The graph into the thermal conductivity of h-BN/PHT composites with varying loadings
of h-BN fillers. A predictive model, based on the Nielsen model, is depicted as a dashed blue line in
the same plot. (b) Thermal infrared images capture the heating process of the composites at 90 ◦C,
with the filler volume fractions indicated in parentheses, and the corresponding temperature values
are provided for each image. (c) The measured radial (K//) and axial (K⊥) thermal conductivities,
along with their standard deviations, are presented to illustrate the anisotropy in thermal conduc-
tivity concerning h-BN loading. (d) Degree of filler orientation by calculated anisotropic thermal
conductivity. The red dotted line serves as a reference for perfect h-BN orientation in the radial
direction of the composite. Reproduced from Ref. [61]. Copyright 2023, Elsevier.

The superior thermal conductivity observed is attributed to the exceptional alignment
of fillers within the PHT matrix. An optimal filler aspect ratio is achieved when the h-BN
fillers are perfectly oriented in the radial direction of the sample, as opposed to a random
or axial orientation. Radial (K//) and axial (K⊥) thermal conductivities are measured
using the transient plane source method, indicating a highly aligned h-BN within the
sample in the radial direction (Figure 5c). The degree of filler orientation is estimated
using the relationship (K// − K⊥)/(2K// + K⊥), in which the denominator is the sum of
K in all directions and can allow for the assessment of how aligned the material is in the
radial direction compared to the axial direction [59–62]. The estimated filler alignment as
a function of the filler loading is provided in Figure 5d. The estimated filler alignment
would give 0.5 for the perfect filler orientation in the in-plane direction. As depicted in
Figure 5d, all composite materials, even those with the lowest filler loading investigated
in this study, display a pronounced orientation of h-BN along the radial direction of the
sample. To verify the alignment of the filler, scanning electron microscopy is utilized for
a direct examination of cross-sections from selected samples with varying h-BN loadings.
The field emission scanning electron microscope (FE-SEM) images, presented in Figure 6,
unequivocally validate the consistent radial alignment of fillers regardless of filler content
across all samples. This observational method serves to avoid redundancy and ensures a
comprehensive understanding of the filler distribution in composite materials.
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Reproduced from Ref. [61]. Copyright 2023, Elsevier.

It becomes evident that the nanocomposite fabrication of the vitrimer matrix PHT,
with the assistance of flattened molecules, allows for facile radial orientation even with a
minimal amount of added h-BN. Consequently, the establishment of filler networks occurs,
creating an elongated heat transfer pathway and minimizing phonon scattering [60]. In
summary, it can be conclusively asserted that the vitrimer PHT, in stark contrast to tradi-
tional polymers, plays an active and influential role in influencing the orientation of fillers
within the composite material. The potential and expectations for achieving heightened
filler alignment in composite materials are anticipated through the incorporation of diverse
fillers, except h-BN, exhibiting future anisotropic characteristics. As such, the exploration
of anisotropy in composites by introducing various fillers holds promise for advancing the
field, offering avenues for improved thermal conductivity in heat dissipation composites.

3. Reprocessability and Recyclability of Vitrimer-Assisted Filler Nanocomposites

From the research literature, findings unveil the presence of unreacted imines and
primary amines [63]. This discovery implies the potential of PHT to exhibit vitrimer be-
havior through two dynamic bond exchange reactions. The first involves imine metathesis,
occurring between imines, while the second is transamination, which encompasses the
exchange between amines and imines, as illustrated in the respective reactions, as shown
in Figure 7. Above the temperature of Tv, dynamic exchange reactions occur, making
reprocessing possible.

Identifying the Tv temperature is crucial, as it plays a significant role in the reformation
of vitrimer composites through exchange reactions. Determining this temperature is
accomplished using a dynamic mechanical analysis (DMA), where tan delta reveals the
point at which exchange reactions occur [63]. Additionally, the relatively low activation
energy (Ea) of vitrimers was obtained through Arrhenius plots in relaxation tests using
DMA (Figure 8b,c) [63,64]. The characteristic relaxation time τ follows Arrhenius’ law
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and fits the Arrhenius equation upon variation in the temperature, as per the following
Equation (2):

τ =
1
K

exp(
Ea

RT
) (2)

where K is the reaction constant, R is the ideal gas constant, and T is the temperature (K). The
linear relationship between the characteristic relaxation time and the temperature for each
system was obtained by linear fitting of the Arrhenius equation, wherein the slopes of the
straight lines give activation energies of 24 kJ/mol, which makes them easily reprocessable.
Consequently, after creating the composite, reprocessing leads to reshaping, as illustrated
in Figure 8d. Similarly, reshaping occurs even when h-BN is mixed, demonstrating the
reformation through dynamic exchange reactions (Figure 8e) [63]. They can be easily
reshaped at temperatures above the designated Tv threshold.
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Figure 8. (a) Dynamic mechanical analysis (DMA) is employed to investigate the behavior of PHT up
to 150 ◦C. (b) The stress relaxation curves for poly(hexahydrotriazine) (PHT) across temperatures up
to 140 ◦C. The dotted line indicates constant (e−1). (c) Characteristic relaxation times (τ) for neat PHT
are determined as part of the analysis. Photographs illustrate the preparation of a disk-shaped sample,
its subsequent fragmentation into smaller pieces, and the reprocessing of (d) PHT and (e) h-BN/PHT
composites. Reproduced from Refs. [61,63]. Copyright 2023, Elsevier and Wiley.
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The PHT matrix was employed to reclaim h-BN from composite materials through
the chemical breakdown of PHT in low pH conditions (≤2) [61,63]. After soaking PHT
in an acidic solution for more than 24 h, the absence of any solid residue affirmed the
complete chemical breakdown (Figure 9a). Breaking down composite materials in an acidic
solution resulted in a translucent pink mixture, from which the h-BN filler, surpassing
99% in weight, easily separated after multiple washes and vacuum drying. Assessing the
recovered h-BN’s quality involved comparing values from Raman spectra (14.9 cm−1 and
15.0 cm−1), indicating a sustained quality (Figure 9b). This was corroborated by XPS results,
revealing similarities in the elemental composition (Figure 9c). Furthermore, PHT withstood
dissolution in common organic solvents even after prolonged soaking, demonstrating
a resilient resistance, with decomposition only occurring under acidic conditions. In
conclusion, the nanocomposite for heat dissipation, leveraging the characteristics of the
vitrimer PHT, stands as an advanced vitrimer with facile reprocessability and recyclability.

Polymers 2024, 16, x FOR PEER REVIEW 8 of 18 
 

 

withstood dissolution in common organic solvents even after prolonged soaking, demon-
strating a resilient resistance, with decomposition only occurring under acidic conditions. 
In conclusion, the nanocomposite for heat dissipation, leveraging the characteristics of the 
vitrimer PHT, stands as an advanced vitrimer with facile reprocessability and recyclabil-
ity. 

 
Figure 8. (a) Dynamic mechanical analysis (DMA) is employed to investigate the behavior of PHT 
up to 150 °C. (b) The stress relaxation curves for poly(hexahydrotriazine) (PHT) across temperatures 
up to 140 °C. The dotted line indicates constant (e−1). (c) Characteristic relaxation times (τ) for neat 
PHT are determined as part of the analysis. Photographs illustrate the preparation of a disk-shaped 
sample, its subsequent fragmentation into smaller pieces, and the reprocessing of (d) PHT and (e) 
h-BN/PHT composites. Reproduced from Refs. [61,63]. Copyright 2023, Elsevier and Wiley. 

 
Figure 9. (a) PHT and h-BN/PHT composites undergo depolymerization by immersing them in an 
acidic aqueous solution (pH = 2) at room temperature for one day. (b) Raman spectra are then com-
pared between the original h-BN (blue) and the recovered h-BN from the h-BN/PHT composite 
(gray). (c) XPS spectra of the recycled h-BN are compared with the reference h-BN, with normaliza-
tion based on the maximum N1s peak intensity of each scan. Reproduced from Ref. [61]. Copyright 
2023, Elsevier. 

4. Natural Supramolecule-Based Vitrimer Nanocomposites Containing a Large  
Thermal Pathway 

Figure 9. (a) PHT and h-BN/PHT composites undergo depolymerization by immersing them in
an acidic aqueous solution (pH = 2) at room temperature for one day. (b) Raman spectra are then
compared between the original h-BN (blue) and the recovered h-BN from the h-BN/PHT composite
(gray). (c) XPS spectra of the recycled h-BN are compared with the reference h-BN, with normalization
based on the maximum N1s peak intensity of each scan. Reproduced from Ref. [61]. Copyright
2023, Elsevier.

4. Natural Supramolecule-Based Vitrimer Nanocomposites Containing a Large
Thermal Pathway

Tannic acid (TA), with its bio-based polyphenolic structure, can be considered a
polymeric compound. Its polymer-like properties arise from the presence of multiple
phenolic hydroxyl groups in its structure, allowing it to form complex networks through
various interactions. Tannic acid is especially known for its ability to form strong and
stable crosslinks [65,66]. This property is particularly useful in polymer chemistry, where
crosslinking enhances the mechanical strength and stability of polymers. The phenolic
hydroxyl groups in tannic acid can react with various substrates, creating a crosslinked
network [67]. The intricate network of tannic acid can be utilized to form a large thermal
pathway, enhancing the production of a nanocomposite with high thermal conductivity.
Boronic ester bonds make vitrimers unique and distinguish them from traditional polymers,
as they provide the material with properties like reprocessability, stress relaxation, and
adaptability to change conditions [24–26]. We introduce the incorporation of tannic acid’s
phenolic network in boronic ester vitrimers, which can create large thermal pathways.



Polymers 2024, 16, 365 9 of 17

To create a vitrimer with a high crosslink density, tannic acid, boron acid, and glycerol
are utilized under base conditions (OH− generated by a NaOH solution) to form borate
ions [68]. Subsequently, a vitrimer incorporating boronic ester bonds is generated. During
the optimization process (Table 1), a vitrimer with an increased crosslink density is formed
to enhance the thermal pathway and reduce phonon scattering during manufacturing. In
addition to enhancing the thermal pathway, the nanocomposite, glycerol, and cellulose
nanofibers (CNFs) are mixed to enable intermolecular hydrogen bonding. CNFs, a nano-
scale filler commonly used to enhance composite properties [69], are included in the system.
A new system is prepared by adding CNF, aiming to create a constant structure of CNFs
with abundant hydroxyl groups, facilitating the formation of hydrogen bonds with both
boric acid and tannic acid (refer to Figure 10).

Table 1. Optimization of the natural supramolecule-based vitrimer system 0, 1, 2, and 3 composites
from Ref. [68].

System 0 System 1 System 2 System 3

Tannic acid (g) 3 3 3 3
Boric acid (g) 0.6 0.6 0.6 0.6
Glycerol (mL) 0.1 0.1 0.1 0.1
NaOH (mL) − 3.5 3.5 3.5

Cellulose nano-fiber − − 0.6 0.6
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works in a vitrimer derived from natural sources. Reproduced from Ref. [68]. Copyright 2023, Elsevier.

The results, as confirmed by FT-IR, indicate that system 2, which includes CNFs,
forms the highest proportion of dynamically shared bonds, as shown in Figure 11a,b [68].
Moreover, a DMA analysis reveals that system 2 exhibits the highest glass transition
temperature (Tg), and when calculating the crosslink density [68], it shows the highest
value (0.0093 mol/cm3 for system 2) (Figure 11b). Therefore, leveraging the high crosslink
density boronic ester-based vitrimer system 2, it is utilized for the production of a high-
thermal conductivity nanocomposite.
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In the pursuit of potential applications in thermal management materials, composite
materials were created by blending the system 2 vitrimer with highly thermally conductive
fillers such as Al2O3 and h-BN to advance its thermal conductivity [68]. The findings
related to thermal conductivity, as depicted in Figure 12, showcase the thermal conduc-
tive properties of the composites created using system 2 with varying proportions of the
Al2O3 and h-BN fillers. Significantly, the thermal conductive characteristics of the com-
posite escalated in direct correlation with the filler content. Without fillers, the unaltered
System 2 composite exhibited a thermal conductivity of 0.49 Wm−1K−1, representing a
twofold increase compared to the thermal conductivity of the pure bisphenol A epoxy
resin (0.24 Wm−1K−1). The thermal conductivity of system 2/Al2O3 rose to 1.58 Wm−1K−1

with the inclusion of 28 vol% of Al2O3, marking a threefold increase compared to the only
system 2 composite and a twofold increase compared to the epoxy composite containing
28 vol% of Al2O3 (0.65 Wm−1K−1). Similarly, the system 2/h-BN composite achieved a
remarkable thermal conductivity of 16.75 Wm−1K−1, containing 43 vol% of h-BN. This
measurement represents a 34-time increase compared to the thermal conductivity of only
the system 2 composite and a 16-time increase compared to the epoxy composite containing
43 vol% of h-BN (1.04 Wm−1K−1) [68]. A comparison between the theoretical (Nielsen
model) and experimental data for the system 2/Al2O3 and h-BN composites is depicted in
Figure 12a,d. Both sets of data show a progressive elevation in filler concentrations, indi-
cating that optimizing the filler loading can improve thermal conductivity [59,61,68]. The
thermal conductive properties of system 2 and its composite surpass those of commercially
accessible epoxy mold compounding materials, as evident from these outcomes.

Furthermore, cylindrical composites (20 mm in diameter, 4 mm in height) composed
of system 2/Al2O3 and system 2/h-BN (with a 0–50 weight% filler) were positioned on
a heating plate at a consistent temperature of 90 ◦C. The heat conductive characteristics
of every composite were directly examined employing an infrared thermal imaging tool,
where brighter colors signaled elevated temperatures on the surface of the composite.
Figure 12b,c,e,f show temperature changes in the system 2/Al2O3 and h-BN composites
from 1 to 180 s, throughout an identical duration. A persistent trend is observed, where
augmented filler concentrations consistently result in elevated surface temperatures in all
composite systems, underscoring the contribution of fillers in enhancing the heat transfer
and thermal conductive properties [68].

To understand the roles of TA and CNF in achieving this high thermal conductivity, the
researcher examined the cross-sectional morphologies of system 2 + 30 wt% of Al2O3 and
system 2 + 30 wt% of h-BN using FE-SEM, as shown in Figure 13a and b, respectively. The
results reveal that the CNF, with a high aspect ratio, was uniformly dispersed in system 2,
leading to increased crosslinking and a greater number of hydrogen bonds. This enhanced
the thermal pathways for phonon vibration, reducing phonon scattering.
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Figure 12. A graph of experimental and theoretical thermal conductivity of (a) system 2/Al2O3.
An increase in the surface temperatures of system 2/Al2O3 composites over time during heating,
along with (b) corresponding infrared thermal depictions for the composites incorporating different
Al2O3 concentrations. (c) Variations in the surface temperatures of system 2/h-BN composites during
heating. Measured results in the same sequence corresponding to System 2/h-BN composites (d–f).
Reproduced from Ref. [68]. Copyright 2023, Elsevier.
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Figure 13. Cross-sectional FE-SEM images of (a) system 2 Al2O3 and (b) h-BN. The yellow circles
represent Al2O3, the blue lines represent CNF, and the red lines represent h-BN. Mechanism of
thermal passway established by the crosslinking networks involving hydrogen bonds and boronic
ester bonds in composites of (c) system 2 and (d) the composites subsequent to the incorporation of
the h-BN filler into system 2. Reproduced from Ref. [68]. Copyright 2023, Elsevier.

Furthermore, this confirmed that the fillers were horizontally oriented due to the
vitrimer nature of system 2. This unique alignment, influenced by the vitrimer’s elastic
properties, resulted in a longer heat transfer pathway, reduced phonon scattering, and
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higher thermal conductivity. In particular, the plate-shaped h-BN exhibited a clearer
alignment in the horizontal direction, with filler–filler interconnections contributing to an
even larger percolation network. The high dispersibility of the filler and the formation
of a good percolation network were identified as crucial factors contributing to the high
thermal conductivities observed in these filler-containing composites.

These findings propose a mechanism whereby the high thermal conductivity in these
composites is due to the structure of system 2. TA and CNF, characterized by their large
size and aromatic/cyclic structures, with plate and rod-like shapes, have excellent thermal
conductivities. The many hydroxyl groups on their surfaces create an effective network
through B-O-C or hydrogen bonding, establishing the required thermal pathway for high
thermal conductivity. Furthermore, the vitrimer with h-BN forms a highly horizontally
oriented plate-like layer during the thermal process, further enhancing thermal conductivity
(Figure 13c).

5. Thermal Grating Structure Using Reprocessability of Vitrimer

The boronic ester functional group exhibits dynamic exchange reactions, particularly
through its boronic ester bonds. Determining the reprocessing temperature (Tv) is crucial
for these bonds. Various techniques exist to evaluate Tv, and an innovative method involves
employing the creep test [68]. During this test, the slope of strain values increases non-
linearly at a specific temperature, indicating a balance between the vitrimer intermolecular
bond breakage and recombination rates as the temperature rises (see Figure 14a). The
temperature at which the slope changes non-linearly signifies Tv. In Figure 14b, Tv, for
the current vitrimer system, is approximately 40 ◦C, and this value remains constant
irrespective of the content of the CNF. Notably, this thermally conductive composite cannot
be reprocessed and reshaped without external pressure. However, it becomes feasible
under pressure above the Tv temperature. Subsequently, the reprocessed composite sample
is fabricated using the heat-press method, as depicted in Figure 14c.
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In Figure 15, the advantage of reformation is solely utilized through the thermal
pressure molding of a composite grating, formed by connecting four segments—system 2
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and system 2/h-BN (50 wt%) repeatedly—using the reversible properties of the boronic
ester bonds under heat-press conditions. Placed on a heating plate at 90 ◦C, it showcases
the surface temperature change along the sample’s longitudinal direction, affirming the
successful creation of a four-segment composite grating with varying thermal conductivities.
In conclusion, utilizing the advantages of heat-pressure reprocessing allows for the easy
creation of a grating structure. This enables efficient heat transfer only in the desired areas,
facilitating effective reprocessing.
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Figure 15. Photographic images of the reprocessing thermal grating composite, thermal infrared
images, and a temperature-change graph along the length depict the composite consisting of four
segments: system 2/h-BN (50 wt%) and system 2 in succession. Reproduced from Ref. [68]. Copyright
2023, Elsevier.

6. Recyclability of Vitrimer and Sustainability of Vitrimer Nanocomposites

The composite showcased notable dissolution in a citric acid solution after 21 h, stem-
ming from the hydrolysis of boronic ester bonds that led to the collapse of the crosslinked
network [68,70]. While achieving complete solubility in water after 96 h, the composite
remained non-soluble in ethanol. These observations underscore the distinct solubility
characteristics of the prepared composites in contrast to conventional thermosetting ma-
terials. As depicted in Figure 16a, pristine vitrimer compounds demonstrated the ability
to dissolve in acidic solutions. Utilizing these features, the recyclability of a thermally
conductive composite filled with h-BN was assessed by immersing it in a 1 mol/L citric
acid solution. Within 21 h, the composite underwent total dissolution in the citric acid
solution, as illustrated in Figure 16a. The non-soluble white powder, indicative of the h-BN
filler, was effortlessly isolated via filtration, proceeded by iterative rinsing with deionized
water and acetone and subsequent vacuum drying. The recovered h-BN and the reference
h-BN underwent XPS analysis (Figure 16b). The results indicate that both samples exhib-
ited comparable elemental compositions, confirming the successful recycling of the filler
without substantial alterations to its composition.
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7. Conclusions

Vitrimers, as covalent adaptable network polymers, have opened new avenues in
materials science, offering a unique blend of stability and processability. The ability of
vitrimers to undergo dynamic covalent bond exchange reactions, responding to external
stimuli, has paved the way for applications in various industries. In particular, their
role in high thermal-conductivity composite materials is significant, contributing to de-
veloping alternative polymers instead of traditional composites. From the viewpoint of
thermal conductivity, the incorporation of vitrimers into composite fillers can help in
directional alignment, forming well-structured intermolecular networks that effectively
minimize phonon scattering. The potential and expectations for the further enhancement
of filler alignment when creating composites by incorporating different fillers with future
anisotropic characteristics are also anticipated. In addition, by utilizing natural materials,
vitrimers create a broad heat passway for phonons through dynamic network interac-
tions, resulting in significantly enhanced thermal conductivity compared to conventional
thermosetting polymers.

Moreover, the dynamic exchange reactions of vitrimers enable the formation of easy
reprocessing that can adapt to external forces. This distinctive feature allows damaged or
fractured composite materials to undergo reuse through reprocessing. The ability to break
crosslinks presents the potential for recycling both the matrix and filler components of
vitrimer high thermal conductive composites. The material’s adaptability to external forces,
combined with the capability for reshaping and reprocessing, underscores its potential
to develop high-performance and recyclable composite materials, surpassing the thermal
conductivity of traditional thermosetting polymers.

In the evolving field of industrial devices, as they trend towards becoming smaller,
thinner, and lighter, effective heat dissipation is anticipated to emerge as a critical challenge.
Addressing these concerns, the advantages of vitrimers, as highlighted in this review,
position them as a promising solution for designing polymer composite materials with a
focus on efficient heat dissipation and sustainable alternatives.
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