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Abstract: To produce highly efficient and repeatable perovskite solar cells (PSCs), comprehending
interfacial loss and developing approaches to ameliorate interfacial features is essential. Nonradiative
recombination at the SnO2–perovskite interface in SnO2-based perovskite solar cells (PSCs) leads to
significant potential loss and variability in device performance. To improve the quality of the SnO2

electron transport layer, a novel polymer-doped SnO2 matrix, specifically using polyacrylic acid, was
developed. This matrix is formed by spin-coating a SnO2 colloidal solution that includes polymers.
The polymer aids in dispersing nanoparticles within the substrate and is evenly distributed in the
SnO2 solution. As a result of the polymer addition, the density and wetting properties of the SnO2

layer substantially improved. Subsequently, perovskite-based photovoltaic devices comprising SnO2

and Spiro-OMeTAD layers and using (FAPbI3)0.97(MAPbBr3)0.03 perovskite are constructed. These
optimized devices exhibited an increased efficiency of 17.2% when compared to the 15.7% power
conversion efficiency of the control device. The incorporation of polymers in the electron transport
layer potentially enables even better performance in planar perovskite solar cells.

Keywords: perovskite solar cells; tin oxide; electron transport layers; polyacrylic acid; doping materials

1. Introduction

Metal halide perovskite has emerged as a key technology for high-performance op-
toelectronic devices, owing to its long diffusion length and high defect tolerance [1–4].
Recent advancements have seen perovskite solar cells (PSCs) achieve a rapid increase in
power conversion efficiency (PCE), reaching up to 26% [5–7]. This progress parallels the
optimal standard of commercial silicon cells [8]. Planar PSCs are becoming increasingly
prominent and competitive in the photovoltaic field due to their simple synthesis process,
low cost, and high efficiency [9–12]. However, challenges such as significant photocurrent
hysteresis and unstable output under operational conditions remain major concerns for
many planar PSCs [13–15]. These issues are largely attributed to ion migration and sub-
optimal interfacial properties in the devices [16,17]. Many studies have underscored the
importance of smooth and dense surfaces for efficient electron transport and effective hole
blocking, which prevents holes from moving from the absorber layers to the transparent
electrode [18,19]. Consequently, there is a strong consensus on the necessity of designing
optimal electron transport.

The ETL plays a vital role in PSC performance. To inhibit carrier recombination,
the ETL must simultaneously prevent the migration of carriers to the counter electrode
and facilitate the charge transport process from the photoactive layer to the electrode.
Specifically, TiO2, ZnO, Nb2O5, Zn2SO4, Fe2O3, In2O3, and SnO2 are widely used ETLs in
PSCs. The specific performance of varied types of ETL is presented in detail in Table 1.
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Table 1. Device structure and performance parameters of different metal oxide ETLs.

ETL Structure of Device PCE
(%)

VOC
(V)

JSC
(mA cm−2) FF Ref

TiO2 FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au 20.9 1.17 23.31 0.77 [20]
ZnO ITO/ZnO/PBDB-T:ITIC/MoO3/Ag 16.9 0.88 14.6 0.63 [21]
Nb2O5 ITO/NiOx/FA0.85MA0.15PbI2.55Br0.45/Nb2O5/Ag 18.3 1.08 22.7 0.72 [22]

Zn2SO4
ITO/Zn2SnO4/PCBM/CH3NH3PbI3/Spiro-
OMeTAD/Ag 14.5 1.07 21.2 0.62 [23]

Fe2O3 FTO/Fe2O3/CH3NH3PbI3/Spiro OMeTAD/Au 10.78 0.65 16.6 0.63 [24]
In2O3 FTO/In2O3/CH3NH3PbI3/Spiro-OMeTAD/Au 13.97 1.07 19.3 0.68 [25]

SnO2
FTO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/Spiro-
OMeTAD/Au 20.6 1.08 24.42 0.78 [26]

Despite an increase in the number of semiconductor materials that are being discov-
ered and applied for ETL in PSC, TiO2 and SnO2 have been extensively used as ETLs due
to their superior properties. Mesoporous TiO2 coated over compact TiO2 was initially used
as the electron transport material for PSCs, originating from solid-state dye-sensitized solar
cells [27]. Nevertheless, the low electron mobility of TiO2 as well as high-temperature an-
nealing have both negative and detrimental effects on the future application of PSCs [28–31].
Additionally, the strong effects of photocatalytic TiO2 require special attention because they
reduce the stability of PSC under illumination [32,33]. Recently, SnO2 has been widely
used as the most promising ETL, with a proven efficiency of over 21% and a substantial
reduction in photocatalytic and hysteresis issues under illumination [34,35]. SnO2 exhibits
the typical properties of an ideal ETL with high mobility [up to 240 cm2/(V·s)], large
bandgap (exceeding 3.6 eV), and excellent chemical stability, making it a strong candidate
for highly efficient PSCs [36,37]. However, SnO2 is inherently an insulating material when
processed at low temperatures, and the efficiency of the device is heavily dependent on
the thickness of the SnO2 layer [38–41]. To achieve fast charge transfer, high-performance
SnO2-based PSCs require a thin SnO2 layer that is less than 30 nm in thickness. The aggre-
gation issue of the nanoparticles in the film makes it difficult to fabricate such a thin and
compact layer using the spin-coating technique [42–44]. Typically, the resulting SnO2 thin
film has extensive areas of nonuniformity and pinholes. Additionally, pretreatment (such
as UV treatment) is necessary to change the poor wetting performance of SnO2 with the
perovskite precursor solution.

Doping organic compounds into electron transport layers (ETLs) can either align
the Fermi level of the ETL with the conduction band of perovskite or influence the per-
ovskite/hole transport layers, improving the crystallization and grain size of the perovskite
layer [45–47]. Thus, doping effectively lowers trap defects in the photo absorber and ETL,
enhancing charge separation and transfer for efficient perovskite solar cell performance.
Based on this approach, polyethylenimine ethoxylate (PEIE) was utilized to enhance the
electron transport capacity of SnO2 by suppressing trap-assisted recombination and lower-
ing the energy barrier between the active layer, as well as improving the wetting ability of
these layers, resulting in high PSC performance [48]. Additionally, incorporating polyethy-
lene glycol (PEG) promoted the separation of nanoparticles in the film and significantly
improved the density and wetting properties of the SnO2 layer, leading to an improvement
in device performance [49]. Furthermore, polyvinyl pyrrolidone (PVP), another water-
soluble polymer, was also used for this purpose [50]. The formation of bonds between the
electron pairs of nitrogen (or oxygen) in PVP and metal ions enables PVP to adhere to metal
surfaces, while the long vinyl polymer chain of the PVP backbone prevents nanoparticle
agglomeration through steric hindrance [50].

Given these challenges, doping the ETL with polymers to create a uniform and compact
SnO2 ETL and enhance the PCE of devices is valuable. PAA polymer has been extensively
used in various energy storage technologies, such as electrolytes in flexible symmetrical
supercapacitors, novel separators in silver oxide batteries, or as binders for GaP anodes
in lithium-ion batteries [51–53]. However, the use of PAA as a doping material in SnO2
colloidal precursors for PSCs has not been explored. We propose that integrating PAA



Polymers 2024, 16, 199 3 of 19

with the SnO2 colloidal solution could help in forming an effective ETL. Additionally,
we present the development of an ideal PAA@SnO2 ETL, combining SnO2 with Li-ion.
By selecting water-soluble polymers such as PAA, which dissolve in the SnO2 colloidal
aqueous solution, we discovered that the PAA chain effectively limits the aggregation of
SnO2 nanoparticles in the precursor solution. This combination with polymers substantially
improves the quality of the film, enhancing its compaction and wetting properties.

2. Experiment Section
2.1. Materials

Lead Iodide (PbI2), Lithium chloride (LiCl), spiro-oMeTAD (99.8%), methylammo-
nium bromide (MABr), methylammonium chloride (MACl), chlorobenzene (CB), iso-
propanol (IPA), DMSO, DMF, acetonitrile (ACN), lithium bis(trifluoromethanesulfonyl)
imide (Li-TFSI), and 4-tert-butyl were purchased from Sigma-Aldrich (Seoul, Republic
of Korea). A SnO2 colloidal solution (15 wt% in water) was purchased from Alfa Aesar
(Seoul, Republic of Korea). Formamidinium iodide (FAI) was purchased from GreatCell
Solar (Queanbeyan, Australia).

2.2. Perovskite Solar Cell Fabrication

The preparation of PSC is shown in detail in Figure 1. The glass/FTO substrate was
cleaned using distilled water, acetone, and isopropanol. Then, the FTO glasses were dried
using a nitrogen gun and treated with UV–ozone for 20 min. The SnO2 precursor was
obtained by dissolving SnO2 (450 µL) colloid dispersion and LiCl (300 µL) aqueous solution
(17 mg/4 mL) in water (2 mL) [49]. For PAA@SnO2, PAA (0.5, 1.0, 2.0, and 3.0 mg/mL)
was added into the SnO2 precursor solution. The SnO2-based electron transport layer was
spin-coated on the cleaned FTO at 3000 rpm for 30 s. This was followed by annealing at
150 ◦C for 30 min in air. Then, the substrates were treated with UV–ozone for 20 min before
being transferred into a glovebox. The perovskite films were fabricated using a typical
two-step sequential deposition method. First, 50 µL of PbI2 precursor solution (600 mg
PbI2 dissolved in (DMF 0.9 mL) and (DMSO 0.1 mL)) was spin-coated onto SnO2 films at
2000 rpm for 20 s. The FAI/MABr/MACl mixed solution (60 mg FAI, 6 mg MABr, and 6 mg
MACl dissolved in 1 mL IPA) was spin-coated onto the PbI2 film at 4000 rpm for 20 s. Then,
the films were annealed at 150 ◦C for 20 min. After cooling to room temperature, the hole-
transport layer was subsequently deposited on top of the perovskite film via spin-coating
at 4000 rpm for 40 s using a chlorobenzene solution, which contained Spiro-OMeTAD
(72.3 mg mL−1), tert-butylpyridine (29 µL mL−1), and bis(trifluoromethane)sulfonimide
lithium salt (18.5 µL mL−1, 520 mg mL−1 in acetonitrile). Finally, 100 nm of gold electrodes
were deposited on top of the devices via evaporation at approximately 10−6 Torr.

2.3. Characterization

To assess the ability of film to absorb light, the UV–Vis spectrophotometer Agilent
(Varian, Cary 50, San Diego, CA, USA) was used to measure the UV–Vis light-absorption
spectra of film. The X-ray diffraction (XRD) patterns were acquired using an XRD Rigaku
DMAX 2200 system (Tokyo, Japan) with Cu K as the X-ray source (λ = 0.15406 nm). The
Fourier transform infrared (FTIR) spectra were captured using an infrared spectrometric
analyzer (Vertex 70, Bruker, Karlsruhe, Germany). Field emission scanning electron mi-
croscopy (FESEM, Hitachi S-4700, Tokyo, Japan), operating at 10 kV, was used to analyze
the top and cross-sectional morphologies of the samples. Using a QuantaMaster TM 50 PTI
(Piscataway, NJ, USA), steady-state photoluminescence (PL) spectra were acquired. A solar
simulator (McScience K3000, Solar Simulator LAB 50, and Polaromix, Gyeonggi, Republic
of Korea) simulating solar radiation with an irradiance of 100 mW cm−2 (AM 1.5 G) was
used to model sunlight conditions. The external quantum efficiency (EQE) was determined
using a McScience K3100 measurement system (Suwon, Republic of Korea).
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Figure 1. Schematic illustrating the process of preparing complete solar cell.

3. Results and Discussion

Despite semiconductor oxide nanoparticles being recognized as potential electron
transport layer (ETL) materials for perovskite solar cells (PSCs), their tendency to agglomer-
ate due to van der Waals forces within the colloid, coupled with their large specific surface
area, presents a significant challenge [54,55]. Various strategies, including doping and
surface engineering, have been implemented to curb the agglomeration of SnO2 particles in
dispersion systems with small-sized particle media, thereby stabilizing SnO2 colloids. The
suspension, uniformity, and stability of nanoparticles in water are heavily influenced by
particle spatial agglomeration and charge balance. Introducing a suitable polymer or sur-
factant material helps to reduce inter-particle space and maintain a uniform charge on the
particle surfaces, thus preventing oxide nanoparticle agglomeration. In this context, PAA is
used as a buffering agent to stabilize SnO2 particles, working through two mechanisms:
(i) PAA reduces the available active space around the particles, preventing SnO2 nanoparti-
cle agglomeration, and (ii) crucially, functional groups on the PAA surface, when combined
with SnO2 nanoparticles, help balance the charge between particles. To explore the im-
pact of PAA on the photovoltaic characteristics and enhance PSC performance, a range of
material characterization techniques were applied, as detailed throughout this manuscript.

We initially investigated the surface morphology obtained on different ETLs (SnO2
and PAA@SnO2) (as shown in Figure 2). Compared with the FTO surface (Figure 2a),
SnO2 and PAA@SnO2 were successfully prepared (Figure 2b,c). However, the PAA@SnO2
nanocrystals were densely coated, and there were no pinholes on the film surface. This
can prevent ineffective contact between the ETL film surface and perovskite, leading to
improved optical performance. The EDX analysis presents the existing components on the
PAA@SnO2 film (Figure 2d). The presence of a small amount of residual Cl (2.25%) does
not significantly affect the composition of the film due to the guaranteed elemental ratio
between Sn and O (specifically SnO2) along with the existence of PAA on the FTO substrate.
Furthermore, Figure 2e shows the elemental mapping spectra corresponding to PAA@SnO2
film, showing the uniform distribution of Sn, O, and C nanocrystals throughout the film.
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Figure 2. SEM image of (a) pristine FTO, (b) FTO/SnO2, (c) FTO/PAA@SnO2, (d) EDX spectrum of
PAA@SnO2, and (e) elemental mapping corresponding to PAA@SnO2 on FTO/glass.

XRD analysis was performed to obtain crystallographic information regarding as-
synthesised pure SnO2 and PAA@SnO2. Figure 3 displays the acquired XRD patterns for
PAA@SnO2 and pristine SnO2. The main diffraction peaks at approximately 26.25◦, 33.66◦,
38.16◦, 51.50◦, 54.82◦, and 61.55◦ for pure SnO2 correspond to (110), (101), (200), (211),
(310), and (301), respectively. This indicates that a pure rutile tetragonal SnO2 structure has
formed (JCPDS no. 41–1445). When a low concentration of PAA was added as a dopant,
no additional peak was observed in the PAA@SnO2, indicating that PAA doping did not
introduce a secondary phase as an impurity with the pure SnO2. Conversely, a reduction in
peak intensity was observed in PAA@SnO2 spectrum, likely resulting from the interaction
between the PAA polymer and SnO2 crystals.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were
used to determine the thermal properties of FTO, FTO/SnO2, and FTO/PAA@SnO2 from
25 ◦C to 700 ◦C in nitrogen gas flowing at a rate of 10◦/min. Figure 4a shows that the FTO
substrate remains stable in N2 up to 700 ◦C. This indicates good thermal stability without
pyrolysis or thermo-oxidative decay occurring. However, conducting investigations at
temperatures above 700 ◦C is not advisable, as this can lead to a decrease in Hall mobility
and reduction in the number of oxygen vacancies. These changes result in lower mobility
and fewer carriers in the FTO membrane, ultimately leading to the increased resistivity of
the FTO substrate [56]. Additionally, the spin-coating of SnO2 and PAA@SnO2 forms thin
films of 69 and 35 nm, respectively. Thus, the mass loss is not too significant, specifically
99.98% (Figure 4b) and 99.94% (Figure 4c). Furthermore, the obtained curve of the DSC
analysis is very similar. In Figure 4a–c, the DSC plot shows two endothermic peaks. The
first endothermic peak is approximately in the range of 45–110 ◦C, corresponding to the
removal of the absorbed water from the substrate [57,58]. The other small peak at 580 ◦C
was due to further crystallinity of the FTO substrate [59,60]. Therefore, the degree of
SnO2 and PAA@SnO2 crystallization on the FTO substrate is appropriate for the annealing
temperature of 150 ◦C.
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Next, to investigate the influence as well as find the optimal concentration of PAA,
we adjusted the PAA concentration to 0.5, 1.0, 2.0, and 3.0 mg mL−1, respectively. The
undoped or doped SnO2 ETL were spin-coated with SnO2 precursor solution at ambient
temperature and then thermally annealed in air for 30 min at 170 ◦C. The chemical structure
of PAA-SnO2 is shown in Figure 5.
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Figure 6a shows a facile synthesis of ETL used to collect and transport electrons
from the absorber layer to the TCO. First, the ability to transmit in the visible region of
pristine SnO2 and PAA@SnO2 at different concentrations was evaluated. From Figure S1a,
undoped and doped SnO2 ETL show excellent transmittance in the wavelength region
from 300–900 nm, and the transmittance of the PAA@SnO2 at various film concentrations
almost remains unchanged when compared with that of the pristine SnO2 film. This
indicates that the addition of PAA slightly changes the optical transmittance properties of
the undoped SnO2 film. Additionally, a good transmittance spectrum is advantageous to
the performance of PSCs because it shows uniform film deposition with few defect states.
However, a minor decrease in the transmittance of the ETL is observed, corresponding to
the optical image of the solution shifting from transparent to opalescent with the increasing
doping concentration of PAA, as illustrated in Figure S1b. Additionally, the absorbance
progressively increases as the wavelength increases, as shown in Figure S2a. The Tauc
plot (Figure S2b) was utilized to estimate the optical band edge (Eg). It was determined
that the Eg of the pristine SnO2 film was 4.2 eV. This value remained nearly unchanged for
PAA@SnO2, suggesting that the small amount of PAA doping did not significantly impact
the Eg of the pristine SnO2 film.

Fourier transform infrared (FT-IR) spectroscopy was analyzed to determine the pres-
ence of separate components in the PAA@SnO2 film before annealing (Figure 6b). The
O-Sn-O stretching mode and Sn-O vibrational mode are responsible for the absorption
peaks at 550, 650, 1550, and 1690 cm−1, respectively [49]. The COOH stretching modes in
PAA are responsible for the peaks to appear at 1479, 1296, and 948 cm−1. It can be seen
that PAA was absorbed into SnO2 film by noting that the spectrum of PAA@SnO2 exhibits
the typical peaks of SnO2 and PAA, with the O-Sn-O peaks of SnO2 shifting to 670 cm−1.
Furthermore, the presence of PAA at different concentrations in the SnO2 precursor solu-
tion was demonstrated by the FT-IR spectrum (Figure S3). More importantly, we explored
whether annealing plays a role in the formation of PAA@SnO2. According to Figure S4,
there is a slight change in the composition of pristine SnO2 and PAA@SnO2 at various
concentrations post-annealing. Notably, the presence of hydroxyl groups on the film surface
at 2850 and 2915 cm−1 indicates strong hydrogen bonding with the carboxylic group in the
PAA polymer. This is attributed to the high temperature of the annealing process, which
promotes the partial breakdown of the Sn=O bond, leading to the formation of Sn(OH)n on
the SnO2 surface. The mechanism of this hydrogen bond formation is depicted in Figure 6c.
Therefore, during the annealing process, the hydroxyl group on the SnO2 surface forms a
hydrogen bond with the carboxylic group of PAA (as shown in Figure 5) [49,53,61].
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Figure 6. (a) Schematic illustrating the pristine and PAA@SnO2 ETL preparation. (b) FT-IR spectra of
PAA, SnO2, and PAA@SnO2 films before annealing. (c) Diagram of mechanism for hydrogen bond
formation. Contact angle measurement of SnO2 films without (d) or with (e) PAA polymer (blue
circle: boundary region to determine the contact angle). (f) The electron mobility for the SnO2 and
PAA@SnO2 films calculated by the SCLC model with the device structure of Glass/FTO/ETL/Au.
(g) Dark I-V measurement of the electron-only devices based on SnO2 and PAA@SnO2 ETLs.

By suppressing the formation of large clusters in the substrate and using SnO2 that has
been incorporated into PAA via hydrogen bonding, it is anticipated that the spin-coated
film will become compact and uniform with a decrease in pinholes and that the PAA
polymer will create a dense and compact matrix on the substrate. Additionally, to obtain
complete coverage on the substrate, UV pretreatment is required because pure SnO2 film
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is a non-wettable surface for a perovskite precursor solution. This implies that the water
contact angle measurement of pristine SnO2 is high (approximately 40◦) [62,63] and clearly
decreases after UV treatment (17.6◦). Fortunately, PAA inclusion in SnO2 film can enhance
the affinity between SnO2 and perovskite by altering the SnO2 surface, as demonstrated
in Figures 6d,e and S5. Therefore, increasing PAA concentration will contribute to further
reducing contact angle of SnO2. However, excessively increasing the PAA concentration
(specifically 3 mg/mL) will promote particle aggregation, leading to a rebound increase in
contact angle data. When compared to PAA@SnO2 at various concentrations, the contact
angle of the perovskite solution on pure SnO2 film was significantly higher. Additionally,
perovskite is not completely coated on the virgin SnO2 substrate without pretreatment.
However, perovskite on PAA@SnO2 displays a dense and compact coating (Figure S6).
Hence, without any pretreatment (such as UV treatment), a complete covering of perovskite
film on the PAA@SnO2 layer is accomplished.

The effect of PAA on the conductivity of the SnO2 thin films was analyzed via electrical
measurements. As shown in Figure 6f, the PAA@SnO2 film exhibits a higher electron
mobility (2.08 × 10−3 cm2 V−1 s−1) than that of the SnO2 film (8.5 × 10−4 cm2 V−1 s−1) as
measured by the space charge limited current (SCLC) method [36,64]. The SCLC model
was used with the electron-only devices (FTO/ETL/perovskite/CeOx/Au) to investigate
the trap density [65]. The dark I-V curves for the two devices are displayed in Figure 6g.
Typically, the I-V curve exhibits a linear ohmic-type response at low bias voltages. The
current begins to increase nonlinearly with an increase in bias voltage, signaling the
commencement of the trap-filling process. Furthermore, trap-filled limit voltage (VTFL) is
the definition of the kink point that separates the linear and nonlinear regions. The trap
density (Nt) can be computed using the following equation:

Nt =
2 E0E VTFL

e L2

where E0, E, e, and L denote the perovskite film thickness, elementary charge, relative
dielectric constant, and permittivity of vacuum, respectively. The perovskite layer on the
PAA@SnO2 ETL has an estimated trap density of approximately 6.27 × 1014 cm−3, which is
significantly less than the 4.4 × 1015 cm−3 of the film deposited on the SnO2 ETL, indicating
that the introduction of PAA reduces the defect states of the ETL.

With or without PAA doping, compact SnO2 films were spin-coated onto FTO sub-
strates using a colloid dispersion solution. To better understand the surface morphology of
the coated films, atomic force microscopy (AFM) was employed. Given that FTO shows
a roughness surface of 30 nm [66,67], both SnO2 ETL films exhibit a smooth surface, as
observed in Figure S7a,b. However, a pristine SnO2 film exhibits a rougher surface than
the SnO2 ETL films (26.32 nm vs. 24.98 nm), which is in line with the surface morphology
observed via scanning electron microscopy (SEM), as shown in Figure 2b,c. Furthermore, it
should be observed that at a concentration of 0.5 mg mL−1, several pinholes are visible,
despite the fact that the agglomeration between particles is significantly reduced when
compared to pristine SnO2 (as shown in Figure 7a). This result suggests that the SnO2
oligomers can be disaggregated by the hydrogen bonds of PAA and SnO2 particles. How-
ever, their affinity is insufficient to glue the particles together. When the concentration
increases slightly (1.0 mg mL−1), the PAA@SnO2 surface is pinhole-free with no intergranu-
lar agglomeration through uniform particle formation (Figure 7b). Additionally, due to the
high hydrogen bonding affinity between PAA and SnO2, which occurred when the mass
concentration of PAA exceeded 1.0 mg mL−1 or when there were more PAA components
present, PAA@SnO2 aggregated into large particles and failed to form a uniform and dense
ETL layer in Figure 7c–d.
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AFM measurements revealed that the root mean square (RMS) roughnesses of per-
ovskite films on SnO2 and PAA@SnO2 were 25.19 nm and 24.73 nm, respectively. This
smoother perovskite is shown in Figure 8a,b. The SEM images of the absorber layer de-
posited onto various ETLs are shown in Figure 8c,d. The images confirm the surface
morphology of the perovskite layers. The perovskite coated on PAA@SnO2 was also
discovered to be bigger than that coated on the SnO2 layers. Additionally, as shown in
Figure S8, the effects of various PAA concentrations in a SnO2 colloidal solution on the
surface morphology of perovskite layers were also obtained. It can be determined that
the crystal grains of the perovskite on PAA@SnO2 (0.5 and 1.0 mg/mL) are more uniform
with less white PbI2 phase in comparison with those of the perovskite on pristine SnO2
and PAA@SnO2 (2.0 and 3.0 mg/mL). The result indicates that PAA@SnO2 can facilitate
a uniform distribution of nucleation sites. Given that the incorporation of PAA leads to
reduced roughness in the ETL thin film, the presence of a pre-existing functional group
(carboxylic acid) on the PAA surface readily bonds with SnO2 to form hydrogen bonding,
leading to nanoparticle disaggregation as well as the enhanced wetting properties of ETL
for perovskite precursor solution.

By adjusting the PAA concentration and layer thickness, the performance of the de-
vice is maximized. To successfully enable electron transport for ETL, the concentration of
insulating PAA in SnO2 should be maintained to a minimum. According to Table S1, the
PCE of devices increases as PAA concentration increases, and the fill factor achieves its
maximum when PAA content reaches 1.0 mg mL−1. Conversely, there was a decrease in
device PCE as the concentration of PAA increased (e.g., 2.0 and 3.0 mg mL−1), which is
thought to decrease the presence of SnO2 nanoparticles in solution. Furthermore, the high
affinity between PAA and SnO2 contributes significantly to the formation of nanoparticle
aggregations. Additionally, due to the weak conductivity of SnO2 produced at low temper-
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atures, the layer thickness should be as thin as possible while still preventing significant
current leakage. For both pure SnO2 and PAA@SnO2, a well-defined boundary between
each layer indicates thick coatings on the substrate, as shown in Figure S9a,b. Notably,
the PAA@SnO2 layer is significantly thinner (approximately 35 nm) when compared to
pure SnO2 (approximately 69 nm). The polymer matrix reduces the thickness of the ETL
by approximately 50%, a substantial reduction when compared to the majority of ETLs
reported in literature [68,69], which can enhance ETL light transmission and decrease
series resistance. Furthermore, the thicknesses of the perovskite, spiro-OMeTAD, and
metal electrode (Au) layers are approximately 560 nm, 195 nm, and 30 nm, respectively.
Additionally, cross-section SEM images show that the surface roughness of pristine SnO2
is higher than that of PAA@SnO2 (Figure S9c,d). This highlights the advantages of using
polymer doping materials, especially those with functional groups on their surfaces, such
as PAA in this study.
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images of perovskite coated on (c) SnO2 and (d) PAA@SnO2 films.

UV–Vis spectroscopy was used to assess the light-harvesting capabilities of perovskites
with varied SnO2 and PAA@SnO2 ETLs (Figure 9a). Evidently, the PAA@SnO2 layer has a
minor impact on the perovskite layer’s capacity for absorption. Nevertheless, its bandgap
has not changed. From the Tauc plot in Figure S10, the value of Eg is estimated to be 2.05 eV,
and there is not much difference in Eg between PAA@SnO2 and pristine SnO2. Therefore,
doping PAA does not significantly affect the pristine SnO2 structure for the formation of the
perovskite layer. Figure 9b,c show the steady-state photoluminescence (PL) of the absorber
produced on different films. The PL peaks of the perovskite on SnO2 and PAA@SnO2 can be
shown to have been significantly quenched, demonstrating a perfect band-edge alignment
of SnO2 with perovskite (Figure 9b). The PL intensity of the perovskite film on the surface
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of the PAA@SnO2 film is greater than that observed on the SnO2 film under the identical
test conditions. The perovskite layer on PAA@SnO2 may have undergone less nonradiative
recombination due to the stronger PL intensity [70–73]. Additionally, the perovskite film’s
PL peak on the PAA@SnO2 ETL shifts by around 1.1 nm to a lower wavelength, which
signals fewer defects (Figure 9c) [74]. Using PAA-incorporated SnO2, the performance of
PSC will be increased for two reasons, according to an examination of the characteristics of
PAA@SnO2 when compared to virgin SnO2 (Figure 9d). First, pinholes can be minimized
for film thicknesses under 40 nm by inhibiting nanoparticle aggregation, resulting in a more
compact and homogeneous surface. Second, the PAA polymer can enhance the substrate’s
wetting properties.
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Figure 9. (a) UV−Vis absorption data of absorber films with SnO2 and PAA@SnO2 layers (the inset is
amplifying absorption spectra in the wavelength range of 700−900 nm). (b,c) Steady-state PL spectra.
(d) The diagram of film morphology for SnO2 and PAA@SnO2.

Based on the aforementioned advantages, the photovoltaic properties of undoped and
doped-based SnO2 PSCs were evaluated. The J−V curves for SnO2 and PAA@SnO2-based
devices in the reverse and forward scan directions are shown in Figures 10a,b and S11.
Table 2 illustrates the PAA@SnO2-based devices with high efficiency and J−V characteristics
of the champion devices using ETLs. The devices based on the SnO2 ETL substrate exhibit
a maximum PCE of 15.7%, with the specific values of Voc = 1.06 V, Jsc = 22.39 mA cm−2,
and FF = 0.68. Surprisingly, by switching the control ETL to a PAA@SnO2 ETL, the
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detailed parameters of Voc and FF were considerably enhanced to 1.08 V and 0.73%,
respectively. Furthermore, the optimal PCE can be increased to 17.2%. This study shows
that interfacial carrier recombination was significantly reduced by the PAA@SnO2 layer’s
ability to passivate charge recombination at the ETL/perovskite interfaces. For each
undoped and PAA-doped ETL, we created 20 different devices to test the repeatability of
the material and technique, as shown in Table S2. The distribution of device parameters
is shown in Figure 10c,d together with the statistical parameters that are presented in
Figure S12. The J–V values for the doped SnO2-based devices clearly show a narrow
distribution with a low standard deviation, indicating exceptional repeatability.
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Figure 10. Current density−voltage (J−V) curves of devices based on (a) pristine SnO2 and
(b) PAA@SnO2 with PAA concentration of 1.0 mg/mL under reverse-forward scanning directions.
The PCE distribution of the PSCs of (c) SnO2 and (d) PAA@SnO2.

Table 2. Photovoltaic parameters of champion PSCs based on SnO2 and PAA@SnO2 ETLs.

Devices Scan Direction PCE (%) Jsc (mA cm−2) Voc (V) FF

SnO2-PSC
Reverse 15.7 22.39 1.06 0.68
Forward 15.2 21.85 1.03 0.66

PAA@SnO2-PSC
Reverse 17.2 24.92 1.08 0.73
Forward 16.8 23.12 1.07 0.69
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The long-term stability of PSCs with SnO2 and PAA@SnO2 was evaluated in a nitrogen
environment without encapsulation. Figure 11 illustrates the shelf stability of PSCs with
different ETLs over time. After 30 days of storage, the device using the PAA@SnO2 ETL
retained 89% of its original power conversion efficiency (PCE), whereas the device with
the SnO2 ETL experienced a 21% reduction in its initial PCE. This indicates that devices
with the PAA@SnO2 ETL are more stable, likely due to improved contact between the
PAA@SnO2 ETL and perovskite layer. The degradation of the charge carrier transport layer
and perovskite layer is a well-known factor contributing to the instability of PSCs. The
enhanced stability in the PAA@SnO2-based devices when compared to those with SnO2
can be attributed to the improved interaction between the ETL and the perovskite layer.
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Figure 11. Shelf-stability of perovskite solar cells in a glove box without any encapsulation. Normal-
ized (a) PCE, (b) VOC, (c) JSC, and (d) FF.

Table 3 summarizes the performance of PSCs with different doping materials in SnO2
ETL. When compared to the performance of other recent PSCs, our PAA@SnO2 exhibits
performance increases from 15.7% to 17.2% (increase of approximately 10% in performance).
It can be observed that doping with organic materials, specifically polymers, is slightly
more effective than doping with inorganic materials due to the large particle size of the
material, which easily forms large clusters on the ETL surface, contributing to reducing the
surface contact between ETL and perovskite.
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Table 3. Comparison of the performance of PAA@SnO2 ETL in PSC with those of varying doping
materials.

ETL PCE
(%)

VOC
(V) JSC (mA cm−2) FF Ref.

Pristine SnO2
Ta-doped SnO2

19.48
20.80

1.158
1.161

21.7
22.8

0.78
0.79 [75]

Pristine SnO2
Zn-doped SnO2

15.31
17.78

1.078
1.098

23.2
23.4

0.61
0.69 [76]

Pristine SnO2
Ga-doped SnO2

12.5
17.0

0.997
1.070

22.1
22.8

0.57
0.70 [77]

Pristine SnO2
Nb-doped SnO2

12.32
13.53

0.88
0.92

22.8
24.1

0.61
0.61 [78]

Pristine SnO2
La-doped SnO2

14.24
17.08

1.060
1.090

20.7
21.8

0.65
0.72 [79]

Pristine SnO2
Y-doped SnO2

11.69
15.60

1.030
1.070

18.6
21.8

0.61
0.67 [80]

Pristine SnO2
Cl-doped SnO2

15.07
18.10

1.020
1.110

21.0
23.0

0.59
0.69 [81]

Pristine SnO2
Al-doped SnO2

9.02
12.10

1.000
1.030

16.8
19.4

0.53
0.58 [65]

Pristine SnO2
KF-doped SnO2

13.40
15.39

1.180
1.310

14.6
14.8

0.78
0.79 [71]

Pristine SnO2
PVP-doped SnO2

18.05
19.42

1.100
1.130

21.0
21.1

0.79
0.81 [50]

Pristine SnO2
PEG-doped SnO2

18.60
20.80

1.070
1.110

22.6
22.7

0.77
0.82 [49]

Pristine SnO2
PAA-doped SnO2

15.70
17.20

1.06
1.08

22.4
24.9

0.68
0.73

This
work

4. Conclusions

In summary, a straightforward and cost-effective technique has been suggested for the
incorporation of PAA into the SnO2 matrix to create a high-quality electron-selective layer.
The PAA@SnO2 layer, characterized by its dense and uniform structure with an ultra-thin
thickness below 40 nm, is attributed to the enhanced dispersibility of the SnO2 substrate.
Due to the enhanced wetting properties of the polymer-modified film, a pinhole-free and
high-quality perovskite film is easily formed on the PAA@SnO2 matrix. Effective PSCs
based on the PAA@SnO2 matrix have been demonstrated, achieving a power conversion
efficiency of 17.2% with high repeatability and shelf stability. This study presents a novel
perspective on the inclusion of polymers as electron/hole selective layers in colloidal
quantum dot inks. It is anticipated that future research and development involving other
inorganic nanoparticle inks combined with suitable polymers will enhance device per-
formance. This study highlights a new approach in the simple combination of polymers
with metal oxides, acting as an effective electron/hole selective layer. The development
of different polymers with suitable metal oxides is expected to further improve the cur-
rent performance of devices. This process is promising in its simplicity and effectiveness,
promoting its potential widespread application on an industrial scale.
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