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Abstract: Polylactic acid (PLA) is a versatile and sustainable polymer used in various applications.
This research explores the use of orotic acid (OA) and ethylene bis-stearamide (EBS) as nucleating
agents to enhance the quiescent crystallization of PLA within the temperature range of 80 ◦C to
140 ◦C. Different blends were produced via melt processing before analyzing via DSC, XRD, and SEM.
Our results show that both nucleating agents significantly accelerated the crystallization process
and reduced the incubation time and the crystallization half-time. The most promising results were
obtained with 1% EBS at 110 ◦C, achieving the fastest crystallization. The XRD analysis showed
that at 80 ◦C, the disordered α’phase predominated, while more stable α phases formed at 110 ◦C
and 140 ◦C. Combining the 1% nucleating agent and 110 ◦C promotes densely packed crystalline
lamellae. The nucleated PLA exhibited a well-organized spherulitic morphology in agreement
with the Avrami modeling of DSC data. Higher nucleating agent concentrations yielded smaller,
more evenly distributed crystalline domains. Utilizing OA or EBS in PLA processing could offer
enhanced properties, improved processability, and cost-efficiency, making PLA more competitive in
various applications.

Keywords: polylactic acid (PLA); organic nucleating agent; crystallization behavior; quiescent
conditions; differential scanning calorimetry

1. Introduction

Biobased polymer materials have gained increased attention during the last decade
with various applications, including medical devices, rigid packaging, and agriculture.
Biobased materials are derived from renewable resources such as plants, agricultural
residues, and algae. Unlike fossil-based materials, the production and decomposition of
biobased materials generally result in lower net greenhouse gas emissions [1–3]. Biobased
materials often have lower levels of toxic additives and chemicals than their conventional
counterparts. This reduces the pollution and health risks associated with manufacturing,
use, and disposal. Additionally, some biobased materials can be part of circular economies,
where products are designed for reuse, recycling, or composting. This minimizes waste and
extends the lifespan of materials, contributing to a more sustainable consumption pattern.
Among these materials, polylactic acid (PLA) is the most promising.

PLA is a biobased and biodegradable material from renewable resources such as starch
and wheat. PLA refers to a family of materials that share slightly different characteristics.
PLA has two stereoisomers, namely the L-lactic and the D-lactic acid. The three forms of
PLA that are commercially available include the following: pure L-lactide, pure D-lactide,
and a mix of L and D-lactide (meso-lactides). Relatively pure L-feed and D-feed PLA are
referred to as PLLA and PDLA, respectively [4]. Typical commercial grade PLA with high
crystallinity contains a majority of L-feed mixed with a minimum of 1–2% D-feed content,
whereas the amorphous grades may contain up to 20% D-feed.

Polymers 2024, 16, 320. https://doi.org/10.3390/polym16030320 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16030320
https://doi.org/10.3390/polym16030320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-9640-8179
https://doi.org/10.3390/polym16030320
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16030320?type=check_update&version=1


Polymers 2024, 16, 320 2 of 19

A significant drawback limiting PLA applications is the slow and uncontrollable
crystallization kinetics. Indeed, high and controlled crystallization in the final product
can significantly impact the mechanical behavior of this product. Harris et al. showed
that PLA with 20% crystallinity could achieve 20% higher flexural modulus than the
same amorphous PLA. As the crystallinity further increased to 40%, the flexural modulus
increased by another 25% [5].

Four crystalline forms of PLA can be developed in PLA depending on the composition
and crystallization conditions. PLA’s most common crystalline structure is α form [6,7],
which crystallizes from the melt or solvents under quiescent conditions. The disordered α

form, known as the α′ crystal, is formed from a melt or solvent but at a lower temperature
(<120 ◦C) [8–10]. The β form is usually formed under high shear forces and tempera-
tures [11,12]. The γ crystal is mainly obtained from the hexamethylbenzene substrate
via epitaxial growth and is rarely observed in other conditions [13]. Recently, a unique
crystal form, the stereocomplex crystal (SC-crystal), received significant attention. The
melting point of SC-crystal is 230 ◦C, which is 50–70 ◦C higher than the other PLA crystal
forms [13,14]. Recent research by Han et al. and Ma et al. shows that the formation of SC
crystals is an effective method to enhance the physical and mechanical properties of PLA
products [15,16].

The crystallinity of PLA can be enhanced by employing methods such as isothermal
annealing [17–21], polymer blending [4,22–26], and strain-induced crystallization during
processing [27–35]. Isothermal annealing at temperatures of 85–115 ◦C for an extended
time has been reported to initiate and develop the crystalline domains for injection-molded
amorphous PLA samples [21,28].

Nucleating agents have been used to increase the nuclei density and crystallization rate.
Mineral-based inorganic nucleating agents have been used to enhance the crystallization
behaviors of PLA. It was demonstrated that the nucleation density of PLA can be increased
by 600% with the addition of 6% talc [36]. Carbon nanotubes (CNTs) were also identified
as efficient nucleating agents to promote the crystallization behaviors of PLA. Through
polymer grafting, 5–10 wt.% PLA-g-CNT can increase the degree of crystallinity of PLA by
12–14% and reduce the half-crystallization time (t1/2) from 4.2 min to 1.9 min [37–39].

Compared to inorganic nucleating agents, the focus on organic nucleating agents
has increased more recently. Many organic additives are derived from renewable sources
and are more likely to be biodegradable than inorganic ones. Organic additives can also
enhance the biocompatibility of PLA products. Qiu et al. observed that the crystallization
density of PLLA increased by >200% by adding 0.3 wt.% of orotic acid (OA) [40]. Gao et al.
observed that 1 wt.% of OA can reduce the crystallization time of PLA from 80 min to
<5 min and reduce the energy barrier required for crystallization from 90 ◦C to 70 ◦C during
the injection molding process [41].

EBS (ethylene bis-stearamide) is a synthetic wax-like compound commonly used
as a processing aid and lubricant in various industries. It is derived from the reaction
of ethylenediamine with two molecules of stearic acid, resulting in a long-chain amide
compound. However, EBS has not been widely recognized as nucleating agents for PLA and
other biopolymers [42,43]. Harris et al. reported that 2% of EBS increased the crystallization
of PLA3001D from NatureWorks to 18% compared to 10% for neat PLA. In total, 2% of EBS
was also reported to decrease the annealing time required by 50% for PLA3001D to reach
40% crystallinity [5]. Limited research has focused on the effect of different concentrations of
organic nucleating agents. Moreover, studies used different polymer processing techniques,
which can affect crystallization through shear and are, thus, not directly comparable.

In this research, the efficiency of two organic nucleating agents, orotic acid (OA) and
ethylene bis-stearamide (EBS), are investigated using differential scanning calorimetry
(DSC) isotherm studies at different isotherm temperatures. The objective of this work is
the analysis of crystallization dynamics and the morphology obtained under quiescent
conditions (i.e., without the introduction of any shear effects). A pure commercial-grade
PLA was selected for this research. The degree of crystallinity, crystallization rate, and
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incubation time are investigated on neat PLA, the PLA-OA blend, and the PLA-EBS blend
with different concentration levels. The phases and morphology of the crystalline structures
obtained in the PLA samples were examined using X-ray diffraction and directly observed
via scanning electron microscope (SEM).

2. Materials and Methods
2.1. Material Selection

A PLA crystallization investigation was conducted using Ingeo 2500HP obtained from
NatureWorks LLC (Plymouth, MN, USA). The extrusion grade of PLA contains PLLA
blended with <2% PDLA and can be fabricated into semi-crystalline samples. The material,
provided in pellet form, was dried at 40 ◦C for 12h before any characterization. Table 1
summarizes the main properties of the commercial PLA.

Table 1. Main PLA properties. (* molded crystalline with a 120 ◦C mold temperature; the formula
included 1 wt% of the nucleating agent (LAK-301, Takemoto Oil & Fat, Gamagori-shi Japan)).

Properties Ingeo 2500HP ASTM Standard

Specific gravity 1.24 D792 [44]

MFR, g/10 min (210 ◦C, 2.16 kg) 8 D1238 [45]

Relative viscosity (in 1.0 g/dL chloroform, 30 ◦C) 4.0 D5225 [46]

Highest crystallization melting point *, ◦C 160–180 D3418 [47]

Two nucleating agents were considered to promote crystallization as follows: (1) 97%
anhydrous orotic acid (OA) from MilliporeSigma (Burlington, MA, USA), and (2) N,N’-
ethylene bis stearamide (EBS) from Acme-Hardesty Co. (Blue Bell, PA, USA). Both nucleating
agents were received as white powders and dried separately at 100 ◦C for 2h. The nucleating
agents were mixed with the PLA according to the concentrations shown in Table 2. The batch
names indicate the selected nucleating agent and the weight concentration.

Table 2. Definition of different batch samples for the experimental investigation.

Batch Name Nucleating Agent Concentration (wt.%)

Neat PLA N/A N/A

PLA-0.3OA Orotic acid 0.3

PLA-1OA Orotic acid 1

PLA-2OA Orotic acid 2

PLA-0.3EBS EBS 0.3

PLA-1EBS EBS 1

PLA-2EBS EBS 2

2.2. Sample Preparation

The neat PLA was compounded with additives and then quiescently crystallized into
the samples. These samples were directly characterized by their crystallization kinetics and
morphology. The cryo-fracturing technique and chemical etching were used to create a
fractured surface for the direct observation of crystalline structures. Details about each step
of the sample preparation procedure are introduced below.

2.2.1. Compounding

The PLA and nucleating agents were mixed using a static batch mixer (C.W. Brabender
Intelli-Torque Plasti-corder, C.W. Brabender Inc., South Hackensack, NJ, USA). For each
batch (cf. Table 3), 50 g of neat PLA and a specific amount of the nucleating agent were
dry-mixed and then fed into the mixing chamber. A flat temperature profile of 200 ◦C was
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used. Each sample was processed at a rotational speed of 100 rpm for 5 min after stabilizing
the mixing torque to ensure uniform mixing. The mixed samples were collected and stored
in sealed bags at the end of the run. In between runs, a purging compound (Dyna-purge
D2, Dyna-purge, Buffalo, NY, USA) was used to clean the mixing chamber.

Table 3. Degree of crystallinity of PLA samples measured from the DSC isotherm.

PLA Batch

Degree of Crystallinity (%)

Isotherm Temperature

80 ◦C 110 ◦C 140 ◦C

Neat PLA 2.5 50.5 9.1

PLA-0.3OA 7.9 43.0 62.2

PLA-1OA 14.7 36.4 51.6

PLA-2OA 35.5 37.4 53.2

PLA-0.3EBS 7.8 41.2 3.9

PLA-1EBS 8.8 40.4 44.6

PLA-2EBS 6.9 41.4 55.3

2.2.2. Quiescent Crystallization

The compounded samples were shaped into disks under quiescent isothermal condi-
tions to allow morphological characterization. The samples were cut into smaller pieces
(~10 g) and then arranged in aluminum pans (diameter 70 mm, height 10 mm) to avoid any
shear effect on the material. The samples were placed between two hot plates (4394, Carver
Compression Molder, Carver, Inc., Wabash, IN, USA), and the temperature was initially
stabilized at 220 ◦C. No pressure was applied. After 60 min, water cooling was used to cool
the samples to an isotherm temperature value, which kept below the crystallization point.
Three different isotherm temperatures (i.e., 80 ◦C, 110 ◦C, and 140 ◦C) were investigated.
The isotherm time was selected to be 60 min to ensure sufficient crystallization. Overall, a
total of 21 disk-shaped samples were fabricated and further prepared for characterization.

2.2.3. Sample Etching Procedure

The samples were cryo-fractured to create a flat cross-sectional area to allow the
observation of crystal morphology. Each sample was first notched (depth: 1–2 mm) using a
bench saw, then kept in a freezer at −20 ◦C for more than two hours before cracking using
pliers. The fractured samples were then chemically etched to expose the crystal structures
according to the following procedure:

• In total, 5 g of sodium hydroxide (NaOH), purchased from Sigma-Aldrich (Millipore
Sigma, Saint Louis, MO, USA), was dissolved in 250 mL of water to achieve a 0.5 mol/L
concentration. Twenty-one clean glass bottles with lids were prepared to etch and
hold the PLA samples. The liquid prepared was distributed into 21 bottles.

• Etching: the 21 PLA samples prepared with quiescent crystallization were immersed
individually into the solution in glass bottles for 12 h.

• Cleaning: After etching, samples were kept in the bottles for 20 min at 25 ◦C in
an ultrasonic bath (Branson CPX 2800H, Brookfield, CT, USA) to remove residual
particles. After cleaning, the samples were removed from the etching solvent and
dried with compressed air. The samples were then kept in sealed bags individually
for further characterization.

2.3. Characterization Techniques
2.3.1. Isothermal Differential Scanning Calorimetry

Differential scanning calorimetry (DSC, 3+ system, Mettler Toledo, Columbus, OH,
USA) was used to gain a fundamental understanding of the phase transitions and the
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melting behavior of the different samples. Fresh samples weighing 5.0–8.0 mg were
prepared from the edges of the disk-shaped samples for each DSC run at all isotherm
temperatures. Of particular interest was the effect of different concentrations of nucleating
agents on the crystallization of PLA. A DSC isothermal test protocol (cf. Figure 1) was
defined according to the following steps:

• Segment 1: Heat the sample from 25 ◦C to 240 ◦C at 20 ◦C/min, followed by an
isotherm at 240 ◦C for 3 min. This segment was intended to melt and remove all
thermal history of the pellets. The 3 min isotherm ensured the complete melting of
the sample.

• Segment 2: Cool the sample rapidly using the maximum cooling rate at 60 ◦C/min
to various isothermal temperatures (80 ◦C, 110 ◦C, and 140 ◦C). This segment is
intended to quench the PLA polymer melt to the designed isotherm temperature using
the maximum cooling rate, thus minimizing the crystallization behavior during the
cooling period.

• Segment 3: The abovementioned isotherm temperatures are held for 60 min. This
segment was intended to capture the crystallization process of PLA even with low
concentrations of additives and at low temperatures. The 60 min holding time ensures
no additional crystallization at the current temperatures and concentrations.

• Segment 4: Heat the sample at 10 ◦C/min to 240 ◦C. The degree of crystallinity
achieved from the isotherm was quantified from the melting peak observed during this
heating segment. The degree of crystallinity (XC) was calculated using the following:

XC =
∆Hm − ∆Hc

∆HM
× 100 (1)

where ∆Hm is the melting enthalpy [J/g], ∆Hc is the cold crystallization enthalpy [J/g],
and ∆HM is the melting enthalpy of a PLA crystal of infinite size. The latter was assumed
to be 93 J/g, as obtained from the literature [48].
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All DSC experiments were conducted on the PLA-OA, and PLA-EBS compounded
using the static batch mixer. Different samples obtained from each batch were tested
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using preliminary DSC tests with only one heating cycle from 20 to 240 ◦C, and each
batch presented similar melting points and melting peaks, hence suggesting homogeneous
mixing. The isotherm DSC experiments were conducted for each batch without replication.

The kinetics of the crystallization process, observed from the DSC experiments, were
quantified using the following Avrami equation:

vc = 1 − exp
[
−K(t)n] (2)

where vc is the volumetric fraction of the converted phase at time t; K is the crystallization
rate constant; and n is the Avrami index. However, the Avrami equation only describes
the crystallization process after it has been initiated and does not account for the incu-
bation time. The incubation time highly depends on the temperature and the polymer
material [49–51]. In this work, the effect of the incubation time on PLA crystallization was
quantified using the time derivative of the modified Avrami equation [41]:

dQ
dt

= ∆Hc·K·exp
[
−K(t − t0)

n]·n·(t − t0)
n−1 (3)

where dQ
dt is the heat flow obtained from the DSC isotherm test, ∆Hc is the enthalpy of

crystallization per unit mass, K is the crystallization rate constant, t0 is the incubation time,
and n is the Avrami index for isotherm crystallization.

2.3.2. X-ray Diffractometry

The crystalline phase morphology and the distance between adjacent crystal planes
were characterized via X-ray diffractometry (XRD, Rigaku SmartLab II, Rigaku USA, The
Woodlands, TX, USA). The XRD experiments were performed using Bragg–Brentano
geometry (Cu-Kα source, 1.54184 Å, 40 kV, 50 mA). A step scan protocol with a step
size of 2θ = 0.002◦ and a scanning speed of 2θ = 5.0◦/min was defined. An area of the
5 mm × 5 mm section at the center of each sample was scanned. The Cu-Kα2 signal was
removed from the raw signal numerically and corrected for any shift in the diffraction
angle. A Pearson VII peak function was utilized to fit the peaks and extract quantitative
peak data, such as the peak center, full width at half maximum (FWHM), etc. [52].

f (x) = a

[
1 +

(x − d)2

b2

]−m

(4)

where a is the maximum height of the peak, d is the peak’s center, b is proportional to the
full width at half-maximum (FWHM), and m is the shape factor. When the exponent m = 1,
the shape becomes Cauchy; m = 2, modified Lorentzian; m = ∞, Gaussian [53].

The distance between adjacent crystal planes was calculated using Bragg’s Law:

nλ = 2d sin(θ) (5)

where n is an integer representing the order of the diffraction peak, λ is the wavelength
of the incident radiation, d is the lattice distance spacing between adjacent crystal planes,
also known as d-spacing, and θ is the angle between the incident X-ray beam and the
crystal plane.

2.3.3. Scanning Electron Microscopy

The morphology of the PLA samples was characterized using scanning electron
microscopy (SEM, JEOL JSM 6390, JEOL USA, Inc., Peabody, MA, USA). Before imaging,
the etched samples were sputter-coated (Denton Vacuum Desk IV Sputter Coater, Denton
North America, Moorestown, NJ, USA) using gold with a 3–4 nanometer thickness. An
acceleration voltage of 10 kV and a working distance of 15 mm was selected for all SEM
experiments. For each sample, multiple spots were scanned to ensure consistency. For
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each spot, micrographs were taken at 750×, 1500×, and 3000× magnifications to capture
different levels of detail on the crystalline domains. The micrographs were used to observe
crystal structures on fractured surfaces. The crystalline domain sizes were measured on
the 750× and 1500× micrographs using the image processing software ImageJ (National
Institute of Health, Bethesda, MD, USA).

3. Results and Discussion
3.1. Thermodynamics of Crystallization
Degree of Crystallinity

The results for the degree of crystallization, calculated from Segment 4 in the isotherm
DSC, for the different samples are summarized in Table 3. The second heating behaviors
for PLA-OA and PLA-EBS blends are presented in Figure 2.
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(a) neat PLA and PLA-OA blends, and (b) neat PLA and PLA-EBS blends. Detailed plots for PLA-OA
and PLA-EBS can be found in Figures S1 and S2 in the Supplementary Materials.

At 80 ◦C, the isotherm temperature is below the optimal crystallization temperature for
the selected PLA grade (i.e., 103–140 ◦C) [41]. However, it can be observed that with the aid
of OA, the degree of crystallization increased from 7.9% to 35.5% as the concentration of the
nucleating agent increased from 0.3% to 2%. This indicates that the degree of crystallinity
of PLA is highly affected by the concentration of OA, even at the isotherm temperature
below the optimal range. For PLA-EBS blends, the nucleating agent concentration seemed
to have a smaller effect on the degree of crystallinity at 80 ◦C (i.e., maintained at 6.9–8.8%).

When the isotherm temperature increased to 110 ◦C, the degree of crystallinity in-
creased significantly for both OA and EBS blends compared to the degree of crystallinity
achieved at 80◦C. A further increase to 140 ◦C resulted in a higher degree of crystallinity.
However, an exception was observed for the PLA-0.3EBS at 140 ◦C, for which the degree of
crystallinity decreased significantly to 4.6%.

Figure 3 presents the effect of the isotherm temperature and concentration of the
nucleating agent on the degree of crystallinity. For OA blends, the degree of crystallinity
followed an increasing trend as the isotherm temperature increased from 80 ◦C to 140 ◦C,
and the concentration affected the 80 ◦C samples significantly. The degree of crystallinity
increased as the concentration increased. However, for EBS blends, a low nucleating agent
concentration negatively affected the samples prepared at higher isotherm temperatures.
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The neat PLA offered the highest degree of crystallinity (i.e., 50.5%) at 110 ◦C. At the
same temperature, EBS and OA blends could not reach the same degree of crystallinity.
In fact, nucleating agents enhanced the polymer’s crystallization kinetics and promoted
the formation of smaller and more numerous crystalline structures, which could result in
more amorphous appearances due to a lack of growth of crystalline domains [21]. How-
ever, at lower temperatures (i.e., 80 ◦C), the degree of crystallinity increased from 6.5% for
neat PLA to a maximum of 35.5% for PLA-2OA. Overall, the nucleating agents expanded
the processing window for the PLA, which has relevant implications for manufacturing.
Indeed, the ability to increase the crystallization at lower temperatures significantly fa-
cilitates processing by allowing the use of a water-heating system. Moreover, the energy
consumption used for heating is reduced.

When comparing batches, the melt temperature of the PLA-EBS samples showed a
~4 ◦C decrease compared to the PLA-OA ones at the same isothermal temperatures. The
change in melt temperature was minimal but might affect the crystalline morphology and
adhesion between crystalline structures. It was also observed that at 80 ◦C, all DSC curves
showed a unique endothermic peak at ~160 ◦C. For all PLA-OA blends, the intensity of
this exothermic peak remained similar. However, for the PLA-EBS samples, the intensity
decreased as the concentration increased from 0.3% to 2%. The same endothermic behavior
was observed by other researchers [22,54,55] and could be related to the melting of α’
PLA crystals. In general, α’ crystals are a less stable form of crystalline PLA. They have
a less ordered and less dense molecular arrangement than α crystals. α’ crystals have a
lower melting temperature and mechanical strength than the α form. These crystals are
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formed when PLA chains have less packing density and exhibit some chain dislocations or
imperfections. The non-ideal crystallization temperature, low cooling rate, and the absence
of nucleating agents promote the formation of α’ crystals. The melting of α’ crystals is also
observed in all DSC curves, represented by the endothermic peak in the 142–155 ◦C range.
When the DSC scanning temperature surpasses their melting temperature, the α’ crystals
start to dissolve or transform into the more stable α phase, represented by the exothermic
peaks observed at ~160 ◦C. The absence of this unique exothermic peak indicates that there
is no α’ crystal existing at 160 ◦C that can be transformed into α-phase crystals. All α’
crystals formed during the isothermal segment were melted at 142–155 ◦C. The subsequent
XRD experiments further investigated the formation of α’ crystals and α crystals.

The crystallization kinetics were calculated according to the exothermic peaks in
Segment 3 (cf. Figure 1). The heat flow values were baseline corrected using a tangential
baseline before being treated, and Equation (3) was fitted to obtain the crystallization rate,
the Avrami index, and the incubation time. The relative degree of crystallization values
was obtained from integrating the heat flow data. The crystallization kinetics for PLA-OA
and PLA-EBS blends are summarized in Table 4.

Table 4. Crystallization kinetics of PLA-OA and PLA-EBS blends. Detailed plots can be found in
Figures S3–S6 in the Supplementary Materials.

Blends Isotherm
Temperature (◦C)

Crystallization Rate
(/min−n) Avrami Index Incubation Time

(min) t1/2 (min)

Neat PLA 80 0.0001 ± 2.92 × 10−6 1.0 ± 1.2 × 10−4 5.86 ± 2.2 × 10−4 34.2

Neat PLA 110 0.0012 ± 4.13 × 10−4 3.3 ± 0.02 0.5 ± 0.02 2.14

Neat PLA 140 0.002 ± 1.63 × 10−4 1.2 ± 0.002 0.32 ± 0.07 3.9

PLA-0.3OA 80 3.6 × 10−4 ± 3.7 × 10−6 2.0 ± 0.03 1.6 ± 0.2 23.6

PLA-1OA 80 0.0029 ± 3.4 × 10−5 1.9 ± 0.004 1.4 ± 0.03 19.2

PLA-2OA 80 0.00814 ± 6.5 × 10−5 1.7 ± 0.003 0.8 ± 0.01 16.9

PLA-0.3OA 110 1.149 ± 0.015 1.7 ± 0.02 0.8 ± 0.008 1.61

PLA-1OA 110 1.099 ± 0.029 1.8 ± 0.05 0.4 ± 0.01 1.45

PLA-2OA 110 1.482 ± 0.026 2.2 ± 0.04 0.1 ± 0.01 1.4

PLA-0.3OA 140 0.152 ± 0.006 2.2 ± 0.03 2.1 ± 0.02 4.6

PLA-1OA 140 0.179 ± 0.007 2.0 ± 0.03 2.1 ± 0.02 4.2

PLA-2OA 140 0.211 ± 0.017 2.3 ± 0.06 1.8 ± 0.04 3.7

PLA-0.3EBS 80 8.7 × 10−4 ± 1.1 × 10−5 2.7 ± 0.3 1.6 ± 0.2 17.8

PLA-1EBS 80 0.0084 ± 7.7 × 10−4 1.7 ± 0.01 1.2 ± 0.1 21.3

PLA-2EBS 80 0.0047 ± 0.0024 2.0 ± 0.1 1.0 ± 0.1 17.3

PLA-0.3EBS 110 1.285 ± 0.018 2.4 ± 0.02 0.2 ± 0.01 1.1

PLA-1EBS 110 2.190 ± 0.059 2.1 ± 0.1 0.2 ± 0.02 0.9

PLA-2EBS 110 1.294 ± 0.129 2.4 ± 0.1 0.2 ± 0.05 1.4

PLA-0.3EBS 140 0.050 ± 3.45 × 10−4 2.1 ± 0.2 1.6 ± 0.02 6.7

PLA-1EBS 140 0.017 ± 0.004 1.9 ± 0.02 1.6 ± 0.02 11.15

PLA-2EBS 140 0.193 ± 0.001 1.8 ± 0.01 1.6 ± 0.01 4.2

The crystallization peaks for both PLA-OA and PLA-EBS blends indicated that the
crystallization behavior is more intense at 110 ◦C than at 80 ◦C and 140 ◦C. For PLA-OA
blends, the initial crystallization rate was found to be the lowest at 80 ◦C for PLA-0.3OA, and
the highest crystallization rate was 1.482 min-n at 110 ◦C for PLA-2OA. The crystallization
rate increased by two or more orders of magnitude at 110 ◦C. At 110 ◦C, there were no
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significant thermal behaviors after ~500 s during the isotherm segment. However, the
crystallization behavior was not completed after 40 min at 80 ◦C. The initial crystallization
rate also increased with a higher OA concentration.

The crystallization half-time (t1/2), the time a sample takes to reach 50% relative
crystallinity, provides critical crystallization information for process optimization and
predictive modeling. Indeed, it captures the effect of both initial nucleation and the growth
of crystalline domains, which occur in the later stage of crystallization behavior. It also
provides more general information about the crystallization process and is easier to obtain
than the crystallization rate (k) (cf. Equation (3)). The crystallization half-time indicated
that PLA-2OA and the isotherm temperature of 110 ◦C provided the fastest nucleation and
growth. However, the differences between different concentrations were minimal. The
crystallization half-time changed from 1.4–1.61 min at 110 ◦C to 3.7–4.6 min at 140 ◦C.

The isotherm DSC results showed that EBS blends were characterized by a higher
degree of crystallinity, a faster initial crystallization rate, lower incubation time, and shorter
crystallization half-time. The PLA-EBS blends also showed sharper and narrower crystal-
lization peaks at 110 ◦C compared to 80 ◦C and 140 ◦C (cf. Figures S3 and S5 in Supplemen-
tary Materials). Unlike PLA-OA blends, the initial crystallization rates were the highest at
1% EBS at 80 ◦C and 110 ◦C, while at 140 ◦C, the crystallization rate was the lowest at 1%.
However, the PLA-1EBS blend showed a wider crystallization peak, indicating that crystal-
lization growth was enhanced at this condition. The degree of crystallization was 44.6% for
PLA-1EBS at 140 ◦C. This also confirmed that even though the initial crystallization rate
was lower, the intensity of molecular movement was significant enough for the nucleation
sites to grow into crystalline structures.

The effects of isotherm temperature and the concentration of nucleating agents on
the crystallization kinetics are shown in Figure 4. At the 110 ◦C isotherm temperature, the
crystallization rate was the fastest, while the incubation time and crystallization half-time
were the lowest.
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The Avrami index (n) provides information about the nucleation and growth mecha-
nism during crystallization. The value of n can vary, and different values suggest different
crystallization mechanisms as follows:

n = 1: Indicates that the crystallization occurs through one-dimensional growth. This
suggests that the growth of crystalline structures is linear (e.g., fibric growth, shish-kebab
structures).

n = 2: Suggests that crystallization occurs through three-dimensional growth. This
indicates that the crystalline structure growth is volumetric (e.g., disc-shaped structures,
spherulites).

n > 2: Suggests heterogeneous nucleation and/or diffusion-controlled growth mecha-
nisms.

The Avrami index for all tested samples was between 1.7 and 2.4, indicating that major
crystalline structures were either disc-shaped crystals or spherulites. This observation is
also supported by other research [30,56] and following SEM imaging analysis.

3.2. Polymorphic Analysis of Crystalline Domains

The DSC data in Figure 2 suggest the formation of both α and α’ crystals. The XRD
curves of all samples are presented in Figure 5 and can be compared with the XRD patterns
for the α and α´phase according to standard files to further prove the phase differences.
Neat PLA samples crystallized at the same conditions were characterized as baselines for
the raw material. The peak centers of the most significant peaks (200) are summarized
in Table 5. The interplanar spacing of the crystal planes was calculated based on the
(200) peaks.
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Table 5. Peak centers and Basal distance spacing (d-spacing) obtained from XRD measurements of all
PLA-OA and PLA-EBS samples according to (200) peaks.

Sample Isotherm
Temperature (◦C) 2θ (◦) D-Spacing (Å)

Neat PLA 80 16.31 5.48
Neat PLA 110 16.34 5.47
Neat PLA 140 16.67 5.36

PLA-0.3OA 80 16.49 5.43
PLA-0.3OA 110 16.70 5.36
PLA-0.3OA 140 16.55 5.41
PLA-1OA 80 16.34 5.47
PLA-1OA 110 16.85 5.31
PLA-1OA 140 16.61 5.39
PLA-2OA 80 16.45 5.44
PLA-2OA 110 16.63 5.38
PLA-2OA 140 16.72 5.35

PLA-0.3EBS 80 16.47 5.43
PLA-0.3EBS 110 16.69 5.36
PLA-0.3EBS 140 16.70 5.36
PLA-1EBS 80 16.46 5.43
PLA-1EBS 110 16.86 5.31
PLA-1EBS 140 16.64 5.38
PLA-2EBS 80 16.55 5.41
PLA-2EBS 110 16.61 5.39
PLA-2EBS 140 16.57 5.40

The peak positions were compared using the JCPDS standards for α (JCPDS#00-064-
1624) and α´phases (JCPDS#00-064-1624). The (200) peak for the α phase is centered at
2θ = 16.62◦ and 2θ = 16.44◦ for the α´phase. The (200) peak positions of all samples
fabricated were between 2θ = 16.34◦ and 2θ = 16.86◦. Despite the systematic errors in
the XRD measurements, the crystalline structures in all samples were a combination of
the α´phase and α phase. Lower peak positions indicated a more significant amount of
α´phase, while higher peak positions suggested more α phase. Additionally, the α phase
crystals exhibit unique peaks at the following positions: (204) peak at 2θ = 20.71◦, (213) peak
at 2θ = 23.92◦ and (207) peak at 2θ = 27.36◦. The peak center positions of the common
peaks for α and α´phases are very close and hard to separate numerically. The existence of
the α phase was determined by the (207) peak and is indicated by the red dotted lines in
Figure 6. The samples showed a significant peak at the (207) peak location, indicating the
existence of phase crystals. Otherwise, most crystal structures were α´phase if no peak was
observed at the (207) peak position. The XRD scans suggested that the α´phase was the
majority phase of the crystals in all neat PLA samples, while PLA-OA and PLA-EBS blends
were crystallized at 80 ◦C. This observation confirms the DSC analysis, where significant
exothermic peaks were observed at around 160 ◦C, representing the α´ to α phase transition
during heating.

The d-spacing data, describing the distance between adjacent crystal lattice planes
within a crystalline material, of the (200) crystals are presented in Table 5. The standard
d-spacing for the (200) crystal in the α´phase is 5.39 Å, and 5.33 Å in the α phase, according
to ICDD files. The lowest d-spacing values (5.31 Å) were found on PLA-1OA and PLA-
1EBS samples crystallized at 110 ◦C. The value was smaller than the ICDD standard value,
indicating that nucleating agents improved the molecular orientation compared to ICDD
conditions, thus resulting in densely packed molecular chains and crystalline structures.
Decreasing or increasing the nucleating agent concentration disrupted the well-oriented
molecular chains and led to larger d-spacing values.
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PLA-EBS samples.

The isotherm temperature mostly dominated the d-spacing values. Figure 6 presents
the effect of the isotherm temperature and concentration on the d-spacing of crystalline
domains. This trend showed the smallest d-spacing values at a 110 ◦C isotherm temperature
with 1% of nucleating agents adopted. This indicated that at 110 ◦C and a 1% nucleating
agent concentration, the distance between the PLA crystalline lamellae was the lowest.
Hence, the most perfect crystals were formed under this condition.

3.3. Crystallization Morphology

The crystallization morphology was characterized using SEM images taken from the
same conditions. Table 6 summarizes the SEM images obtained at a magnification of 750×.
A micrograph of neat crystallized PLA is shown in Table 7 as a reference.



Polymers 2024, 16, 320 14 of 19

Table 6. SEM images (750×) of PLA-OA and PLA-EBS samples.
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Table 7. SEM images (750×) of neat PLA crystallized at 80 °C, 110 °C, and 140 °C for 45 min. 
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The radius of individual crystal structures was measured directly from the SEM im-
ages at 750× magnification, and the results are summarized in Table 8. All crystalline do-
mains showed a disc/circle shape, indicating that the crystalline structures are spheru-
lites/lamellae in growth. The results confirmed the Avrami index values obtained from the 
isotherm DSC analysis. 

Table 8. Radius of crystalline domains in PLA-OA and PLA-EBS samples. 

 Isotherm Temperature 
 80 °C 110 °C 140 °C 

PLA-0.3OA 7.8 ± 1.0 μm 22.6 ± 5.2 μm 11.7 ± 1.4 μm 
PLA-1OA 9.2 ± 0.6 μm 15.6 ± 2.4 μm 7.8 ± 0.7 μm 
PLA-2OA 8.8 ± 1.0 μm 10.8 ± 2.0 μm 6.5 ± 1.0 μm 

PLA-0.3EBS 7.2 ± 2.4 μm 8.0 ± 2.0 μm 40.0 ± 5.2 μm 
PLA-1EBS 9.3 ± 0.5 μm 9.0 ± 1.5 μm 11.5 ± 1.2 μm 
PLA-2EBS 10.0 ± 1.5 μm 9.0 ± 1.2 μm 8.0 ± 0.5 μm 

Compared to neat PLA crystals (i.e., radius of 54.5 ± 2.0 μm), all samples fabricated 
with the nucleating agents had smaller crystalline domain sizes. Additionally, relatively 
higher nucleation densities were found in all PLA-OA and PLA-EBS samples, indicating 
that both OA and EBS acted as nucleating agents to provide heterogeneous nucleation 
sites for PLA spherulitic growth. In all 80 °C samples, the crystalline domain density was 
lower than 110 °C and 140 °C samples, and only a small amount of crystal structures could 
be observed. This supported the observation of a low degree of crystalline in the 80 °C 
samples. In samples crystallized at 110 °C, nucleation density and crystalline domain sizes 
were relatively high, and the interfaces between crystalline domains were observed on the 
fractured surfaces. In samples crystallized at 140 °C, the mean crystalline sizes were 6.5 ± 
1.0 μm to 11.7 ± 1.4 μm, except for the PLA-0.3EBS sample. The radius of the crystal struc-
ture of PLA-0.3EBS was measured as 40.4 ± 5.2 μm, which is closer to the value for neat 
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The radius of individual crystal structures was measured directly from the SEM
images at 750× magnification, and the results are summarized in Table 8. All crys-
talline domains showed a disc/circle shape, indicating that the crystalline structures are
spherulites/lamellae in growth. The results confirmed the Avrami index values obtained
from the isotherm DSC analysis.

Table 8. Radius of crystalline domains in PLA-OA and PLA-EBS samples.

Isotherm Temperature

80 ◦C 110 ◦C 140 ◦C

PLA-0.3OA 7.8 ± 1.0 µm 22.6 ± 5.2 µm 11.7 ± 1.4 µm

PLA-1OA 9.2 ± 0.6 µm 15.6 ± 2.4 µm 7.8 ± 0.7 µm

PLA-2OA 8.8 ± 1.0 µm 10.8 ± 2.0 µm 6.5 ± 1.0 µm

PLA-0.3EBS 7.2 ± 2.4 µm 8.0 ± 2.0 µm 40.0 ± 5.2 µm

PLA-1EBS 9.3 ± 0.5 µm 9.0 ± 1.5 µm 11.5 ± 1.2 µm

PLA-2EBS 10.0 ± 1.5 µm 9.0 ± 1.2 µm 8.0 ± 0.5 µm

Compared to neat PLA crystals (i.e., radius of 54.5 ± 2.0 µm), all samples fabricated
with the nucleating agents had smaller crystalline domain sizes. Additionally, relatively
higher nucleation densities were found in all PLA-OA and PLA-EBS samples, indicating
that both OA and EBS acted as nucleating agents to provide heterogeneous nucleation
sites for PLA spherulitic growth. In all 80 ◦C samples, the crystalline domain density was
lower than 110 ◦C and 140 ◦C samples, and only a small amount of crystal structures could
be observed. This supported the observation of a low degree of crystalline in the 80 ◦C
samples. In samples crystallized at 110 ◦C, nucleation density and crystalline domain
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sizes were relatively high, and the interfaces between crystalline domains were observed
on the fractured surfaces. In samples crystallized at 140 ◦C, the mean crystalline sizes
were 6.5 ± 1.0 µm to 11.7 ± 1.4 µm, except for the PLA-0.3EBS sample. The radius of the
crystal structure of PLA-0.3EBS was measured as 40.4 ± 5.2 µm, which is closer to the
value for neat PLA samples. Additionally, the nucleation density, indicated by the number
of individual crystalline domains observed in the SEM images with 750× magnification,
was much lower than the PLA-1EBS and PLA-2EBS samples. This also supports the
low degree of crystallinity in the PLA-0.3EBS sample. The crystallization condition at
140 ◦C and low concentration of EBS provided a low crystallization density, and the high
crystallization temperature allowed more intense molecular movement, resulting in better
molecular alignment. The nucleation density was much higher in PLA-1EBS and PLA-2EBS
samples at 140 ◦C as more nucleation sites were provided. As a result, the sizes of the
individual crystalline domains were smaller since there were not enough free volumes for
the crystalline domains to grow.

Additionally, the variation in the crystal sizes was significantly lower with PLA-2OA
and PLA-2EBS samples compared to PLA-0.3OA and PLA-0.3EBS samples. This also
confirmed that the material achieved a state where most of the crystallites reached their
thermodynamically favored size at higher concentrations. Under such conditions, the
energy barriers for crystal growth and nucleation are balanced, leading to a distribution
of relatively similar crystallite sizes. Achieving a state of more stable crystal sizes can
improve material properties, such as mechanical strength, thermal stability, and degrada-
tion stability. Controlled crystallization processes at higher isotherm temperatures during
PLA processing can influence the crystallites’ size and arrangement, impacting the final
products’ performances.

Overall, the nucleation domain to initialize the crystallization of neat PLA is (a) meso-
lactide and (b) SC-crystals [36,57]. Both nucleation sites are rare in neat PLA due to the high
l-lactide in polymerization for the PLA 2500HP and the high-temperature requirement for
forming sc-crystals. Orotic acid and EBS serve as nucleating agents for PLA via introducing
nucleation sites. As a result, the number density increased, and the sizes of nucleation
domains were smaller. Additionally, the hydrogen bonding between the nucleating agent
and PLA altered the chemical structures when blended [58]. This also affected the mobility
of the molecular chains and the thermodynamics of the crystallization behavior.

4. Conclusions

The experiments and analysis reported in this work suggest that both OA and EBS
can be effectively used as nucleating agents for PLA. The nucleating agents enhanced PLA
quiescent crystallization from 80 ◦C to 140 ◦C. OA and EBS significantly increased the initial
crystallization rate during quiescent isotherm annealing and reduced the incubation time
and crystallization half-time. The fastest crystallization rate and smallest crystallization
half-time were achieved in the case of blends containing 1% EBS at 110 ◦C.

Both nucleating agents efficiently reduced the energy barrier of nucleation by achiev-
ing high crystallinity at 80 ◦C, which is 40 ◦C lower than the recommended processing
temperature for PLA 2500HP. At 80 ◦C, the disordered α’phase was the primary phase in
all samples, while the more stable α phase was obtained in samples annealed at 110 ◦C and
140 ◦C. Combining the 1wt.% nucleating agent and isotherm temperature at 110 ◦C pro-
moted the smallest Basal distance spacing, indicating densely packed crystalline lamellae.

The well-organized and evenly distributed spherulitic morphology of the nucleated
PLA crystalline domains was observed on the cryo-fractured surfaces. The SEM micro-
graphs confirmed the calculated Avrami index values from the DSC experiments. It was
also observed that increasing the concentration of nucleating agents resulted in the forma-
tion of smaller and more evenly distributed crystalline domains.

Overall, the use of OA and EBS led to a higher degree of crystallinity at lower temper-
atures, smaller and more evenly distributed crystalline structures, a faster crystallization
rate, lower crystallization temperature, and lower crystallization half-time when compared
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to neat PLA. Hence, the blends are expected to improve the processability, reduce energy
consumption, and enhance the performance of semi-crystalline PLA products. Future
studies should consider the shear-induced effects of manufacturing conditions on the
blend morphology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16030320/s1, Figure S1: DSC curves for PLA-OA samples.
Curves showed melting behavior during the second heating cycle, (a) overall, (b) 80 ◦C, (c) 110 ◦C,
and (d) 140 ◦C; Figure S2: DSC curves for PLA-EBS samples. Curves showed melting behavior
during the second heating cycle, (a) overall, (b) 80 ◦C, (c) 110 ◦C, and (d) 140 ◦C; Figure S3: DSC
curves for PLA-OA samples. Curves showed heat flow data obtained during isotherm cycle, (a) 80 ◦C,
(b) 110 ◦C, and (c) 140 ◦C; Figure S4: Curves for relative degree of crystallinity for PLA-OA samples,
(a) overall, (b) 80 ◦C, (c) 110 ◦C, and (d) 140 ◦C; Figure S5: DSC curves for PLA-EBS samples. Curves
showed heat flow data obtained during isotherm cycle, (a) 80 ◦C, (b) 110 ◦C, and (c) 140 ◦C; Figure S6:
Curves for relative degree of crystallinity for PLA-EBS samples, (a) overall, (b) 80 ◦C, (c) 110 ◦C, and
(d) 140 ◦C.
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