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Abstract: Because of the complex nonlinear relationship between working conditions, the prediction
of tribological properties has become a difficult problem in the field of tribology. In this study, we
employed three distinct machine learning (ML) models, namely random forest regression (RFR), gra-
dient boosting regression (GBR), and extreme gradient boosting (XGBoost), to predict the tribological
properties of polytetrafluoroethylene (PTFE) composites under high-speed and high-temperature
conditions. Firstly, PTFE composites were successfully prepared, and tribological properties under
different temperature, speed, and load conditions were studied in order to explore wear mechanisms.
Then, the investigation focused on establishing correlations between the friction and wear of PTFE
composites by testing these parameters through the prediction of the friction coefficient and wear
rate. Importantly, the correlation results illustrated that the friction coefficient and wear rate gradu-
ally decreased with the increase in speed, which was also proven by the correlation coefficient. In
addition, the GBR model could effectively predict the tribological properties of the PTFE composites.
Furthermore, an analysis of relative importance revealed that both load and speed exerted a greater
influence on the prediction of the friction coefficient and wear rate.

Keywords: prediction; polytetrafluoroethylene composites; tribology; machine learning; Pearson
correlation coefficient

1. Introduction

The utilization of PTFE composites has been extensively observed in diverse industrial
and scientific research domains owing to their chemical stability, high specific strength,
superior process ability, lifetime service at 260 °C, and self-lubrication properties [1-5].
However, the advancement of technology and the increasing demands for applications
have created new challenges concerning the development of products that are capable
of operating under extreme working conditions due to uncertainties in terms of service
characteristics and friction and wear mechanisms [6,7]. Traditionally, the research on
tribological properties has mainly relied on trial and error [8-10]. The implementation
of this approach necessitates extensive experimental research, which not only consumes
a substantial amount of time but also fails to provide precise information regarding the
service characteristics of PIFE composites. There is currently a lack of methods to predict
the tribological properties of PTFE composites, especially under extreme conditions (high
temperature or high speed). The assessment of material stability and reliability becomes
notably challenging in this scenario. Therefore, it is urgent to find efficient and intelligent
methods and technologies to predict friction and wear performance.
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To tackle the above problems, researchers have conducted extensive research [11,12].
Among these endeavors, the application of machine learning (ML) technology in the
field of materials science has witnessed a gradual increase in recent years, primarily
focusing on performance prediction. Cao et al. developed an artificial intelligence graph
and neural network method for the structure analysis and performance prediction of a
ternary positive crystal through deep learning. The model extracted atomic and chemical
bond characteristics from the crystal structure and then predicted the oxidation potential
of the crystal and successfully predicted an excellent coating material [13]. Accurately
identifying crystal symmetry and enhancing attribute prediction are crucial for over-
coming the limitations of current ML algorithms and improving interpretability and
generalization. To address the underperformance of conventional ML methods in highly
symmetric space groups, Li et al. developed a novel ML model called an isotropic network
based on symmetry enhancement [14]. The study conducted by Chen et al. involved the
development of four ML models for predicting the maximum adsorption capacity of hy-
drothermal carbon as well as an exploration of the key factors influencing its adsorption
capacity. The results indicated that the gradient boosting decision tree model exhibited
exceptional predictive capabilities [15]. The efficacy of ML techniques in addressing
intricate nonlinear problems has been well established, demonstrating exceptional perfor-
mance across various domains and, thus, enabling the application of machine learning in
the field of tribology [16-19]. Zhao et al. successfully predicted the friction coefficient
and wear rate of a coating through an ML algorithm of a gradient boosting regression
tree. The predictive accuracy for the friction coefficient and wear rate reached 94.6%
and 96.3%, respectively [20]. Guo and his team introduced a signal-processing method
based on friction noise to predict the tribological properties of polymers over a wide
temperature range. Their results indicated that ML methods could effectively predict
the friction coefficients of different polymer—-metal pairs within a broad temperature
domain [21]. Through the application of ML, a novel research concept can be proposed
for predicting the tribological properties of polymer composites. However, the current
research primarily focuses on low-speed and low-temperature conditions, with limited
investigations conducted on predicting tribological properties under high-speed and
high-temperature conditions.

In the present study, an optimal ML model was employed to predict the friction
coefficient and wear rate of PTFE composites under extreme working conditions. The visu-
alized Pearson correlation coefficient was employed to unveil the quantitative relationship
between the working parameters and tribological properties of PTFE composites. The
integration of advanced ML techniques enabled the effective prediction and optimization of
the service performance of materials in complex working environments, thereby providing
guidance for future applications under extreme operating conditions.

2. Materials and Methods
2.1. Materials and Preparation

PTFE powders, with an average diameter of 75 pm, were obtained from Daikin
Fluorochemicals Co., Ltd., Changshu, China. Polyimide (PI) powders (YS-20, <75 um)
were procured from Shanghai Synthetic Resin Institute, Shanghai, China. Mica powders
were sourced from Shenzhen Haiyang Powder Technology Co., Ltd, Shenzhen, China.
The corresponding microstructures of the functional fillers are depicted in Figure 1. The
formula of the PTFE composites is shown in Table 1. Mobil Jet Oil II lubricating oil was
procured from Beijing AVIC Hangte Lubrication Technology Co., Ltd, Beijing, China. The
characteristics of the lubricating oil were as follows: a kinematic viscosity of 5.1 mm?/s at
100 °C, with a kinematic viscosity of 27.6 mm? /s at 40 °C; specific gravity of 1.00 g/cc; a
flash point of 270 °C; a maximum operating temperature of 200 °C as well as 220 °C for a
short term; and an operating temperature lower limit of —40 °C.
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Figure 1. Microstructures of functional fillers: (a) PTFE; (b) PL; and (c) mica.

Table 1. The formula of PTFE composites (mass fraction).

PTFE PI Mica
65% 5% 30%

The specific preparation procedure of the PTFE composites can be consulted for
reference [22,23]. Firstly, the fillers were uniformly blended according to a predetermined
ratio. Subsequently, a mold with dimensions of ®145 mm x ®115 mm was subjected to a
pressure of 60 MPa for 4 min. Finally, the PTFE composites were kept warm at 375 °C for
140 min using a sintering furnace. The pressed work-blanks were processed to the specified
dimensions in accordance with the test piece requirements.

2.2. Tribological Tests

The tribological performance of the PTFE composites was assessed using a KHS-
12000R test apparatus which was prepared by Lanzhou Zhongke Kaihua Technology
development Co., Ltd., Lanzhou, China. The structure of the test system is shown in
Figure 2. The counterpart was 16Cr3NiWMoVNbE (HRC > 50). The corresponding
working conditions and parameters are shown in Table 2. Before the commencement of the
experiment, the lubricating oil within the cavity was subjected to heating via a resistance
wire. Once the temperature reached the predetermined set point, it was allowed to stabilize
for 1 h. A temperature measurement was carried out using a sensor. Each test lasted
10 min and was repeated at least two to three times. The friction coefficient was recorded
automatically via a software (Friction and wear testing machine measurement and control
system). The friction coefficient of each group was the average of a 610 min interval.
The wear volume was obtained by multiplying the wear height by the area of the friction
sample. The wear height was the average of the values measured at 8 different locations.
The wear rate (W, mm?3/Nm) was calculated using the following formula:

W =AV/PL.

oil-bath

rotating ring oil filler

stationary ring heat block Static ring tool

Figure 2. Schematic diagram of the test apparatus.
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Table 2. The corresponding working conditions and parameters.
Operating Conditions Parameters
Speed (m/s) 10, 15, 20, 25
Temperature (°C) Room temperature (RT), 50, 90, 120, 150

Load (MPa) 0.05,0.10

Here, AV, L, and P represent wear volume (mm3 ), sliding distance (m), and applied
load (N), respectively.

2.3. Characterizations

The worn morphologies of the PTFE composites were examined by using scanning
electron microscopy (SEM, ZEISS Sigma 300, Munich, Germany) to analyze their sur-
face characteristics. The ML algorithms employed were implemented in the Python 3
environment using the open-source Scikit-learn package. To investigate algorithms that
were appropriate for modeling intricate friction-wear relationships, random forest regres-
sion (RFR), gradient boosting regression (GBR), and extreme gradient boosting (XGBoost)
were selected. The original dataset obtained from the friction and wear experiments (see
Tables S1 and 52) was randomly divided into a training set and a testing set, ensuring
both the generality and accuracy of the models, with a ratio of 7:3. The root mean square
error (RMSE) and the coefficient of determination (R?) were utilized to illustrate predic-
tion errors and evaluate the performance of the models (which was determined to be
outstanding) [24-26].

3. Results

The relationship between the friction coefficient of the PTFE composites and sliding
speed is depicted in Figure 3. The results indicate that the relationship between the friction
coefficient and temperature is complex. The friction coefficient generally decreases when
the load increases from 0.05 MPa to 0.1 MPa under most working conditions. The reason
for this is that it is easier for the lubricant to enter the elastic fluid lubrication area as the
load increases. Moreover, an increase in the sliding speed leads to a significant decrease in
the friction coefficient. The friction coefficient at this stage is primarily influenced by the
internal friction of the lubricating oil.
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Figure 3. The curves of friction coefficients with speed: (a) 0.05 MPa and (b) 0.1 MPa.

The data presented in Figure 4 illustrate a gradual reduction in the wear rate as the
speed increases, primarily due to the formation of a continuous and stable lubricating
film. The lubricating film acts as a protective layer, effectively preventing direct contact
between friction pairs and providing efficient anti-wear protection, thereby significantly
reducing the wear rates. The transition from boundary lubrication to elastohydrodynamic
lubrication occurs as the load increases, resulting in reduced wear [23]. The influence
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of temperature on the tribological properties of PTFE composites lubricated with oil is
very complicated. When the temperature is low, a continuous lubricating oil film forms
between the counterparts, consequently reducing both the friction coefficient and wear
rate. The lubricating oil exerts a cooling effect on the friction surface during the process
of friction. The rotation of the counterpart facilitates the removal of wear debris from the
friction surface by the lubricating oil, thereby minimizing the impact on the tribological
performance. The increases in temperature have an important effect on friction and wear
performance. On the one hand, they reduce the viscosity of the lubricating oil, thereby
diminishing the effectiveness of lubrication. On the other hand, they negate the cooling
properties of the lubricating oil and lead to increased wear.
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Figure 4. The curves of wear rates with speed: (a) 0.05 MPa and (b) 0.1 MPa.

Worn morphologies serve as a direct means of investigating interface changes, thereby
providing valuable support for studying the wear mechanisms of PTFE composites. The
microscopic worn morphologies of the studied PTFE composites under various operating
conditions are depicted in detail in Figures 5 and S1. The aforementioned microscopic
morphologies demonstrate that the PTFE composites experienced surface damage and
intensified adhesive wear under varying operational conditions, specifically when the
speed, temperature, and load increased. The increased severity of working conditions
results in a rapid increase in heat accumulation at the friction interface. The temperature of
the interface consequently increases, leading to a decrease in the adhesive strength between
the filler and matrix that significantly enhances the wear.

RT,0.05MPa,15m/s RT,0.05MPa,25m/s 0MPa,15m/s RT,0.10MPa,25m/s

Figure 5. Worn morphologies after subjection to different speeds, temperatures, and loads.
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The complexity of the friction coefficient and wear rate of PTFE composites under
various conditions can be gleaned from Figures 3 and 4. The current wide temperature
range (RT to 150 °C) and wide speed range (10 m/s to 25 m/s) complicate the changes in
properties that a material exhibits during service. The current research, however, falls short
in its predictive capabilities regarding the friction and wear behavior of PTFE compos-
ites [27]. Therefore, the RFR, GBR, and XGBoost models were employed for ML to address
the aforementioned limitations and acquire predictive capabilities for friction and wear
data. The RFR, GBR, and XGBoost models exhibit exceptional functionality and proficiency
in handling high-dimensional, non-linear, and intricate data relationships, rendering them
well suited for addressing research problems in the field of tribology. After normalizing all
experimental data, a model analysis was conducted to ensure the consistency of the data.
The predictions of the friction coefficient and wear rate made by the three models are clearly
demonstrated in Figures 6 and 7. The results demonstrate the better predictive performance
of the GBR model compared to the RFR and XGBoost models, thereby indicating its ability
to determine intricate tribological relationships.
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Figure 6. Predictive performance for determining the friction coefficient using the (a) RFR, (b) GBR,
and (c) XGBoost models.

50 50

50
(a) @ training S d (b) @ Taining ,," (C) @ training /‘
45| @ test ’,’ a5 | ® ‘st Y " 45 @ test //
1’ ,’ d
" & 3
a0 Fal - 20 ’(," 40 '/
5
. -
»
v 35 il y 35 o & 35 - ®
E o B 3 ¢ 3 L
k- p = 2 g 30 y
§ 30 % o B0 o P £ o
H ® L LY 3 32 5 3
& 25 g £ 25 & £ 25 /
» » <% °
o
N S 4 21 .o
15 b 15 J 15 O"‘
» Vi 7.4
Gl < 10 ¥
a0 y PR 20 25 30 35 40

30
Tue value

25

v
30
Tue value

35 40 45 50
Figure 7. Predictive performance for determining wear rate using the (a) RFR, (b) GBR, and (c) XG-

Boost models.

The specific R? and RMSE values for the RFR, GBR, and XGBoost models are presented
in Figure 8. The R? value serves as a metric for assessing the degree of concordance between
a model and the corresponding observed data. When interpreting the R? value, values
approaching 1 indicate a robust alignment between the model and the data, suggesting
that the independent variables can effectively account for most of the variability in the
dependent variable. Conversely, if the R? value deviates significantly from 1, this implies
that the model has a limited explanatory power. The RMSE measures the extent to which
the predictions deviate from the actual outcomes. The significance of the RMSE lies in its
capacity to evaluate the efficacy of models, with lower values indicating higher accuracy in
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outcome prediction. The GBR model exhibited a significantly higher R? value compared
to the RFR and XGBoost models, as depicted in Figure 8. Additionally, the GBR model
demonstrated a considerably lower RMSE value than the RFR and XGBoost models. The

GBR model not only displayed a better fit with the experimental data but also achieved
higher prediction accuracy.
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Figure 8. Comparison of the RMSE and R2 obtained for the models: (a) friction coefficient and
(b) wear rate.
The tribological properties of PTFE composites were predicted using the GBR model.
The comparison between the predicted values of the friction coefficient and wear rate
in Figure 9 demonstrates a high level of agreement with the actual values. The GBR
model accurately captured the overall change in the tribological properties, despite some
discrepancies between the predicted and real values in certain samples. This numerical
result provides support for the screening of the limits of a material’s working conditions.
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Figure 9. The difference between the predicted and true values of the GBR model: (a) friction
coefficient and (b) wear rate.

Currently, analyses of the impact of working conditions on tribological properties are
often confounded by extraneous factors. For example, when analyzing the effect of speed
on the coefficient of friction, the temperature and load can cause interference. In this study,
we employed an ML method to investigate the quantitative impact of a single working
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condition on the tribological properties while disregarding other concurrent working con-
ditions. The heat map of an ML method is a powerful tool for visualizing the correlation
between variables. The correlation coefficient becomes stronger as the color darkens, while
it weakens as the color lightens, as illustrated in Figure 10. The correlation coefficients, rep-
resenting the degree of association between the friction coefficient, wear rate, and various
factors, such as temperature, load, and speed, were found to be 0.067, —0.84, —0.32, 0.46,
—0.47, and —0.55, respectively. The positive values of these coefficients indicate a positive
correlation between the friction coefficient and wear rate and the respective variables, while
the negative values suggest a negative correlation. The numerical results obtained from
the study provide valuable insights into the influential factors affecting the tribological
properties of PTFE composites. Notably, the results demonstrate that the friction coefficient
and wear rate are primarily influenced by the load and speed, which emerge as the most
significant working conditions. The positive correlation with load suggests that an increase
in the load corresponds to an increase in the friction coefficient. Conversely, the negative
correlation with velocity implies that higher velocities are associated with lower friction
coefficients. This analysis underscores the importance of understanding the individual
contributions of working conditions in tribological studies. The intricate interplay between
load and velocity elucidates their paramount roles in influencing the performance of PTFE
composites. The aforementioned findings contribute to a more nuanced comprehension of
the tribological behavior exhibited by materials, thereby facilitating targeted enhancements
and optimizations in relevant industrial applications.
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Figure 10. The degrees of influence of different working conditions on tribological properties:
(a) friction coefficient and (b) wear rate.

4. Conclusions

In this communication, the tribological properties of PTFE composites, which provide
data support for the predictions of ML models, were investigated through experiments and
ML. The corresponding conclusions are as follows:

1. The transition from boundary lubrication to elastohydrodynamic lubrication and the
formation of a continuous lubricating film play crucial roles in reducing the friction
coefficient and wear rate.

2. The GBR model exhibited better predictive capabilities for both the friction coefficient
and wear rate compared to the RFR and XGBoost models.

3. The correlation coefficients between the temperature, load, and speed with the friction
coefficient and wear rate were calculated, revealing that the load and speed are the
most significant factors influencing the tribological properties of PTFE composites.

The present study offers a valuable direction for the implementation of ML in tribology,
thereby presenting a more efficient approach to material selection and design.
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Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/polym16030356/s1. Table S1: Friction coefficient of PTFE composites;
Table S2: Wear rate of PTFE composites; Figure S1: Worn morphologies under different speeds,
temperatures, and loads.
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