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Abstract: This study investigated the internal stress distribution of unidirectional fiber-reinforced
plastics (UD-FRP) at the micro level using principal component analysis (PCA). The composite
material was simulated using a representative volume element model together with the embedded cell
approach. Two fundamental quasi-static load cases, transverse and longitudinal tensile deformation,
were considered. The experimental results show that mechanical failure occurred at 2.15 3= 0.06%
transverse tensile strain and at 1.52 £ 0.07% longitudinal tensile strain. Furthermore, the undamaged
state and a combination of matrix and interface damage, as well as fiber breakage, were simulated.
From the simulations, the octahedral shear stress and octahedral normal stress were computed at the
integration points of the matrix elements, constituting what is known as the octahedral stress field.
A modification on the PCA to obtain mesh-independent eigenvalues is presented and was used to
investigate the effects of damage events on the octahedral stress field. The results indicate that each
damage mechanism had a distinct signature in the redistribution of the stress field, characterized by
specific changes in the eigenvalues and orientation of the principal component (6;). Furthermore, the
PCA suggests that the accumulation of matrix damage began to be relevant at the 1% strain, while
fiber breakage began at an average longitudinal strain of 0.98 £ 0.12%. Additionally, it is shown
that the first principal component served as an indicator of the predominant stress state of the stress
field. This investigation suggests that the PCA can provide valuable insights regarding the complex
damage mechanisms of UD-FRP that may not be captured by conventional mechanical analysis.

Keywords: finite element analysis; representative volume element; principal component analysis;
unidirectional fiber-reinforced plastics; epoxy resin

1. Introduction

Fiber-reinforced plastics (FRPs) have exceptional specific mechanical properties, in
which their performance depends on the individual and combined properties of the matrix
and fibers, along with the fiber distribution and orientation. Thermoset matrices, character-
ized by high strength, stiffness, and fatigue resistance, along with carbon fibers, known
for their high strength and stiffness, and glass fibers, with lower strength and stiffness but
lower cost, are the still the preferred choice for high-performance composites in aerospace
and automotive applications [1-4], as well as for civil engineering applications [5], even
in demanding environments where carbon fibers exhibit high resistance to environmental
degradation [6]. However, their exceptional specific mechanical property application in
structural design is often constrained by concerns about sustainability and significant
costs [1]. Therefore, a detailed understanding of the damage mechanisms of the composite
is crucial to optimize the use of the material by increasing its mechanical performance [2,3,5].
Traditional experimental and analytical methods provide valuable insight for the early
design with FRP. However, due to its highly anisotropic nature, classical approaches are
often limited in describing the complex micromechanical damage progress that governs
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the overall mechanical performance of the composite [2-7]. For this reason, numerical
models have become popular for addressing the open questions regarding the interaction
of the various damage mechanisms, especially under combined load conditions. Finite
element methods (FEMs) in combination with representative volume element (RVE) models
have emerged as a well-known numerical approach in which the mean response of the
reinforced material is approximated by modeling the micromechanical interaction of a
small arrangement of fibers embedded within a polymer matrix [8-10]. Research indicates
that the mechanical response of the composite depends not only on the elasto-plastic or
viscoelastic properties of its individual constituents, but also on a wide range of microdam-
age interactions [11-13]. However, the accuracy of estimating mechanical properties or
predicting damage initiation is highly dependent on the models used and a representative
non-uniform fiber distribution [9,12]. For instance, accurate modeling of the matrix and
interface damage can be achieved by stiffness degradation and traction-separation laws,
respectively [14-16]. Moreover, the integration of RVEs with these damage laws has been
found to be very useful for the evaluating of localized stress concentrations, which are
critical for understanding the effects interface damage on the stiffness of FRP [9].

Even though valuable contributions have been made, most numerical analyses have
been confined to the validations of the damage model assumptions by comparing the
homogenized stress—strain output against traditional mechanical testing. While this is still
extremely valuable, a more profound understanding of the nature of the damage interac-
tions at the micro level, as well as their importance along different stages of the deformation,
is thrown out of the analysis by considering only its homogenized mechanical response.
Other works have taken a deeper look at the micro damage interaction. Zhu et al. [17] and
Baris et al. [18] have numerically investigated the effects of progressive fiber breakage on
the stress around broken fibers by interpreting it as a stress concentration factor. However,
this approach limits the scope of the results by restricting the analysis to a region of a few
fibers around a fiber break and by narrowing the interpretation of the stresses to a single
quantitative factor. A numerical study of the complete stress field distribution within the
matrix and its redistribution during a damage event is therefore likely to provide more
detailed information than a concentration factor. This sort of numerical investigation of the
matrix stress field has been performed before for unidirectional fiber-reinforced plastics
(UD-FRP) under dynamic-cyclic shear deformation [19]. Here, the redistribution of the
matrix stress field due to viscoelastic effects was obtained from micromechanical simula-
tions and analyzed graphically. A similar approach was used by Koch et al. [20], where the
visualization of simulated matrix strain and stress distributions was used to investigate
the tensile—tensile and tensile-compression fatigue behavior of UD-FRP. For the tensile—
tensile loading, the stress field is redistributed towards more tensile stresses, supporting
the assumption that the tensile stress is more critical than the compressive stress in terms
of crack initiation. However, the matrix stress fields, plotted as two-dimensional point
clouds, were only qualitatively interpreted as mere visual variations in the point clouds,
without discussing any other potential quantitative or numerical interpretation. More
recently, similar diagrams have been used to investigate the effects of fiber breakage on the
matrix stress field of UD-FRP under longitudinal tensile deformation [21]. In this case, the
diagrams were reinterpreted using principal component analysis (PCA), which showed
that a fiber break left a distinct mark on the redistribution of the matrix stress field, which
can be quantified by the principal components from PCA. Although a better interpretation
of the stress field was achieved, a relatively small RVE model was used. Additionally,
the analysis was limited to only one damage mechanism. Since the fibers tend to have a
uniform stress distribution, whereas the stresses in the matrix are non-uniform [22,23], the
matrix stress field can serve as a new indicator of the nature of the damage interactions at
the micro level. This procedure suggests that damage events may leave a distinct signature
when the matrix stress field is redistributed. However, no experimental evidence or ap-
proach has been reported to confirm this approach, since indirect methods, such as X-ray
diffraction and micro-computed tomography, have proven to be limited in measuring the
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internal stresses during loading [2]. Therefore, analytical and numerical analysis are the
only well-established methods for investigating the stress state at the micro level. However,
extracting and directly analyzing the internal stresses has proven difficult due to the large
and complex data involved [19,21]. Therefore, dimensional reduction techniques must be
extended and applied to more efficiently and deeply interpret the data.

PCA is a widely used dimensionality reduction technique to transform datasets of
potentially correlated variables into a new set of uncorrelated variables called principal
components [24,25]. Cheng et al. [26] showed the application of PCA to identify and classify
impact damage in carbon-fiber-reinforced plastics by processing thermal images from eddy
current pulsed thermography. However, the influence of single defects in the composite
could not be completely separated. Furthermore, PCA has been used extensively to analyze
data from acoustic emission sensors to characterize damages in laminated composites [27].
More recently, Sengodan [10] used PCA to predict the mechanical properties of arbitrary
microstructural designs applying convolutional neural networks. However, to the best of
the authors’” knowledge, PCA has not been used as a method to analyze the stress field
of micromechanical simulations and differentiate between damage mechanisms. This
approach can provide, however, valuable insights into complex damage behavior that may
not be captured by conventional mechanical analysis. Therefore, fundamental load cases
should be analyzed in the first place to evaluate the methodology.

In this paper, the microstructural damage of UD-FRP was analyzed using RVE models
and PCA. Furthermore, in order to establish the PCA methodology for this type of microme-
chanical numerical analysis, two fundamental load cases were investigated: transverse
tensile deformation, mainly dominated by the matrix, and longitudinal tensile deformation,
mainly dominated by the fiber. An undamaged state, as well as damage events modeled
as stiffness degradation laws for the matrix and interface, alongside fiber breakage, were
simulated. The stress field within the RVE matrix was obtained from the stress values
of each integration point, and PCA was used to transfer the stress field to an eigenvalue
problem. The eigenvectors and eigenvalues obtained were then analyzed and correlated
with the modeled damage mechanisms.

2. Materials and Methods
2.1. Specimen Preparation and Tensile Test

Unidirectional (UD) carbon fiber sheets were manufactured using a wet-filament
winding process with Araldite® LY556/HY917/DY070 epoxy resin (100:90:0.75) (Huntsman
Advanced Materials, Basel, Switzerland) and Toray T700 carbon fibers (Toray, Tokyo, Japan).
To minimize the influence of residual stresses, all UD sheets were cured at 80 °C for 4 h,
then post-cured at 120 °C for 10 h and cooled down to room temperature. Unidirectional
tensile specimens with fiber orientations of 0° (parallel to fiber) and 90° (transverse to fiber)
were cut from the UD sheets according to ISO 527-5 [28]. For quality control of the tensile
specimens, the microstructure and fiber volume fraction of the UD sheets were examined
by light microscopy using a VHX600k microscope (KEYENCE GmbH, Neu-Isenburg,
Germany). Microscopy images are shown in Appendix A (Figure Al). A self-written
image processing program was used to analyze the microscopy images, estimating the fiber
volume fraction by detecting and counting the fibers per unit area. The analysis showed
negligible porosity in the laminate, with an average fiber volume fraction of 53 & 1%.

Quasi-static tensile tests to failure were performed on the specimens using a Zwick
7150 universal testing machine (Zwick Roell, Ulm, Germany) equipped with a 150 kN load
cell. Three repetitions were performed for each loading condition, both longitudinal tensile
(parallel to the fiber) and transverse tensile (transverse to the fiber). The stress—strain curves
obtained are shown in Appendices A and B (Figures A4-A7).

2.2. Computational Micromechanics Modeling

Volumetric RVEs were generated in ABAQUS/Standard by a previously published
automatic generator [29]. Eight-node brick elements with reduced integration (C3D8R)



Polymers 2024, 16, 3000

4 0f 20

were used for all the elements. In addition, the center node of the RVE was considered
fixed (uy = uy = u; = 0), while displacement boundary conditions were applied to the
corresponding surface nodes. For each RVE, the fiber volume fraction was calculated
directly from the volume of the elements. For all simulations, an average fiber volume
fraction of 50.1 & 0.2% was obtained, which was comparable to that of the experimental
specimens. The fibers were modeled as transversal isotropic linear elastic with fiber
diameters of 6.9 um. Conversely, for the deformation analyzed (quasi-static tensile loading
with a maximum strain of 2%), the epoxy matrix could be assumed to behave as isotropic
linear elastic solid [29]. Non-linear deformation effects were therefore not considered. The
RVEs were based on Toray T700 carbon fibers with an Araldite® LY556/H917 epoxy matrix.
The mechanical properties are provided in Table 1.

Table 1. Mechanical properties of the fiber and matrix.

Mechanical Properties

Toray T700 Carbon Fibers [29] LY556/H917 Epoxy Matrix [30]

Longitudinal modulus [GPa] E I 230 3.15
Transverse modulus [GPa] E| 15 -

Longitudinal shear modulus [GPa] G 1 15 1.17
Transverse shear modulus [GPa] Gl 7 -

Longitudinal Poisson’s ration [-] vy 0.2 0.35
Transverse Poisson’s ration [-] vy 0.5 -
Tensile strength [MPa] oy 4900 93

| —parallel to the fiber direction, L —transverse to the fiber direction.

In this study, two fundamental load cases, transverse tensile deformation and longitu-
dinal tensile deformation along the fiber direction, were investigated. Thus, for transverse
tensile deformation, the matrix is the main mechanical contributor and dominates the
mechanical failure of the composite (matrix damage), while for longitudinal tensile de-
formation, the fibers are the main mechanical contributor and drive the failure response
mainly by fiber breakage. For each loading condition, a displacement equivalent to 2%
macroscopic strain was applied. Two different simulation studies were performed to inves-
tigate the mesh independence of the PCA implementation and the micromechanical stress
field of UD-FRP, respectively. For each simulation study, RVE models with specific fiber
arrangements and mesh configurations were used. Further details of the studies and RVEs
are provided in the following sections.

2.2.1. RVE for the Modified Mesh-Independent PCA Study

To ensure a reliable comparability of the internal stress distribution between different
RVE structures using PCA, potential effects caused by the model mesh size must be re-
moved. Therefore, any variation in the principal component (PC) will be a sole consequence
of the applied load, fiber distribution, or damage, if applicable. To investigate whether the
PCs were dependent on the model’s mesh, RVEs containing 1, 4, 9, and 25 fibers arranged
in a regular square pattern were generated. Furthermore, micromechanical damage was not
considered. To obtain identical stress fields for all the RVEs, periodic boundary conditions
(PBC) and shear coupling definitions were included by means of kinematic constraints in
the boundary nodes of the RVE [29]. Given the unidirectional orientation of the fibers, five
elements along the fiber direction were considered sufficient to accurately reproduce the
longitudinal deformation of the material. To avoid any numerical influence due to changes
in the mesh geometry or number of elements, each RVE was meshed by exactly replicating
the mesh on the unit cell (RVE with 1 fiber). For instance, an RVE with four fibers consisted
of four repetitions of the unit cell. Details regarding the RVEs can be found in Appendix A
(Figure A2).
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2.2.2. RVEs with Random Fiber Arrangements for the Micromechanical Stress Field Study

Three RVEs with 25 randomly distributed fibers were used to investigate the redistri-
bution of the micromechanical stress field due to matrix damage and fiber breaks at distinct
fiber distributions. The size of the RVE was 43.125 um x 43.125 um X 2 um, considering
that for UD-FRP it is sufficient to reproduce the longitudinal mechanical behavior accu-
rately [29,31]. The random sequential expansion algorithm developed by Yang et al. [32]
was used to achieve a more realistic fiber distribution. Since micromechanical damage
was considered, the use of PBC was not suitable. Instead, an embedded cell approach
(ECA) was integrated with the RVE to obtain a numerically valid mean solution for the
non-periodic domain [33,34]. To avoid stress discontinuities at the interface with the RVE,
a size of 150 um x 150 um x 2 um was selected for the ECA. In addition, the ECA was
assumed to be transversely isotropic linear elastic with mechanical properties defined by
the homogenized mechanical response of the associated RVE. In this case, the displacement
boundary conditions were applied to the corresponding surface nodes of the ECA.

2.2.3. Micromechanical Damage Modeling Approaches

Micromechanical damage was considered in the form of stiffness degradation of the
matrix elements (matrix damage) and fiber breaks. A visualization of the considered
damage mechanisms is shown in Figure 1. To solve the discontinuities induced by the
micro-cracks, the solver for the extended finite element method (XFEM) from ABAQUS was
used. Thus, all the fibers were defined as an XFEM region, where cracks can be initiated and
propagated. However, XFEM limits the use of cohesive elements with traction-separation
laws, mainly due to convergence issues. Therefore, damage at the matrix—fiber interface
was considered within the matrix stiffness degradation model by selecting different damage
parameters for the matrix elements around the fibers. Based on Puck’s failure theory, the
damage process during transverse tensile loading is mainly dominated by matrix and
interface damage, while fiber breakage dominates the damage process under longitudinal
tensile loading [3,13]. Therefore, fiber break mechanisms under transverse tensile loading
simulations were excluded.

(A) Matrix damage and interface damage (B) Fiber breaks
transversal tensile strain (strain-Y) longitudinal tensile strain (strain-Z)

tttttttttttttttt

Y

L.

L. 090

Damage

parameter
0.00.10304050.60.80.91.0

R R R X R R RX

Figure 1. Micromechanical damage: Matrix and interface damage (A) and fiber breaks (B). For clarity,
the ECA region has been omitted.

The Stiffness Degradation Model for the Matrix and Interface

Epoxy resins typically exhibit a load-dependent damage behavior, which ultimately
reduces their load-bearing capacity [16]. For an epoxy matrix, this load dependency derives
not only from strain-rate-dependent mechanical properties, but also from the accumulation
of micro-cracks [3,35]. Stiffness degradation laws have been widely used to approximate
this phenomenon while maintaining numerical stability since no finite elements need to be
removed [36]. Furthermore, progressive stiffness reduction approaches have shown good
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agreement in modelling fiber-matrix interface debonding in unidirectional composites [37].
Although strain-rate-dependent mechanical properties were not considered in this study,
matrix damage was included as a stiffness degradation law that distinguishes between
matrix damage and interface damage. Both numerical and experimental investigations of
epoxy matrices show that plastic deformation primarily occurs under uniaxial compression
and pure shear loading conditions [31,35]. Since these load cases are not within the scope of
this study, plasticity was not considered. Assuming that stiffness degradation is driven by
work accumulation [38], a continuum damage model was integrated into the linear elastic
model using a user material subroutine (UMAT). Thus, the damage variable D indicates
the damage state (D = 0 is undamaged, and D = 1 is fully damaged). The effective stress
o’ is defined as

o =(1-D)r (1)

where ¢ is the undamaged stress tensor. In this study, damage is distinguished between
matrix damage and interface damage by uncoupling the behavior between the normal
and shear stress components [31]. This is achieved by including two independent damage
variables, Dy and Dy,;. Here, D) describes the degradation of the matrix, while Dy,; ac-
counts for the shear stiffness degradation of the interface. By introducing two independent
damage variables in the form of orthotropic Hooke’s law, the elastic modulus of the matrix
elements (E) and shear modulus of the interface elements (G) are independently degraded
as follows:

E;=(1-Dm)E 2)

Ga = (1= Dt)G ©)

where E; and G; are the resultant degraded moduli for the matrix and interface, respec-
tively. We assume that each damage increment is proportional to the amount of dissipated
energy [38], given by

dDM = Aw(DM)|(7\"d(7 (4)

dDInt = Aw(DInt)|T|ndT (5)

where do and dt are the tensile and shear stress increments, respectively. A and n are
material parameters, and w(D) is the corresponded piecewise quadratic function defined as

b+a;(D—D;)? forD < Dy
w(D) = b forD; <D < Dy (6)
b—l—a[[(D— DH)Zfor D > Dy

where b, aj, ajj, Dj, and Dj; are material parameters. Hohe et al. [38] have empirically
validated this piecewise quadratic function and demonstrated its effectiveness in control-
ling the damage parameter for both tensile and dynamic-cyclic deformations. Table 2
summarizes the damage parameters used. To avoid numerical singularities, Dy and Dy,
are limited to a maximum value of 0.95. The damage variables are updated for each time
step as follows:

Dyy1 = Dt +dD @)

Table 2. Parameters for the stiffness degradation model.

0.5 0.75

Model Parameter Matrix Interface
A [-] 1.0°° 5071
n [-1 10.0 8.0
b [-1 0.5 0.5
ag [-1 75.0 55.0
ary [—] 10.0 10.0
Dy [-1 0.1 0.25
[-]

Dyp
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Probabilistic Modeling of Fiber Breaks

For the longitudinal tensile simulations, fiber damage is modeled as the probability of
failure P(0), i.e., fiber break, according to a 3-parameter Weibull distribution:

o=l -(£)' ()]

where L denotes the fiber length; L is a gauge length; and m, 0y, and < are the Weibull
parameters. Table 3 summarizes the used Weibull parameters. According to the weak link
theory, the fibers can be considered independent, each with their own strength distribu-
tion [39]. Thus, the tensile strength of each fiber is assigned by inverting Equation (8) and
randomly assigning a probability strength value from the distribution.

Table 3. Weibull parameters [21,40].

L [um] Lo [mm] m[—] oo [MPa] v -]
2.0 30.0 3.38 4170 1.0

2.3. Application of Principal Component Analysis for the Matrix Stress Field
2.3.1. Octahedral Stress Field Within the Matrix

An equivalent stress is often used to facilitate the comparison of mechanical behavior
under different stress conditions. For epoxy materials, it has been shown that a multi-
axial failure stress can be correlated by a combination of the hydrostatic and pure shear
stresses [41,42]. Therefore, in this analysis, the matrix stress field was divided into the
octahedral shear stress (7;,) and the hydrostatic stress (07,). Here, the pure shear output is
obtained as follows:

T = %\/(0‘1 —02)? + (02— 03)* + (03 — o1)* ®)

where 01, 03, and 03 correspond to the principal stresses. On the other hand, the hydrostatic
contribution, or octahedral normal stress, is obtained by

((71 + 0 +0’3) (10)

W=

oy =

The octahedral stress field (¢, T;) can be extracted from each integration point in the
RVE matrix at the desired time increment. Figure 2A shows the octahedral stress field for
the undamaged unit cell case after applying a longitudinal strain of 2%, i.e., at the last time
increment. It can be observed that although an external longitudinal strain is applied, a
complex stress field is formed, i.e., combination shear, tension, and compression stresses.
This complex stress field can be divided into four regions, where even pure shear and
pure hydrostatic stress conditions can be obtained. This is illustrated in Figure 2A. Direct
observation allows for acquiring information regarding the shape and orientation of the
stress distribution, its point density, and the location of the mean stresses. However, the
stress field is redistributed each time a damage event occurs, adding complexity to the
data interpretation.

2.3.2. Implementation of Principal Component Analysis (PCA)

A Python script was implemented to compute the principal components (PCs) of
the octahedral stress field. Thus, the directions in which the stress field has the most
variance are described by the first and second principal components, PC-1 and PC-2,
respectively. Nevertheless, PC-1 represents the direction of maximum stress variance, or
the greatest amount of stress variability. To conduct the PCA, eigenvalue decomposition of
the covariance matrix (X) is used:

LV=AV (11)
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( Var(o,)  Cov(oy, Th)> (V1> _ <}\1> (V1> (12)
Cov(ty,0)  Var(ty,) V) A )\ VW

where V is the orthogonal matrix of eigenvectors (V;, V;) and A is the diagonal matrix of
eigenvalues (A1, A;). Each PC can be decomposed into its eigenvector and eigenvalue.
PC-1 = A1V and PC-2 = A, V,. To perform PCA consistently, the octahedral stress field
must be transformed by centering it on the octahedral mean stresses and normalizing each
stress component by its standard deviation [24]. Thus, the transformed octahedral stresses
are obtained, oy, and 71, respectively. These transformed stresses and the PC can be
observed in Figure 2B for the undamaged unit cell case under 2% of longitudinal strain. In
this paper, the orientation of the PC is indicated by the counterclockwise angle between the
eigenvector and the octahedral normal stress axis. Therefore, the orientation of the PC-1,
denoted as 61, serves as an indicator of the predominant stress state composition within the
octahedral stress field. Here, a 6, value of 0° or 180° indicates a predominant hydrostatic
stress state. Consequently, a 61 value of 90° or 270° corresponds to a predominant shear
stress state. By definition, the principal components are orthogonal, so only the orientation
of PC-1 is reported.

: (A) Octahedral stress field - (B) PCA Octahedral stress field
0.02677 - 50.02677

l;: 5’ 3 (U' (3 ’" ir Th [Msﬁasr‘

9 0.021f .*i = 9 0.021f .+ 3 N3 ‘

o R ol o 3 2

£ 0.017 2¥: 0 £ 0.017 aE. .g

§0012] i % 5 0.012 S

< -'H-.'-: i = 10196

% 0.008 R A % 0.008 >

u TF, | © N 2=

5 0.0031Pure Tis . 5 0.003 X : . =

£ hydrostatic ¥ 'z 2 N N o

5-0.0021"Y f: IR 5-0.002 %ﬁ, - 3

) ErE I i3] PC-1—> g 2

o H '] " it o. : '? " !

S-0.006 l s, | g0006] pe s

£-0.011 L £-0.011 A 10°

= -0.07-0.05 -0.03 -0.010.01 0.03 0.05 g -0.07-0.05 -0.03 -0.010.01 0.03 0.05

Transf. octahedral normal stress o7 [-] Transf. octahedral normal stress a7 [-]

Figure 2. (A) Octahedral stress field for a unit cell under a longitudinal strain of 2% (Strain-Z).
(B) PCA of the transformed octahedral stress field. For clarity, the fiber elements are hidden.

3. Results and Discussion
3.1. Development of a Modified Mesh-Independent PCA

The effect of the RVE mesh on the PCA values was investigated using the models
described in Section 2.2.1. By replicating the unit cell and imposing a strictly regular
fiber arrangement with PBC, all the analyzed RVEs possessed structural equivalence. The
results of the octahedral shear stress for all longitudinal strain simulations can be seen in
Appendix A (Figure A3). The uniformity of the stress magnitude across the RVEs confirms
the correctness of the mesh replication and the implementation of PBC. As expected, the
density of points within the stress field increased with the size of the RVE, since more
integration points share the exact same stress state due to the exactly replicated mesh.
In addition, the size of RVEs can be reinterpreted as the number of integration points
within the matrix. By extracting the octahedral stress field (05, ;) from all four RVE
modela and applying the conventional PCA, it is clear that the eigenvalues (A1, A) show a
mesh-dependent behavior, as the eigenvalues increased logarithmically with the number of
integration points. As expected, 8; remained unchanged, suggesting a correlation with the
stress state. Table 4 shows the results of the PCA. For the longitudinal tensile simulation, 61
indicates a large stress variation towards low positive hydrostatic stress accompanied by
high octahedral shear stresses. While for the transverse tensile simulations, 6, indicates a
predominant stress variation towards high hydrostatic and high octahedral shear stresses.
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Table 4. PCA results for the RVE with regular square fiber arrangement.
RVE Size Longitudinal Strain 2% Transverse Strain 2%

. Integration o o
Fibers Pfints A1 /\2 I Al I I Az | 91 [°] Al Az | /\1 | I /\2 I 61 [°]

1 2305 1.019 0.345 0.993 0.116 161.2 0.937 0.419 0.913 0.408 30.3

4 9220 1.441 0.489 0.993 0.116 161.2 1.325 0.592 0.913 0.408 30.3

9 20,745 1.765 0.599 0.993 0.116 161.2 1.622 0.725 0.913 0.408 30.3

25 57,625 2.278 0.773 0.993 0.116 161.2 2.094 0.936 0.913 0.408 30.3

Further analysis of the PCA shows that the covariance matrix (X), especially the
variance entries, scaled with the number of integration points, although the stress state was
the same. In order to obtain a mesh-independent PCA, the eigenvalues were scaled against
the size of the octahedral stress field (0, ;) as follows:

/\2

Al =4/ —m—
M=\ T =l

(13)

where |A| are the modified eigenvalues and ||[0, T;]||, is the L2-norm of the squared matrix
obtained from the octahedral stress field. The results of the modified PCA are shown in
Table 4.

3.2. Analysis of the Micromechanical Stress Field of RVE with Random Fiber Arrangements

The analysis of the micromechanical stress field redistribution due to matrix damage
and fibers breaks was performed using the mesh-independent PCA on the models described
in Section 2.2.2. Each micromechanical damage mechanism was first simulated separately
to analyze the effects of each damage individually. However, since the interface damage
can be considered as a result of failure in the matrix, it should not be treated as an isolated
damage mechanism [13,43]. Therefore, the interface bonding behavior, modeled as a
progressive stiffness reduction law, was integrated into the UMAT instead of being treated
as a separate subroutine. Thus, interface damage was analyzed alongside matrix damage
and involved only the octahedral stress field from the elements around the fibers. For
the longitudinal strain simulations, both matrix damage and fiber breaks were analyzed
together. The analysis is presented by load cases, 2% transverse tensile strain (Strain-Y),
and 2% longitudinal tensile strain (Strain-Z).

3.2.1. Validation of the RVE Models with Random Fiber Arrangements

The simulated stress—strain curves, along with the experimental results, are shown
in Appendix B (Figures A4-A7). The experimental results show that mechanical failure
occurred at the 2.15 & 0.06% transverse tensile strain and at the 1.52 £ 0.07% longitudinal
tensile strain. Although each RVE had a different fiber distribution, a comparable me-
chanical response was able to be observed in all models due to the similar fiber volume
fraction. However, for the longitudinal tensile simulations (Figures A5-A7), differences in
the resulting stiffness decrease were observed across the RVEs, which can be attributed to
the fiber distributions and the number of fiber breaks obtained. Furthermore, when only
matrix damage was considered (Figure A5), the numerical results did not agree with the
experimental observations, as sudden damage behavior was not reproduced. In this case,
a small amount of matrix damage gradually accumulated without a significant effect on
the RVE stiffness. In contrast, when only fiber breaks were considered (Figure A6), the nu-
merical results partially agreed with the experimental observations. While sudden damage
behavior was captured, numerical problems prevented the simulations from reaching the
target strain. Nevertheless, the finding points to fiber breakage as the primary damage
mechanism for this loading condition. By considering both fiber breakage and matrix
damage (Figure A7), the simulations were able to achieve 2% strain. Furthermore, the RVE
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stiffness decrease was comparable to the experimental results, showing a sudden drop in
stiffness due to a fiber break, followed by a load-carrying phase until the next fiber break
event occurred, resulting in another sudden decrease in stiffness.

For the transverse tensile simulations (Figure A4), all RVEs consistently reproduced the
undamaged stiffness response of the material. As significant matrix damage accumulated,
a nonlinear decrease in stiffness was observed in both the experimental and simulated
stress—strain curves, with the simulations slightly overestimating the mechanical response.

3.2.2. Modified PCA of Transverse Tensile Strain Simulations (Matrix/Interface Damage)

The effect of the matrix damage on the octahedral stress field was analyzed for sim-
ulations under the 2% transverse tensile strain. As mentioned above, matrix damage
and interface damage were treated together. No additional damage mechanisms were
considered. Since the load acted transversely to the fibers, the progressive matrix damage
showed a dominating effect on the stiffness response of the RVE. The stress—strain curve
and the evolution of the octahedral stress can be found in Appendix B (Figure A4). Figure 3
shows the evolution of the first and second modified eigenvalues (|A1], |A2|) through the
deformation process. As expected, both eigenvalues remained unchanged and closer to the
eigenvalues of the undamaged state as long as no critical damage accumulation occurred.
Once a certain amount of damage had accumulated, as evidenced by a noticeable loss in
RVE stiffness, the eigenvalues started to change gradually. Since the eigenvalues are the
factor by which the eigenvector is stretched or compressed, the observed variations suggest
a characteristic redistribution in which the octahedral stress field becomes progressively
less oriented towards PC-1 and more oriented towards PC-2.
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Figure 3. Modified eigenvalues for the matrix damage as a function of the transverse strain.

Similar behavior was observed for the interface damage eigenvalues, which showed
minimal differences compared to the matrix damage eigenvalues (Figure 4). This is pre-
sumed to result from the gradual development of both matrix and interface damage as the
RVE was transversely stretched. However, this was not the case for the orientation of the
first eigenvector (61), as it exhibited distinct patterns for each damage mechanism (Figure 5).
In the case of interface damage, the stress field gradually rotated clockwise, indicating a
progressive shifting of the stress field towards higher octahedral normal stresses. According
to Hu et al. [41], high positive hydrostatic stress may be associated with a more brittle
fracture failure of epoxy material. This suggests that interface damage is prone to a more
brittle failure nature. In contrast, a more abrupt clockwise rotation was observed for matrix
damage. A critical point in the reorientation of the stress field was then observed at the 1%
strain, marked by a progressive counterclockwise rotation, suggesting that after a certain
damage accumulation, the stress field is reoriented to a lower octahedral normal stress
but with still higher octahedral shear stresses compared to the initial undamaged state.
This combination of octahedral normal stress and octahedral shear stress can potentially
influence the yield behavior of epoxy polymers, as suggested by Kody et al. [42]. As
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hypothesized, each damage mechanism left a characteristic signature in the stress field
reorientation. In addition, the results obtained showed a consistent pattern across the RVEs
analyzed, with slight variations due to the different fiber arrangements.
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Figure 4. Modified eigenvalues for the interface damage as a function of the transverse strain.
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Figure 5. Orientation of the first eigenvector for the matrix damage and the interface damage as a
function of the transverse strain.

3.2.3. Modified PCA of the Longitudinal Tensile Strain Simulations
(Matrix/Interface Damage)

The effect of the matrix damage on the octahedral stress field was analyzed for simula-
tions under the 2% longitudinal tensile strain. As mentioned above, matrix damage and
interface damage were treated together. Fiber breakage has not yet been considered. Since
the load was applied in the direction of the fibers and no fiber damage was considered,
the fibers still carried most of the load, and then the progressive matrix damage showed
almost no effect on the stiffness of the RVE. The stress—strain curve and the evolution
of the octahedral stress can be found in Appendix C (Figure A5). Figure 6 shows the
evolution of |A1] and |A;| through the deformation process. As expected, both eigenvalues
remained unchanged as long as no critical damage accumulation occurred. Surprisingly,
the eigenvalues began to change gradually, although there was no noticeable loss in the
stiffness of the RVE. Nevertheless, by observing the damage level of the matrix, it is clear
that some damage accumulated while the fibers were still carrying most of the load. This
shows that even though no permanent change in the mechanical performance of the RVE
was observed, the eigenvalues were able to capture the damage at the matrix level, around
1% strain. Furthermore, similar to the transverse loading case, the variations of the eigen-
values suggest a similar redistribution in which the octahedral stress field becomes less
oriented towards PC-1 and more oriented towards PC-2. For this load case, however, a
more linear pattern and larger changes in values were observed. This can be attributed to
the damaged matrix elements, where both the octahedral normal stress and the octahedral
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shear stress decreased due to the stiffness degradation of the elements. Therefore, the stress
field reconfigured to a state where more stress points gradually obtained a low-stress value.
Similar behavior was observed for the interface damage eigenvalues (Figure 7). However,
an interesting difference compared to the matrix damage eigenvalues is noted for the last
eigenvalues, which remained nearly constant. Upon examining the interface damage state,
it was observed that all interface elements had almost reached full damage. Since no further
damage could have been applied, no alterations in the scaling of the stress field occurred,
reaffirming that the eigenvalues consistently capture the damage evolution.
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Figure 6. Modified eigenvalues for the matrix damage as a function of the longitudinal strain.
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Figure 7. Modified eigenvalues for the interface damage as a function of the longitudinal strain.

In addition, §; showed a different pattern for each damage mechanism (Figure 8).
For the matrix damage, the stress field gradually rotated counterclockwise, contrary to
the behavior observed in the case of transverse tension. Thus, the stress field shifted to
a predominant hydrostatic stress field (6; = 180°) and subsequently surpassed it due to
the accumulation of low octahedral shear stress from the damaged elements. For interface
damage, an abrupt counterclockwise reorientation of the stress field was observed, with a
posterior stagnation suggesting the attainment of a full damage state. At the stagnation, it
is interesting to note that 61, with a mean value of 188.4° £ 1.3°, implied that the interface
stress field was closely aligned with a predominant hydrostatic stress field. This suggests,
as in the previous analysis, that interface damage is prone to a more brittle failure nature.
As before, the results obtained show a consistent pattern across the RVEs analyzed, with
slight variations due to the different fiber arrangements.



Polymers 2024, 16, 3000

13 of 20

210 -
--&-- Matrix damage

. —2— Interface damage
- RVE-2
© 190
N
O
[
Y—
o
c
.0 170 e
E 8,-undamaged
C o
K] Progressive damage
o

150 —4H——+——+——

0.0 0.5 1.0 1.5 2.0
strain-Z [%]

Figure 8. Orientation of the first eigenvector for the matrix damage and the interface damage as a
function of the longitudinal strain.

3.2.4. Modified PCA of the Longitudinal Tensile Strain Simulations (Fiber Breaks)

The effect of the fiber breaks on the octahedral stress field was analyzed for simulations
under the 2% longitudinal tensile strain. No other damage mechanisms were considered.
Since the load was applied in the direction of the fibers, and fiber breakage can occur, the
overall stiffness of the RVE was drastically affected as more fibers were damaged. Therefore,
the matrix, which had a lower stiffness, must transfer the load to the undamaged fibers. The
stress—strain curve and the evolution of the octahedral stress can be found in Appendix C
(Figure A6). Since the convergence conditions were not met due to the high degree of
damage, the simulations were aborted before the final strain of the 2% strain was reached.
Figure 9 shows the evolution of [A1] and |A;]| through the deformation process. As expected,
both eigenvalues remained unchanged as long as no fiber breaks occurred. However, as
soon as the first break occurred, a first abrupt change was observed. Moreover, for each
fiber break, the eigenvalues showed significant changes followed by steady behavior as no
new fiber breaks occurred. This confirms that the stress field in the matrix was drastically
affected by the first fiber break and reoriented by each subsequent break. Furthermore,
with the first damage event, the octahedral stress field suddenly became less oriented
toward PC-1 and more oriented to PC-2, indicating a spreading of the stress field over
different values of octahedral normal stress and octahedral shear stress. This observation
is evident in the octahedral stress field plots in Appendix C (Figure A6). First, a small
cluster characterized by high octahedral normal stress and high octahedral shear stress
was formed, presumably corresponding to the elements around the fiber break; second,
a compression region was formed where, according to Hu et al. [41], ductile yielding
may predominate since the hydrostatic stresses are zero or negative. However, with each
subsequent fiber break, the eigenvalues showed a reversal in behavior, indicating that the
octahedral stress field became increasingly aligned with PC-1 and PC-2. This suggests that
the octahedral stresses tend to maintain the pattern established by the initial break, with
each subsequent fiber break generating stress states that adhere to this initial pattern. This
can also be observed in 6 (Figure 10), where the stress field immediately rotated clockwise
without much variation thereafter. For 01, a mean value of 25.08° 4 1.77° after the first
break was obtained. This implies that the stress field was aligned with a predominant
hydrostatic stress field. As before, the results obtained showed a consistent pattern across
the RVEs analyzed. Nevertheless, the strain at which the first damage events occurred
was different for each RVE. This is due to the fact that different fiber strength values were
obtained for each RVE. By comparing the separate effects of matrix damage, interface
damage (Figures 6-8), and fiber break (Figures 9 and 10), it is clear that each damage
mechanism induced a characteristic reorientation of the octahedral stress field marked
with a unique combination of |A1], |A2|, and 6; values. This PCA analysis provides a new
valuable numerical insight into the complex damage behavior of UD-FRP that cannot be
obtained by conventional mechanical analysis.
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Figure 9. Modified eigenvalues for fiber break damage as a function of the longitudinal strain.
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Figure 10. Orientation of the first eigenvector for the fiber break damage and the interface damage as
a function of the longitudinal strain.

3.2.5. Modified PCA of the Longitudinal Tensile Strain Simulations (Matrix/Interface
Damage and Fiber Breaks)

The effect of the matrix damage, interface damage, and fiber breaks on the octahedral
stress field was analyzed for simulations under the 2% longitudinal tensile strain. As
observed before, the overall stiffness of the RVE was drastically affected as more fibers were
damaged. Furthermore, the load-bearing capacity of the matrix was also compromised as
matrix damage increased during the simulation. The stress—strain curve and the evolution
of the octahedral stress can be found in Appendix C (Figure A7). Interestingly, by including
a matrix damage model, two out of three simulations met the convergence conditions and
reached the final strain of 2%, even though a higher degree of damage was achieved. This
suggests that matrix damage mitigated large stress discontinuities. Figure 11 shows the
evolution of |A1] and |A;| through the deformation process. As expected, both eigenvalues
remained unchanged as long as no damage events occurred. In general, the behavior of the
eigenvalues was very similar to the analysis without matrix damage (fiber breaks only).
An initial abrupt change in the modified eigenvalues was observed as soon as the first
break occurred, at an average longitudinal strain of 0.98 £ 0.12%. Significant changes in
the modified eigenvalues were observed with each subsequent new fiber break. Thus, with
the first fiber break event, the octahedral stress field became less oriented toward PC-1 and
more oriented toward PC-2. Furthermore, the strain to fiber break value obtained was in
statistical agreement with the probability of failure as reported by Andersons et al. [44].
This indicates a redistribution of the stress field, forming a small cluster of high octahedral
stresses, presumably corresponding to the elements around the fiber break. Furthermore,
with each subsequent fiber break, the eigenvalues reversed their behavior, suggesting that
the octahedral stresses tend to maintain the pattern established by the initial break, with
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each subsequent fiber break generating stress states that conform to this initial pattern.
However, in contrast to the previous analysis, it can be observed that some matrix damage
accumulated prior to the first break. This was more evident for the RVE-2 in Figure 11
where |A; | deviated slightly from its undamaged value. Furthermore, no steady state of |A1]
and |A,| was observed. In this case, however, a gradual change was observed during the
period between fiber break events, which is attributed to the matrix and interface damage’s
progressive nature. Figure 12 shows the orientation of the first eigenvector (61). Here,
the stress field rotated clockwise immediately after the first fiber break, with a gradual
rotation thereafter. For 671, a mean value of 29.28° 4 6.76° was obtained after the first break,
suggesting that although a small gradual rotation of the eigenvector was observed, the
stress field aligned with a predominant hydrostatic stress field. Furthermore, the rotation
of the first eigenvector, attributed to the progressive nature of damage in the matrix and
interface, indicated a slight shift of the stress field towards a pure shear configuration. This
suggests that both matrix and interface damage contributed to the shear redistribution of
the stress field.
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Figure 11. Modified eigenvalues for combined damage as a function of the longitudinal strain.
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Figure 12. Orientation of the first eigenvector for combined damage and the interface damage as a
function of the longitudinal strain.

Additionally, it is observed that drastic interface damage followed after a fiber break
event, but since no full damage state of numerous interfaces was reached, no clear stag-
nation effects were able to be observed as in the previous analysis. As before, the results
obtained showed a consistent pattern across the RVEs analyzed. Still, the strain at which
the first break events occurred was different for each RVE. This was due to the fact that
different fiber strength distributions were obtained for each RVE. Nevertheless, it was
evident that 61 indicated whether the stress field was more or less oriented towards a
hydrostatic or octahedral shear stress field, while the combination of |A1| and |A;| indicated
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the degree of dispersion of the stress field. By comparing the effects of matrix damage,
interface damage, and fiber break, it is clear that each damage mechanism induced a char-
acteristic redistribution of the octahedral stress field. Contrary to the analysis with the
isolated damage mechanism, it was not possible to distinguish a unique combination of
|A1], |A2], and 67 values that allow differentiation of each damage mechanism. However,
it can be observed that the matrix and interface damage produced a shear redistribution
of the matrix stress field, while the initial fiber break established the general form of the
octahedral stress distribution. Furthermore, |A;| and |A;| indicated the degree of dispersion
of the stress field. Further numerical analysis should be carried out to extend the analysis
and interpretation of the principal components. Nevertheless, the results provide valuable
numerical insight that cannot be obtained by conventional mechanical analysis.

4. Conclusions

In this paper, principal component analysis (PCA) was implemented to analyze the ma-
trix stress field of undamaged and damaged RVEs. For this, the stress field was divided into
its octahedral stress components. It was observed that traditional eigenvalues depended on
the mesh of the RVE, since they varied proportionally to the number of integration points of
the RVE. A modification of the PCA is presented to obtain mesh-independent eigenvalues,
allowing for a reliable comparison of the internal stress distribution between different
RVE structures. It was found that these modified eigenvalues and the orientation of the
eigenvectors provided valuable insights regarding damage initiation and evolution within
the RVEs. Thus, the orientation of the first principal component, denoted as 61, serves as
an indicator of the predominant stress state composition within the octahedral stress field,
where a 01 value of 0° or 180° indicates a predominant hydrostatic stress state and a 01 value
of 90° or 270° corresponds to a predominant shear stress state. Furthermore, the magnitude
of the modified eigenvectors indicates the degree of dispersion of the stress field. Further-
more, the PCA results suggest that the accumulation of matrix damage became significant
for the composite’s stiffness at a strain of 1%, while fiber breakage began at an average
longitudinal strain of 0.98 = 0.12%. This analysis reveals that each damage mechanism left
a distinct signature in the redistribution of the matrix stress field, i.e., a unique fingerprint,
characterized by a unique combination of the principal component values. This provides a
new and valuable numerical insight into the complex micro-damage behavior that cannot
be obtained by conventional mechanical analysis. The results obtained show that PCA
enhanced the interpretability of the complex internal stress distribution and changes within
the microstructure of an FRP by reducing its dimensionality. Although consistent results
and trends in the principal component values were obtained, further analysis is required
to correlate those values with additional damage mechanisms and loading conditions. In
addition, the presented PCA approach is expected to be implemented in future research to
investigate fatigue-induced micromechanical damage under cyclic loading conditions, as
well as the effects on the matrix residual stresses due to temperature variations.
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Appendix A
Microscopy analysis and details of the PCA mesh independency analysis.
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Figure Al. Microscopic image of the UD sheet. Samples were taken from the left, center, and right
sides of the UD sheet. Average fiber volume fraction of 53 £ 1%.
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Figure A2. RVE with regular square pattern. Unit cell: L = 8.625 um, thickness of 2.0 um, and fiber
diameter of 6.9 um.
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Figure A3. Octahedral shear stress field for the RVE models with a square fiber arrangement under
longitudinal strain of 2%. (A) Unit cell, (B) RVE with four fibers, (C) RVE with nine fibers, and
(D) RVE with four twenty-five.
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Appendix B

Damage evolution and octahedral stress field for the 2% transverse strain simulations.
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Figure A4. Experimental and simulated stress—strain curves and evolution of the matrix damage and
the interface damage. The octahedral stress fields were obtained from the undamaged simulation
and from the last simulation step. For a better visual comparison, the octahedral stresses have
been normalized to the corresponding maximum value. For the sake of clarity, the ECA region has
been excluded.

Appendix C
Damage evolution and octahedral stress field for the 2% longitudinal strain simulations.
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Figure A5. Experimental and simulated stress—strain curves and evolution of the matrix damage and the
interface damage. The octahedral stress fields were obtained from the undamaged simulation and from
the last simulation step. For a better visual comparison, the octahedral stresses have been normalized to
the corresponding maximum value. For the sake of clarity, the ECA region has been excluded.
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Figure A6. Experimental and simulated stress—strain curves and evolution of the fiber breaks. The oc-
tahedral stress fields were obtained from the undamaged simulation and from the last simulation step.
For a better visual comparison, the octahedral stresses have been normalized to the corresponding
maximum value. For the sake of clarity, the ECA region has been excluded from the figures.
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Figure A7. Experimental and simulated stress—strain curves and evolution of the fiber breaks together
with matrix damage and the interface damage. The octahedral stress fields were obtained from
the undamaged simulation and from the last simulation step. For a better visual comparison, the
octahedral stresses have been normalized to the corresponding maximum value. For the sake of
clarity, the ECA region has been excluded from the figures.
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