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Abstract: Failures of wound healing have been a focus of research worldwide. With the continuous
development of materials science, electrospun nanofiber scaffolds loaded with metal-based nanopar-
ticles provide new ideas and methods for research into new tissue engineering materials due to their
excellent antibacterial, anti-inflammatory, and wound healing abilities. In this review, the stages
of extracellular matrix and wound healing, electrospun nanofiber scaffolds, metal-based nanopar-
ticles, and metal-based nanoparticles supported by electrospun nanofiber scaffolds are reviewed,
and their characteristics and applications are introduced. We discuss in detail the current research
on wound healing of metal-based nanoparticles and electrospun nanofiber scaffolds loaded with
metal-based nanoparticles, and we highlight the potential mechanisms and promising applications of
these scaffolds for promoting wound healing.

Keywords: electrospinning; nanofiber scaffolds; extracellular matrix; metal-based nanoparticles;
nanostructure; wound healing

1. Introduction

The skin is composed of three primary layers: the epidermis, the dermis, and the
subcutaneous tissue. The epidermis, the outermost layer of the skin, is a keratinized strati-
fied squamous epithelium [1]. It is relatively thin, avascular, and does not contain blood
vessels [2]. The dermal layer is intimately connected to the epidermis, and predominantly
consists of fibroblasts and the extracellular matrix (ECM) they produce [3]. The ECM is
a dynamic three-dimensional network surrounding the cells, composed of a variety of
macromolecules such as collagen, proteoglycans, and adhesion proteins [4,5]. It provides
mechanical support to the cells, and plays a role in their physiological and biochemical
activities [6].

Within a day after skin injury, the body’s coagulation cascade is initially activated,
leading to the formation of blood clots, while platelets continuously release signaling
molecules that attract inflammatory cells to the wound site [7]. During the inflamma-
tory phase (1–2 days), neutrophils arrive at the wound to phagocytose foreign material
and release cytokines that promote the proliferation and migration of monocytes and
fibroblasts [8,9]. Macrophages discharge a plethora of enzymes and cytokines to clear
necrotic tissue, remodel the ECM, and foster collagen and angiogenesis [10,11]. In the
proliferative phase (3–7 days), fibroblasts appear around the wound, proliferate, and dif-
ferentiate to produce collagen, proteoglycans, and build a new ECM, which creates a
conducive environment for the regeneration of tissue and, in conjunction with signaling
molecules, regulates the growth, migration, and differentiation of cells. Therefore, the
formation of the ECM is crucial for wound healing, which will be elaborated on in de-
tail later in this review [11,12]. Finally, the remodeling phase of the wound may persist
for an extended period (1 week to several weeks), during which granulation tissue re-
epithelializes and the ECM is continuously synthesized and remodeled, allowing the new
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tissue to gradually regain a state close to that of normal skin [13,14]. Wound healing is an
intricate and overlapping process, and rapid and effective treatment methods for wounds
are currently a significant clinical need.

Metal-based nanoparticles (MBNPs), as emerging nanobiomaterials, have good bio-
compatibility, and their nanoscale size enables them to be easily taken up by cells. The
metal ions produced by MBNPs can participate in normal cellular activities as biologically
active molecules. These properties make MBNPs widely used in drug delivery, biological
imaging, and cancer treatment [15,16]. Studies have shown that during different stages
of wound healing, MBNPs and their released ions exhibit unique biological properties.
For example, in the early stages of wound healing, AgNPs show excellent antibacterial
and anti-inflammatory properties, preventing deterioration of the wound [17]. During the
inflammatory and proliferative phases, AuNPs can exert anti-inflammatory and antioxidant
effects, and promote tissue regeneration [18,19]; CuNPs mainly participate in the regulation
of signaling molecules related to angiogenesis and ECM reconstruction [20,21]. However,
considering the potential toxic side effects of MBNPs, the application of these nanoparticles
as functional components necessitates their integration with appropriate carriers to mitigate
risks [22,23]. Therefore, in recent years, researchers have often combined MBNPs with
electrospinning technology to prepare regenerative scaffolds. The biological functions of
MBNPs are leveraged to repair wounds. The scaffolds can wrap and fix MBNPs, enabling
them to be released in situ and in a controllable manner at the wound site, further enhancing
the wound healing effect.

Many regenerative scaffolds for wound healing have been developed, among which
the use of nanofibers to prepare tissue engineering scaffolds is a very promising
solution [24]. Electrospinning is a technique for the one-step preparation of polymer
nanofibers based on electrostatic forces. Nanofibers produced by this method can uniquely
assist in wound healing on the basis of the following: 1. having dimensions similar to
fibrin fibers, which facilitate cell adhesion and migration [25]; 2. possessing high porosity
and surface area, enabling a nanoscale simulation of the fibrous network structure of the
ECM, beneficial for cell proliferation and signal transduction [26,27]; 3. exhibiting good
biocompatibility and mechanical strength, which do not cause significant immune rejection
reactions and can support the extensive proliferation of new cells in the early stages of
wound healing, promoting the formation of new tissue [28]. Additionally, by changing
the spinning parameters or combining electrospinning with mixed spinning, coaxial spin-
ning, surface modification, and other methods, scaffolds can be generated with specific
structures and specific physicochemical properties [29]. When used as carriers, functional
components can be encapsulated by the nanofibers through direct mixing, enabling the
controlled release of these components during application [30,31]. Therefore, electrospun
fibers, with their ability to mimic the ECM and serve as carriers for various functional
components that promote wound healing, have become a focal point of numerous studies.

To the best of our knowledge, a review article focused on advances in the devel-
opment of metal-based nanoparticles supported by electrospun nanofiber scaffolds in
wound healing has not been published to date. Therefore, the aim of this review is to
summary the developments about electrospun nanofiber scaffolds loaded with metal-based
nanoparticles and their application in wound healing over the last five years. The present
review introduces the main functions of the ECM in various stages of wound healing. Next,
the key characteristics of electrospun nanofiber scaffolds are highlighted for biomedical
applications. Subsequently, the study discusses the emerging nanomaterials, MBNPs,
and how they can be combined with electrospinning to synergistically promote wound
healing. The focus is on the existing research regarding electrospun nanofiber scaffolds
loaded with MBNPs for wound healing. Finally, conclusions and future developments
and challenges are presented for the field of electrospun nanofiber scaffolds loaded with
MBNPs for wound treatment. An exhaustive bibliographic search was conducted using
Web of Science databases. The selected studies are from 2018 and after.
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2. ECM Dynamics during Wound Healing

The ECM is composed of a tightly organized network of nanoscale fibers, including
collagen fibers, elastic fibers, fibronectin, and other components; it plays a crucial role in
various stages of wound healing [3]. The process of wound healing generally consists
of four stages: hemostasis, inflammation, proliferation, and remodeling [32]. When the
skin is injured, platelets aggregate around the wound and, together with fibrinogen in the
ECM, form a blood clot. This clot releases a large quantity of cytokines and chemokines,
attracting inflammatory cells and fibroblasts (Figure 1A) [33]. During the inflammation
stage, inflammatory cells such as neutrophils, monocytes, and macrophages, as well as
fibroblasts, migrate to the wound area through blood vessels and the ECM. Inflammatory
cells clear pathogens and necrotic tissue at the wound site and release cytokines to promote
fibroblasts to produce large quantities of ECM components, including collagen, hyaluronic
acid, and proteoglycans. These ECM components provide support and protection for the
damaged tissue (Figure 1B) [34,35]. In the proliferation phase, the newly formed ECM
provides mechanical support and a survival environment for cells. Cells proliferate and
differentiate extensively around the wound, filling the gap in the wound (Figure 1C) [36].
Finally, granulation tissue forms around the wound and new blood vessels are formed.
Wound healing enters the remodeling phase, during which the granulation tissue undergoes
epithelialization, and the ECM continuously remodels, gradually restoring the newly
formed tissue to a state closer to normal tissue (Figure 1D) [3,37].
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The ECM plays a crucial role in the normal healing process of wounds. Electrospun
nanofiber scaffolds mimic the intricate structure of the skin’s ECM at the microscale and
provide robust mechanical support to promote cell proliferation, adhesion, and migration
at the wound site. Additionally, the high surface area-to-volume ratio of nanofibers can aid
in rapid hemostasis of the wound [38]. Incorporating functional materials into nanofibers,
such as antimicrobial agents, growth factors, and metallic materials, provides additional
biological functionalities that help further promote wound healing (Figure 2).
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3. Electrospun Nanofiber Scaffolds in Tissue Engineering

Electrospinning is a technique that uses a polymer solution to prepare nanofibers [39].
In general, the basic equipment for electrospinning mainly includes a high-voltage power
supply, a spinneret, an injection pump, and a collector plate [40]. During operation of the
device, the injection pump pushes the polymer solution in the syringe to the spinneret
connected to the high-voltage power supply. Under the action of surface tension, the
polymer solution forms charged droplets at the nozzle of the high-voltage power supply.
The electrostatic repulsion generated by the surface charge on the droplet surface is opposite
to the direction of the surface tension. As the voltage intensity gradually increases, the
polymer droplets are elongated under the action of the electrostatic repulsion produced by
the surface charge, forming a Taylor cone [29,41]. When the electrostatic repulsion on the
surface of the polymer droplet exceeds the surface tension, the droplet is elongated in the
electric field, forming a charged jet. Finally, the solvent in the polymer solution evaporates,
forming polymer nanofibers. The nanofibers accumulate on the collector plate in a random
direction, forming a nanofiber scaffold [42,43].

Additionally, different structures and functions of scaffolds can be obtained by ad-
justing the spinning solution, spinning parameters, spinning environment, and other
conditions [44]. When functional materials are incorporated, polymer nanofiber scaffolds
can be prepared by various electrospinning techniques based on the type of functional
material and solvent requirements, such as blend electrospinning, coaxial electrospinning,
emulsion electrospinning, and side-by-side electrospinning, along with surface modifica-
tions, producing special structures such as the core-shell, multilayer, and Janus structures.
This enables the controlled release of functional materials, such as burst release, sustained
release, and multiple release, depending on the specific application (Figure 3) [45,46]. Elec-
trospun nanofiber scaffolds possess high interconnectivity and a high specific surface area,
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and their porous three-dimensional structure exhibits excellent mechanical strength and
contains multiple cell binding sites, which can promote the interaction between cells and the
ECM when applied at an injury site [47]. During tissue remodeling, degradable nanofiber
scaffolds are gradually decomposed and absorbed, without adverse effects on the structure
and function of the tissue. Based on the above description, electrospun nanofiber scaffolds
meet the ideal conditions for constructing tissue engineering scaffolds, as summarized in
Table 1, and are ideal candidates for preparing artificial skin, wound dressings, and skin
tissue scaffolds. Currently, increasingly more research is focused on using metal-based
nanoparticles and electrospinning technology to prepare composite scaffolds for treating
drug-resistant bacteria and difficult-to-heal wounds. The inherent biological functions of
metal-based nanoparticles can endow scaffolds with unique biological activity and material
properties. This type of bionanomaterial provides new ideas and unique solutions for
preventing bacterial infections and treating difficult-to-heal wounds, and is expected to
become an important therapeutic method and material selection in the biomedical field in
the future [48].
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Table 1. Design requirements for tissue engineering scaffolds.

Design Characteristics
for Scaffolds Elaboration References

Biocompatibility and
non-toxicity

The scaffolds and the materials used should
have good compatibility and not cause any

adverse reactions to cells and tissues.
[49,50]

Biodegradability

The scaffolds should be gradually absorbed
and de-graded by the cells and tissues in the
body during the wound healing process to

avoid any unnecessary side effects.

[51]
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Table 1. Cont.

Design Characteristics
for Scaffolds Elaboration References

Porous structure

Scaffolds with appropriate pore sizes can
provide a suitable proliferative environment,

enhance cell-matrix interactions, and
facilitate rapid transport of nutrients and

metabolic waste within the scaffold.

[52–54]

Mechanical properties

The scaffold should possess mechanical
properties that mimic those of native tissues,

while also provid-ing a conducive
microenvironment for the growth and

migration of new tissues.

[55]

Surface properties

Consideration of scaffold surface
hydrophilicity and morphology is crucial

for optimizing cell adhesion and
proliferation in tissue engineering scaffold

design and fabrication.

[56,57]

4. Metal-Based Nanoparticles in Wound Healing

MBNPs refer to small metal particles with at least one dimension in three-dimensional
space in the range of 1–100 nm [58]. MBNPs are characterized by their small size, large
specific surface area, and quantum size effects. These properties result in completely
different physical and chemical characteristics from macroscopic metals [59]. In the past
decade, many metal-based nanoparticles (such as AgNPs, AgNPs, and CuNPs) have
been extensively studied and were shown to have the advantages of simple preparation,
strong stability, good biocompatibility, and good biodegradation, which are very suitable
characteristics for biomedical applications [60].

MBNPs can inhibit or kill microorganisms through various mechanisms. Their antibac-
terial mechanism differs from conventional antibiotics, which makes it difficult for bacteria
to develop resistance [48,61] (Table 2). For example, 1. MBNPs with a high surface area can
effectively bind to the cell wall and membrane of microorganisms, interact with the proteins
on the surface, and disrupt their cellular structure [62]. 2. MBNPs can kill microorganisms
by directly contacting them, inducing the production of reactive oxygen species (ROS) that
can damage DNA, RNA, proteins, and other substances inside the cell (Figure 4A) [63,64].
3. Once inside the cell, MBNPs are free to interact with cellular structures (e.g., membranes,
ribosomes, proteins, DNA, RNA), disrupting cell functions [65,66]. Moreover, some metal-
based nanoparticles can directly promote angiogenesis, ECM accumulation, or wound
re-epithelialization through their own functions (such as anti-inflammatory, antioxidant,
cell proliferation-promoting, and cytokine-regulating effects), or through combining MB-
NPs with photothermal therapy (PTT) and photodynamic therapy (PDT). This can improve
wound healing (Figure 4B) [15,67].

However, the safety and efficacy of metal nanoparticles as functional components
in medical products need to be evaluated by regulatory agencies due to their different
physicochemical properties and biological effects [68]. For instance, the US FDA guidance
document “Considering Whether an FDA-Regulated Product Involves the Application
of Nanotechnology” emphasizes the deliberate manipulation and control of dimensions
to produce specific properties. The emergence of new properties or phenomena may
raise questions about safety, effectiveness, performance, quality, or public health impact,
warranting further evaluation [69]. Moreover, there have been studies showing that direct
application of MBNPs to the wound surface can lead to the aggregation of NPs around
the wound, and high local concentrations can potentially cause toxicity and affect cell
regeneration (Figure 4C) [23,62]. Therefore, in recent years, researchers have combined
MBNPs with electrospinning technology, using polymer nanofibers to wrap MBNPs, which
can not only use metal-based nanoparticles for in situ wound treatment but also control the
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release rate of nanoparticles, which has great potential in biomedical applications [70–72]
(Table 3). In this review, research on the use of electrospun nanofibers loaded with metal
nanoparticles for wound healing is clarified. The following is a brief summary of the
characteristics and applications of various MBNPs.
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Table 2. Comparative analysis of metal-based nanoparticles’ antibacterial effects.

MBNPs
Type

Nanomaterial
Properties Bacterial Species Exposure

Time Biological Activity References

AgNPs Spherical;
40 nm E. coli MTCC 062 18 h MIC = 3.6 µg/mL [73]

P. aeruginosa
MTCC 424 MIC = 2.7 µg/mL

Spherical;
18.936 ± 7.789 nm

E. coli
(ATCC25922) 24 h MIC = 50 µg/mL [74]

P. aeruginosa
(ATCC27853) MIC = 6.25 µg/mL

AuNPs Spherical;
40 nm

E. coli
(ATCC No. 25922) 24 h MIC = 3.9 µg/mL [75]

P. aeruginosa
(PTCC No. 1707) MIC = 1.95 µg/mL

S. aureus
(ATCC No. 25923) MIC = 3.9 µg/mL

B. subtilis
(ATCC No. 21332) MIC = 15.62 µg/mL

Spherical;
3.5 nm P. aeruginosa 24 h MIC = 100 µg/mL [76]

S. aureus MIC = 100 µg/mL
E. coli MIC = 100 µg/mL
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Table 2. Cont.

MBNPs
Type

Nanomaterial
Properties Bacterial Species Exposure

Time Biological Activity References

Star;
26.0 ± 2.6 nm

S. aureus
(ATCC 12600) 24 h MIC = 250 µg/mL [77]

CuNPs Spherical;
38 nm E. coli 24 h MIC = 350 µg/mL [78]

S. aureus MIC = 150 µg/mL
C. albicans MIC = 300 µg/mL

Spherical;
17.85 nm P. aeruginosa 24 h Z = 16.00 ± 1.63 mm [79]

S. aureus Z = 9.67 ± 0.47 mm
Spherical;
11–33 nm S. aureus 24 h MIC = 31.25 µg/mL [80]

B. cereus MIC = 62.5 µg/mL
E. coli MIC = 125 µg/mL

K. pneumoniae MIC = 125 µg/mL
MIC, minimal inhibitory concentration; Z, zone of inhibition.

Table 3. Compilation of patents on electrospun nanofibers loaded with metal-based nanoparticles.

Patent No. Title Applicant Country Code

WO2017218692

Method of manufacturing silver nanoparticles,
cellulosic fibers, and nanofibers containing silver
nanoparticles, fibers, and nanofibers containing

silver nanoparticles; use of silver nanoparticles for
the manufacture of cellulosic fibers and nanofibers,
and wound dressing containing silver nanoparticles

California Institute of
Technology US

WO2008100163

Method of manufacturing silver nanoparticles,
cellulosic fibers, and nanofibers containing silver

nanoparticles, and uses thereof in bactericidal yarns
and tissues

Instytut Wlókien
Naturalnych PL

EP2126146
Alginate hydrogel containing nanofibers onto which
antibacterial metal nanoparticles are adsorbed, used

thereof, and method for manufacturing same

Inst Of Natural Fibres
and Medicinal Plants EP

KR1020200018140 Composite, antibacterial agent, and method of
producing composite

The Industrial-Academic
Cooperation Group of

Kangwon National
University

KR

JP2022184334 Nanofiber-based dental mask and manufacturing
method thereof Sugino Machine Ltd. JP

KR1020220005303

Method of manufacturing silver nanoparticles,
cellulosic fibers, and nanofibers containing silver
nanoparticles, fibers, and nanofibers containing

silver nanoparticles; use of silver nanoparticles for
the manufacture of cellulosic fibers and nanofibers,
and wound dressing containing silver nanoparticles

Woosuk University
Industry-Academic
Cooperation Group

KR

US: United States; EP: European; JP: Japan, PL: Poland; KR: Korea.

4.1. Silver-Based Nanoparticles in Wound Healing

Silver-based materials have been used since ancient times to control wound infections.
With the development of nanomedicine, silver nanoparticles (AgNPs) have attracted consid-
erable research attention due to their simple and diverse synthesis methods, nontraditional
and effective antibacterial mechanisms, and low toxicity [81]. Currently, the antibacterial
mechanism of silver nanoparticles is summarized as follows: 1. AgNPs absorb on and
penetrate the cell wall and membrane of bacteria to destroy their structure [82]; 2. AgNPs
destroy intracellular structures within bacteria, and release Ag+ into the cytoplasm that
specifically binds to proteins, resulting in enzyme inactivation [83]; 3. AgNPs generate a
large amount of ROS within the bacteria, leading to oxidative stress in the bacteria [84]; and
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4. AgNPs induce structural and permeability changes in bacteria, leading to the dissipation
of proton power and the destruction of cell membranes [85,86].

Additionally, during the inflammatory phase, AgNPs can reduce the inflamma-
tory response and exert anti-inflammatory effects by diminishing the production of pro-
inflammatory cytokines such as interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis
factor-alpha (TNF-α) [87–90]. Concurrently, AgNPs also promote cellular proliferation at
the wound site and induce the differentiation of fibroblasts into myofibroblasts, acceler-
ating wound closure [91,92]. Furthermore, during the remodeling phase of the wound,
AgNPs facilitate the accumulation of the ECM and stimulate angiogenesis by modulat-
ing the release of signaling molecules such as transforming growth factor-beta (TGF-β)
and vascular endothelial growth factor (VEGF), thereby hastening the restoration of skin
structure [93–95] (Table 4).

Table 4. Applications of silver-based nanoparticles in wound healing.

Operation Method Nanomaterial
Properties Biological Activity References

AgNPs 99 nm
1. Antioxidant
2. Anti-inflammatory
3. Cell proliferation and migration

[96]

AgNPs ointment Spherical;
10–35 nm

1. Angiogenesis
2. Antioxidant activity by suppression of ROS generation
3. Anti-inflammatory effects via reduction of pro-inflammatory

cytokine levels
4. Promotion of ECM synthesis

[97]

AgNPs hydrogel Spherical;
20 nm

1. Cell proliferation and migration
2. Anti-inflammatory
3. Collagen secretion

[98]

AgNPs hydrogel Spherical;
7.2–16.8 nm

1. Cell proliferation and migration
2. Collagen production
3. Anti-inflammatory

[99]

AgNPs dressing Spherical;
25.92 nm

1. Anti-inflammatory by inhibiting cytokine production
2. ECM production [100]

AgNPs dressing Spherical;
50–90 nm

1. Anti-inflammatory by inhibiting the expression of
pro-inflammatory cytokines

2. Cell proliferation and migration
[101]

AgNPs ointment 86.38 nm

1. Antioxidant activity by significant reduction in
secondary oxidation product (MDA) content and
increased peroxidase activity

2. Anti-inflammatory effects via downregulation of
pro-inflammatory cytokine expression and upregulation of
anti-inflammatory cytokine expression

[102]

Regarding the toxic effects of AgNPs, extensive research indicates that exposure to en-
vironments with high concentrations or particle sizes smaller than 10 nm can cause varying
degrees of damage to most human cell lines (such as macrophages, erythrocytes, hepato-
cytes, etc.) [103–107]. These nanoparticles may also be transported via the bloodstream
to organs such as the liver, spleen, kidneys, and lungs, inducing inflammation, damage,
and even death in animals [108–113]. Therefore, the use of AgNPs in wound treatment
necessitates finding reasonable methods to deliver AgNPs that ensure their efficacy while
minimizing toxicity as much as possible.

4.2. Gold-Based Nanoparticles in Wound Healing

Since the 20th century, gold salt drugs have been used to treat diseases such as arthritis [114].
In the 21st century, AuNPs have become widely used in biomedical imaging, targeted
therapy, antibacterial treatment, and cancer treatment due to their superior photoelectric
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and physical properties and biocompatibility [115–117]. Regarding the antibacterial activity
and wound healing ability of AuNPs, Zhan et al. summarized that AuNPs have broad-
spectrum antibacterial properties, and can be combined with photothermal effects to
perform targeted ablation and sterilization at the affected area [118]. Furthermore, multiple
studies have indicated that the large surface area and electron-accepting tendency of AuNPs
enable them to interact with ROS and participate in the regulation of cytokines (such as the
IL family, TNF-α) and growth factors (such as VEGF, FGF, TGF-β), exerting antioxidant and
anti-inflammatory effects [119–121]. Additionally, they can synergistically promote wound
healing through the combination of photothermal therapy (PTT) and photobiomodulation
therapy (PBMT) (Table 5).

Table 5. Applications of gold-based nanoparticles in wound healing.

Operation
Method

Nanomaterial
Properties Biological Activity References

AuNPs
sponge

Spherical;
3.55 and 2.86 nm

1. Anti-inflammatory
2. Skin tissue regeneration
3. Cell proliferation

[122]

AuNPs
ointment

1–3 nm,
3–5 nm, and
15–30 nm.

1. Cell proliferation
2. Anti-inflammatory
3. Antioxidant

[123]

AuNPs
hydrocolloid
membrane

30 nm

1. Antioxidant
2. Tissue regeneration
3. Stimulation of collagen

synthesis through MMP-1
expression inhibition

4. Stimulation of angiogenesis
via differential regulation of
related proteins

[124]

AuNPs
ointment

Spherical;
15 nm.

1. Cell proliferation
2. Cell migration
3. Antioxidant
4. Angiogenesis

[125]

AuNPs smear Spherical;
20 nm

1. Anti-inflammatory
2. Angiogenesis
3. Stimulation of collagen synthesis

[126]

AuNPs
gauze

Spherical;
13.2 nm

1. Anti-inflammatory
2. Tissue regeneration
3. Angiogenesis

[127]

Currently, there is still much controversy surrounding the toxic effects of AuNPs. The
main findings suggest that the toxicity of AuNPs is related to their size, shape, and dose
(Woźniak et al. [128]; Isoda et al. [129]). However, there is a significant variation in the doses
used in the different studies, and even contradictory results have been reported in different
toxicity studies (Tao et al. [130]; Rambanapasi et al. [131]; Lopez-Chaves et al., [132]).
Therefore, a systematic investigation is still needed to fully understand the toxic effects of
AuNPs.

4.3. Copper-Based Nanoparticles in Wound Healing

Copper, a chemical element with atomic number 29 and symbol Cu, is a bioactive
metal that has been extensively studied. In biological systems, copper is often present in the
form of Cu2+, and plays a crucial role in the formation of various connective tissues in bones,
blood vessels, as well as in lipid metabolism, carbohydrate metabolism, iron metabolism,
and antioxidant defense mechanisms [133–135]. Despite its prominent physiological roles,
an excess of copper ions in the body may lead to cellular oxidative stress, resulting in DNA
and protein damage. Therefore, careful management of copper intake is necessary [136,137].
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In recent years, copper-based nanoparticles have been shown to exist in the body not
as ions, significantly reducing their toxicity compared to conventional copper-based mate-
rials [138–141]. Moreover, several studies have indicated that copper-based nanoparticles
are more inclined to bind to bacterial cell membranes, disrupting their external structure
and inducing the generation of ROS, further inhibiting bacterial growth [142–144]. In terms
of wound healing, CuNPs can participate in the regulation of various stages of behavior,
including hemostasis and the inflammatory phase, by regulating the release of platelet-
derived growth factor (PDGF) and hypoxia-inducible factor-1-alpha (HIF-1), and catalyzing
superoxide dismutase (SOD) activity [145–148]. During the proliferation and remodeling
phase, they stimulate the production of signaling molecules such as VEGF, FGF, and TGF-
β, accelerating ECM deposition and angiogenesis to promote wound healing [149–152]
(Table 6).

Table 6. Applications of copper-based nanoparticles in wound healing.

Operation
Method

Nanomaterial
Properties Biological Activity References

CuNPs
composite

Spherical;
50 nm

1. Antioxidant
2. Anti-inflammatory
3. Cell proliferation and migration
4. Angiogenesis
5. Collagen synthesis

[153]

CuNPs
hydrogel

Spherical;
10 nm

1. Cell proliferation and migration
2. Anti-inflammatory
3. Collagen secretion
4. Anti-inflammatory
5. Angiogenesis

[154]

CuNPs
hydrogel

Spherical;
88 nm

1. Anti-inflammatory
2. Angiogenesis [150]

CuNPs Spherical;
40–80 nm

1. Cell proliferation and migration
2. Collagen production
3. Angiogenesis

[21]

CuNPs 100 nm 1. Angiogenesis [155]

5. Electrospun Nanofiber Scaffolds Loaded with Metal-Based Nanoparticles for
Skin Regeneration

Currently, various metals (such as silver, gold, and copper) have been widely used in
the study of MBNPs. Silver nanoparticles are the most widely used metal-based nanoparti-
cles, and have been widely used in commercialization and wound research due to their
superior antibacterial properties and green preparation methods [89]. Gold has been used
in cosmetic and anti-inflammatory applications since ancient times, and because of its
superior ductility and ability to combine with photothermal and targeted therapies, gold
nanoparticles are often used in medical research [115]. Copper is an essential trace element
in all human tissues, and is vital in multiple metabolic pathways [138]. The following
section summarizes the recent research on electrospun nanofibers loaded with MBNPs for
wound healing, classified by metal type.

5.1. Electrospun Nanofiber Scaffolds Loaded with Silver-Based Nanoparticles

Allizond et al. reported a one-step method for preparing electrospun nanofibers
containing AgNPs from polylactic acid/polyethylene oxide (PLA/PEO). The experimental
results showed that AgNP–PLA/PEO nanofibers effectively killed S. epidermidis and E. coli
by rapidly releasing silver ions [156]. Spagnol et al. modified cellulose whiskers (CWs) to
produce carboxylated CWs (CWSAc) with carboxyl groups (-COO-), and then immersed
them in a silver nitrate solution (AgNO3) to synthesize AgNPs in situ and anchor AgNPs
on the surface. They prepared CWSAc/AgNPs and combined them with electrospinning
to prepare polyvinyl alcohol (PVA) antibacterial fibers loaded with CWSAc/AgNPs. The
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antibacterial fibers exhibited inhibition zones up to 11 mm in diameter against E. coli,
P. aeruginosa, and S. aureus in antibacterial tests [157]. However, recent studies have
found that using AgNPs alone as antibacterial agents had weaker antibacterial effects
against Gram-positive bacteria. Therefore, researchers wrapped AgNPs and ciprofloxacin
separately with polyvinylpyrrolidone and ethyl cellulose, respectively, and prepared Janus-
structured nanofibers using side-by-side electrospinning technology. The experimental
results showed that ciprofloxacin and AgNPs were wrapped on both sides of the nanofiber
and were released separately in a controlled manner. Antibacterial tests showed that
the synergistic effect of AgNPs and ciprofloxacin had strong antibacterial activity against
Gram-positive and Gram-negative bacteria, providing a new idea for the research of novel
electrospun nanofiber membranes [158].

To minimize the potential toxicity of AgNPs, researchers have recently found that
plant extracts and natural polymers can be used for the in situ synthesis of AgNPs in elec-
trospinning solutions. Kohsari et al. used sorghum extract to reduce a silver nitrate solution
(AgNO3) to prepare “green” AgNPs, and combined them with chitosan/polyethylene
oxide nanofibers through an electrospinning technique. The experimental results showed
that AgNPs, when combined with electrospinning, exhibited sustained release and superior
antibacterial properties, indicating their potential for practical applications [159]. El-Aassar
et al. prepared biologically active AgNP spheres (Ag–PGA/HA) using polygalacturonic
acid (PGA) and hyaluronic acid (HA), and loaded them onto PVA nanofibers. The antibac-
terial results showed that Ag–PGA/HA–PVA nanofibers exhibited significant antibacterial
effects. On the eighth day of use in rat wounds, Ag–PGA/HA–PVA nanofibers significantly
promoted wound healing. Subsequent histopathological results showed that collagen
deposition at the wound site was tightly packed and the wound was completely epithe-
lialized [160]. Therefore, electrospun nanofibers loaded with green AgNPs also exhibited
positive effects on wound repair.

5.2. Electrospun Nanofiber Scaffolds Loaded with Gold-Based Nanoparticles

Gold nanoparticles have good surface modifiability and are excellent antibiotic carri-
ers. Yang et al. developed a polycaprolactone (PCL)/gelatin nanofiber loaded with gold
nanoparticles (Au–APA) modified with antibiotic drug intermediates (APA). The nanofiber
had good biocompatibility, and an analysis of its healing effects on rat wound infection and
antibiotic-resistant bacterial infection models showed better therapeutic effects on infected
wounds than did the controls [73]. Based on the photothermal effect of gold nanoparticles,
Tian et al. designed a composite nanoparticle (Au@CD) composed of AuNPs and carbon
dots (N,S-CDs), which was combined with electrospinning and used for PTT in animal
models. The results showed that Au@CD nanofibers had good antibacterial activity and
effectively promoted collagen accumulation and blood vessel generation at the wound
site, providing a new approach to promoting wound healing [161]. By leveraging the
similar crystal structures of AgNPs and AuNPs, a characteristic that also makes them easily
co-prepared, Bai et al. developed a sea urchin-like Au–Ag bimetallic nanoparticle-modified
polyacrylonitrile (PAN) nanofiber mat. Experimental results showed that the nanofiber
mat enhanced osteoblast activity, had good antibacterial activity, was nonirritating to the
skin, and had a significant promoting effect on the healing of infected wounds [70]. Con-
sidering the potential toxicity of AuNPs prepared by reducing agents such as NaBH4,
researchers have recently turned to natural polymers such as chitosan and xanthan gum
to synthesize biogenic AuNPs. Then, these biogenic AuNPs were combined with drugs
such as moxifloxacin hydrochloride, peppermint oil, and a nanoemulsion (SNE) to produce
antibacterial and anti-inflammatory nanofibers. This approach provides a new strategy
and method for the development of efficient and environmentally friendly wound healing
materials [162,163].
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5.3. Electrospun Nanofiber Scaffolds Loaded with Copper-Based Nanoparticles

Jahangirian et al. prepared PVA electrospun membranes loaded with CuNPs by
blending CuNPs with PVA and CS. These membranes were used as the inner layer and
combined with an outer layer of PVP electrospun membranes to form wound dressings for
a full-thickness skin defect model in rats. The experimental results showed that CuNPs
could be uniformly dispersed in the polymer fibers and exhibited excellent antibacterial
effects against Bacillus cereus, S. aureus, E. coli, and P. aeruginosa. Furthermore, the use of
PVA/CS/CuNPs composites in treating rat wounds led to rapid healing within a short
period of time [164]. The “green” synthesis of CuNPs as implantable materials has been a
focus of research. Fahimirad et al. designed electrospun membranes with PCL as the inner
support layer and PVA as the outer covering layer. They incorporated CuNPs synthesized
using Quercus infectoria galls (QLG) extract into the PVA spinning solution, resulting in
PCL/PVA nanofibers loaded with QLG and CuNPs (PCL/PVA/QLG/CuNPs). Analysis
using FTIR spectroscopy, XRD, and other techniques confirmed the successful synthesis
of CuNPs combined with the functional components of QLG, which were uniformly
dispersed in the PVA nanofibers. Cell viability, antimicrobial, and animal experiment results
demonstrated that the PCL/PVA/QLG/CuNPs nanofiber membrane was completely non-
toxic and exhibited significant antimicrobial activity against S. aureus. The wound healing
effects on non-infected and infected S. aureus wounds were improved by 77.6% and 73.8%,
respectively [165].

When used as an antimicrobial material, it is important to avoid potential toxic side
effects of CuNPs by achieving controlled release during application. J. Ahire et al. incor-
porated CuNPs into a solution of PDLLA and PEO at a concentration of 150 mg/mL−1

to prepare CuNP-loaded nanofibers using a one-step method. They evaluated the re-
lease capacity of CuNPs in the nanofibers, their cytotoxicity, and antimicrobial activity
against P. aeruginosa and S. aureus. The experimental results showed that CuNPs in the
CuNPs/PDLLA/PEO nanofibers existed in an irregular form, and the release rate could be
adjusted by varying the ratio of PDLLA and PEO. The released CuNPs exhibited significant
inhibitory effects against P. aeruginosa and S. aureus. Additionally, cytotoxicity experiments
demonstrated that CuNPs had toxic side effects on a small number of cell lines [166]. There-
fore, achieving controlled release of NPs remains an important topic for further research
and application.

6. Conclusions and Future Directions

Since trauma is a major health problem that all countries across the globe face, cur-
rent research on new functional materials with properties that promote wound healing
is making new progress every day. Based on current research, MBNPs involving gold,
silver, and copper have functions that promote wound healing, such as exerting antibac-
terial and anti-inflammatory activity, and promoting cell proliferation, angiogenesis, and
tissue remodeling [121,167,168]. Additionally, some MBNPs have expanded their biolog-
ical applications through their unique properties. For example, gold nanoparticles have
photothermal effects and can be used in photodynamic therapy [169,170]. Although there
is considerable research on MBNPs in biomedical applications, we should also pay at-
tention to the nanotoxicity of nanomaterials. Nanotoxicity is related to factors such as
the size, shape, surface area, and structure of nanomaterials. Studies have revealed that
metal nanoparticles may have certain toxicity to cells after entering the human body, and
nanoparticles easily accumulate in organs such as the liver and kidneys through the blood-
stream [171–174]. Therefore, before being used in clinical research in the future, MBNPs
must be stabilized in a carrier through embedding, solidification, and other methods to
reduce their potential toxicity [175]. Additionally, there has been controversy regarding
the synthesis of MBNPs for biomedical applications in recent years, and green synthesis is
considered to be a safer and friendlier synthesis for human health than traditional physical
and chemical synthesis, which deserves further research [176].
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Electrospinning technology can rapidly prepare large quantities of polymer nanofiber
scaffolds, which can be used to cover or fill wounds for in situ treatment [177]. For example,
biomimetic nanofiber scaffolds can be prepared according to the structure and materials
of damaged tissue, which can provide a survival environment for new cells in the early
stage of wound healing, promoting cell proliferation and migration [178]. In the future,
research on nanofiber scaffolds for wound healing can focus more on the dynamic changes
in the ECM in different healing stages and strive to simulate the structure of the ECM in a
more detailed way. Furthermore, adding functional materials such as growth factors and
antibacterial materials to nanofibers, or preparing composite nanofiber scaffolds can help
regulate cell signaling pathways and achieve intelligent treatment of wounds in different
healing stages.

In summary, electrospun nanofiber scaffolds loaded with metal-based nanoparticles,
as a stable carrier for MBNPs, have the superior properties of nanofibers and can better
treat wounds by combining the properties of MBNPs. Moreover, for the needs of different
healing stages, composite and multi-level nanofibers could be prepared with different
MBNPs to achieve diverse and efficient trauma treatment. These research results could
provide new ideas and methods for trauma treatment and make valuable contributions to
the development of nanomedicine.
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