
Citation: Predoi, D.; Ciobanu, S.C.;
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Abstract: The new magnesium-doped hydroxyapatite in dextran matrix (10MgHApD) nanocom-
posites were synthesized using coprecipitation technique. A spherical morphology was observed
by scanning electron microscopy (SEM). The X-ray diffraction (XRD) characterization results show
hydroxyapatite hexagonal phase formation. The element map scanning during the EDS analysis
revealed homogenous distribution of constituent elements of calcium, phosphor, oxygen and mag-
nesium. The presence of dextran in the sample was revealed by Fourier transform infrared (FTIR)
spectroscopy. The antimicrobial activity of the 10MgHAPD nanocomposites was assessed by in vitro
assays using Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Streptococcus
mutans ATCC 25175, Porphyromonas gingivalis ATCC 33277 and Candida albicans ATCC 10231 microbial
strains. The results of the antimicrobial assays highlighted that the 10MgHApD nanocomposites pre-
sented excellent antimicrobial activity against all the tested microorganisms and for all the tested time
intervals. Furthermore, the biocompatibility assays determined that the 10MgHApD nanocomposites
did not exhibit any toxicity towards Human gingival fibroblast (HGF-1) cells.

Keywords: biomedical applications; dextran; fractal features; hydroxyapatite; magnesium

1. Introduction

Dental caries is an expensive public health problem affecting up to 91% of adults
(worldwide). The dental plaque formation usually occurs due to the microbial colonization
of oral cavity surfaces [1]. Diet, age, oral hygiene routine, systemic and immune status are
important factors that influence the apparition and development of dental plaque [2–4].
The excessive presence of sugar in the daily diet favors the apparition of dental caries [5].

Moreover, a diet rich in sugar favors the development of pathogens in the oral cavity
(such as Streptococcus mutans), which leads to the formation of acidic and adherent biofilms
that are difficult to combat. At the same time, these biofilms lead to a demineralization
of dental enamel, thus favoring the apparition of caries [6]. Due to the nanotechnology
progress in the medical field [7], materials that have in their composition zinc oxide, silver
or magnesium ions were proposed as antibiofilm agents [8,9].

Dextran is a natural polysaccharide, and its use on humans is approved by FDA [10].
The efficiency of dextran-coated iron oxide nanozymes against oral biofilm development,
together with their biocompatibility, was shown by Pratap et al. [11]. Moreover, the
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possibility of using calcium phosphate such as hydroxyapatite (Hap) as a dental filler
was evaluated [12]. Studies show that the addition of Hap to dental composite leads to
the reinforcement of cement mechanical properties [13]. HAp structure has the ability
to allow a large number of substitutions with various ions, including magnesium, zinc,
silver, etc. [14–18]. The addition of magnesium ions to the Hap structure is important
due to its metabolic role in bone regeneration [19]. The Mg deficiency induces serious
health problems, such as osteopenia/osteoporosis, because the lack of Mg in the body
disturbs the activity of osteoblast cells [19,20]. For the development of biomaterials based
on magnesium-doped hydroxyapatite, various synthesis routes were proposed: hydrother-
mal [21], precipitation [22], sol–gel [23], mechanochemical–hydrothermal [24], wet chemi-
cal [25], and microwave [26,27]. These approaches allow us to obtain nanomaterials with
desired properties, such as morphology, dimension, biological properties, etc.

Polymeric nanoparticles have been used in many biomedical applications, such as drug
delivery, tissue engineering, dentistry and imaging [28]. Usually, polymeric nanoparticles
can be developed using various natural and/or synthetic polymers (e.g., polyethylene
glycol (PEG), polylactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA) and/or gelatin,
alginate, albumin, chitosan, dextran etc.) [28]. Previous studies showed that polymeric
nanoparticles exhibit a great potential for uses in drug delivery applications due to their
biocompatibility and stability. Furthermore, polymeric nanoparticles were used for drug
delivery and imaging applications due to their unique properties, such as high surface
area to volume ratio and tunable size [29]. For example, in the work conducted by El-
Meliegy et al. [30], the synthesis of a novel composite scaffold based on hydroxyapatite
in dextran/chitosan polymeric matrix was reported. Their results highlighted that the
presence of Hap nanoparticles in the polymeric matrix enhances the physicochemical
properties of the obtained composite scaffolds [30]. In this context, Hap and dextran
have been used for the development of polymeric nanoparticles with potential uses in
various biomedical applications, such as drug delivery, tissue engineering, dentistry and
imaging [31].

Shoba et al., in their work entitled “3D nano-bilayered spatially and functionally
graded scaffold impregnated bromelain conjugated magnesium-doped hydroxyapatite
nanoparticle for periodontal regeneration” revealed that scaffolds containing magnesium-
doped hydroxyapatite possess an improved antibacterial activity and biocompatibility
proving that such materials can be promising candidates for uses in periodontal tissue
regeneration [32]. Moreover, in our previous antimicrobial study conducted on magnesium-
doped hydroxyapatite suspension obtained by an adapted coprecipitation method, we
underlined the efficacy of this biomaterial against P. aeruginosa, S. aureus, and C. albicans
strains [33]. Also, we noticed that the antimicrobial activity of magnesium-doped hydrox-
yapatite is strongly correlated with the Mg concentration found in the samples. Therefore, a
more efficient antimicrobial activity against Gram-positive strains (B. subtilis and S. aureus)
was noticed in the case of an increased Mg concentration in the hydroxyapatite/chitosan
composite samples when compared to those against Gram-negative strains [34]. Also,
a study conducted on chitosan-coated magnesium-doped hydroxyapatite coatings high-
lighted the in vitro biocompatibility of the studied samples with the human fibroblast
cell [34].

In the present study, we proposed the development of a novel biomaterial based on
magnesium-doped hydroxyapatite in dextran matrix (10MgHApD). The research focused
on the physicochemical characterization and antimicrobial evaluation of 10MgHApD
nanocomposites with high potential to be applied in the dental field.

2. Materials and Methods
2.1. Materials

The synthesis of magnesium-doped hydroxyapatite (Ca10−xMgx(PO4)6(OH)2, xMg = 0.1
and [Ca + Mg]/P ratio equal with 1.67) in dextran matrix was conducted using ammo-
nium hydrogen phosphate ((NH4)2HPO4), calcium nitrate tetrahydrate (Ca(NO3)2·4H2O),
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magnesium nitrate hexahydrate (Mg(NO3)2·6H2O) purchased from Sigma-Aldrich (St.
Louis, MO, USA) with a purity of 99.97%. Dextran (H(C6H10O5)n, Mr ~ 40,000) was also
purchased from Sigma-Aldrich (St. Louis, MO, USA). In the synthesis double-distilled
water was used.

2.2. Synthesis of Magnesium-Doped Hydroxyapatite in Dextran Matrix Nanocomposites

Magnesium-doped hydroxyapatite in dextran (10MgHApD) matrix nanocomposites
were obtained by the coprecipitation technique [35]. In order to achieve this purpose, the
atomic ratio of (Ca + Mg)/P was 1.67. A solution (300 mL) containing (NH4)2·HPO4 and
10% H(C6H10O5)xOH (10 g) was stirred for 30 min at 40 ◦C. in air. A similar procedure
was followed for the solutions (300 mL) containing Ca(NO3)2·4H2O and Mg(NO3)2·6H2O.
The solutions containing calcium and magnesium were dropped into the solution with
dextran. The pH of synthesis was kept constant at 11 by adding NH3. After 5 h of stirring
after the end of dripping, the resulting suspension was centrifuged and redispersed in 10%
solution of dextran (10 g at 100 mL of double-distilled water). The procedure was rehearsed
five times. The resulting precipitate after the last centrifugation was redispersed in a 10%
dextran solution and stirred for 12 h at 60 ◦C in air. The final suspension was centrifugated,
and the last precipitate was dried at 40 ◦C (in air) and called 10MgHApD and afterwards
analyzed in the present study.

2.3. Characterization Methods
2.3.1. Scanning Electron Microscopy

A scanning electron microscope (FEI Quanta Inspect F, FEI Company, Hillsboro,
Oregon, United States) equipped with an energy-dispersive X-ray (EDS) attachment was
used to study the morphology of 10MgHApD nanocomposites.

2.3.2. X-ray Diffraction

X-ray diffraction (XRD) was used to examine the magnesium-doped hydroxyapatite
(10MgHAp), 10MgHApD nanocomposites and dextran. The equipment for XRD analysis
was a Bruker D8 Advance diffractometer with CuKα (λ = 1.5418 Å) radiation (Bruker,
Karlsruhe, Germany), equipped with a high-efficiency LynxEye™ 1D linear detector. The
patterns were achieved in the 2θ range 20–60◦. The step size was 0.02◦ and the dwell time
was 5 s.

2.3.3. Fourier Transform Infrared Spectroscopy

The presence of functional groups was established by Fourier transform infrared
(FTIR) spectroscopy in attenuated total reflectance (ATR) mode. A Perkin Elmer Spectrum
BX II spectrometer (Perkin Elmer, Waltham, MA, USA) equipped with a Pike-MIRacle ATR
head with diamond-ZnSe crystal plate, having a diameter of 1.8 mm (Pike Technologies,
Madison, WI, USA) was used. The spectra were acquired in the 450–3800 cm−1 spectral
range. The resolution was 4 cm−1 and represented the average of 32 individual scans.

2.3.4. Atomic Force Microscopy (AFM)

Detailed information regarding the morphology of the composites was achieved by
atomic force microscopy (AFM) technique. For this purpose, the composite nanocomposites
were pressed into pellets, and the surface topography of the pellet was studied using an
instrument NT-MDT NTEGRA Probe Nano Laboratory (NT-MDT, Moscow, Russia). The
measurements were performed at room temperature and in atmospheric conditions using
semi-contact mode. Information about the morphology of the samples was obtained by
recording AFM surface topographies on surface areas of 10 × 10, 5 × 5 and 3 × 3 µm2

using a silicon NT-MDT NSG01 cantilever (NT-MDT, Moscow, Russia) with a 35 nm gold
layer. Information about the roughness of the samples was also obtained by calculating the
roughness parameter RRMS. The recorded AFM data were processed using the 2.59 version
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of Gwyddion software (Department of Nanometrology, Czech Metrology Institute, Brno,
Czech Republic) [36].

2.3.5. Monofractal and Multifractal Analysis

Herein, the monofractal parameters were performed evaluate the surface microtex-
ture spatial complexity. The fractal dimension (FD) was computed using the Mandelbrot
box-counting method [37], and the Hurts coefficient was obtained by applying the formula
H = (3 – FD) [37]. The Fractal succolarity (FS) was determined using Equation (1) [38],
where T(k) represents the count of boxes of uniform sizes T(n), P0(T(k)) denotes the occupa-
tion percentage within each box, PR represents the occupation pressure, and pc signifies
the centroid’s position (x,y) representing the applied pressure on the corresponding box.
This equation provides a quantifiable measure of FS, offering insights into the structural
complexity and hole distribution across the analyzed surface [38].

Fs(T(k), dir) =
∑n

k=1 P0(T(k))·PR(T(k), pc)

∑n
k=1 PR(T(k), pc)

(1)

The topographic entropy was computed using Shannon entropy [39], as defined in
Equation (2) [40]. In this equation, the term pij signifies the probability of pixels exhibiting
discrepancies or not within the specified height range of the analyzed universe. The
calculation of topographic entropy through Shannon entropy allows for a quantitative
measure of the information content associated with the variability in pixel values across
the analyzed topography [40].

TE = −∑N
i=1 ∑N

j=1 pij·logpij (2)

On the other hand, the multifractal theory is a mathematical framework employed to
characterize intricate objects or systems showcasing substantial variations in their prop-
erties across various scales [38]. Its application is prevalent in the analysis of 3D spatial
patterns, time series, and diverse complex phenomena. Serving as an extension of fractal
theory, which centers on objects with self-similarity—patterns recurring at different scales—
multifractal theory broadens this perspective to encapsulate the multifaceted variability
observed in complex systems [41]. We use the partition function (Equation (3)) for express-
ing the mass exponent (τq), where pi(ε) = ri(ε)/∑

N(ε)
k=1 rk(ε) represents the probability of

occupancy of the i-th cell within a resolution grid ε. The ri(ε) term denotes the cumulative
fluctuation of the height around the mean value within the i-th square [37].

Z(q, ε) = ∑N(ε)

i=1 pq
i (ε) ∼ ετ(q) (3)

The multifractal spectrum elucidates the variation in complexity associated with
different exponents, such as Hölder exponent (α(q)), and this relationship is expressed by
Equation (4) [37].

f (α(q)) = q·α(q)− τ(q) (4)

The mass exponent curve defines a relationship between moments of order (q) and
generalized dimensions (Dq) and can be expressed according to Equation (5) [37].

Dq =
τ(q)

(q − 1)
(5)

where α(q) = dτ(q)
dq defines the connection between the (α(q)) and the mass exponent (τ(q))

for a given value of q.
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2.3.6. In Vitro Antimicrobial Assays

The in vitro antimicrobial properties of 10MgHApD nanocomposites were studied
with the aid of Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853,
Streptococcus mutans ATCC 25175, Porphyromonas gingivalis ATCC 33277 and Candida albicans
ATCC 10231 microbial strains. The experiments were performed as previously described
in [42]. For this purpose, 10MgHApD nanocomposites, as well as 10MgHAp and HAp
nanoparticles, were exposed to 1.5 mL of microbial suspension of a standardized density
equal to 5 × 106 CFU/mL (colony forming units/mL). S. aureus, P. aeruginosa and C. albicans
microbial suspensions of a density of approximately 5 × 106 CFU/mL were prepared
from 15 to 18 h. Solid cultures were grown in tryptone soy agar (TSA). Afterwards, the
microbial suspensions were inoculated onto Muller Hinton agar (MHA) plates by swabbing.
Afterwards, the suspensions were collected at different time intervals (24, 48 and 72 h)
and incubated on Luria–Bertani (LB) agar medium for 24 h at 37 ◦C. P. gingivalis was
grown on Brucella agar plates containing a blood agar base, yeast extract, glucose (4.5%)
under anaerobic conditions (80% N2, 10% H2, 10% CO2). The colonies were harvested
and resuspended in a Brain Heart Infusion (BHI) broth (Difco). S. mutans were cultured
from single colonies in BHI (Difco) in an aerobic atmosphere with 5% CO2. The colonies
were harvested and resuspended in BHI broth. The density of the microbial suspensions
was adjusted by adding either P. gingivalis and S. mutans suspended in BHI broth or just
pure BHI broth. The microbial suspensions were prepared as described above and then
incubated for 24, 48 and 72 h, respectively with the 10MgHApD nanocomposites and
10MgHAp and HAp nanoparticles. As a positive control, a free microbial culture was
assessed at the same time intervals.

The microbial suspensions were prepared in phosphate-buffered saline (PBS) and then
incubated for 24, 48 and 72 h, respectively, with the 10MgHApD nanocomposites. The
values of the CFU/mL were determined. The experiments were performed in triplicate
and the data were presented as mean ± standard deviation (SD). The statistical analysis
was performed using the ANOVA single-factor test.

2.3.7. In Vitro Biocompatibility Assay

The biocompatibility of the 10MgHApD nanocomposites was studied using a Human
gingival fibroblasts (HGF-1) cell line. For this purpose, the cells were cultured using
Dulbecco’s Modified Eagle’s Medium enriched with heat-inactivated fetal bovine at 37 ◦C
in an atmosphere containing 95% air and 5% CO2. The HGF-1 cells were seeded in culture
plates and were allowed to adhere for 24 h. Afterwards, the cultured cells were incubated
with 10MgHApD nanocomposites for 24, 48 and 72 h. An untreated cell culture was used as
control. The cell viability of the HGF-1 cells was determined with the aid of the reduction
assay MTT [3-(4,5dimethylthiazolyl)-2,5-diphenyltetrazolium bromide]. To achieve this, the
cells were seeded in 96-well plates (5 × 104 cells/mL), incubated for 24 h, and then treated
with the 10MgHApD nanocomposites. After 24, 48 and 72 h of incubation, the cells were
washed using phosphate buffer saline (PBS) and incubated with 0.5 mg/mL MTT solution
for 4 h. The HGF-1 cell viability was quantified by determining the optical density of the
medium at 595 nm with the aid of a TECAN spectrophotometer. The percentage of the
HGF-1 viable cells was quantified by rapport to the control sample, which was considered
to have a viability of 100%.

3. Results and Discussion
3.1. X-ray Diffraction

To assess the magnesium incorporated in hydroxyapatite coated with dextran, XRD
studies were conducted. In Figure 1, XRD patterns of the dextran, magnesium-doped
hydroxyapatite in dextran matrix (10MgHApD) and magnesium-doped hydroxyapatite
(10MgHAp) nanocomposites are presented. The reference hexagonal patterns of hydroxya-
patite (JCPDS no. 09-0432) and dextran (JCPDS no. 063-1501) are also shown.
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The diffraction pattern of 10MgHAp and 10MgHApD was similar to that of the
reference hexagonal HAp pattern (ICDD-PDF#09-432). The diffraction pattern of both
samples highlights the fact that the particles have nanometric dimensions (20.1 ± 2 nm for
10MgHAp and 13.6 ± 4 nm in the case of the 10MgHApD sample). It is observed that the
diffraction pattern of 10MgHApD shows wider peaks than in the case of the 10MgHAp
sample [43]. This behavior could also be caused by the presence of dextran. Due to its
presence, dextran can lead to a decrease in crystallinity [44].

3.2. Scanning Electron Microscopy

The morphology of the as-synthesized 10MgHApD nanocomposite material is shown
in Figure 2. Figure 2a represents the SEM micrograph at low resolution, while Figure 2b
shows the SEM micrograph of 10MgHApD nanocomposites at high resolution. The micro-
graph shown in Figure 2b exhibits nanometric particles with a spherical shape. The aver-
age particle size calculated after measuring approximately 500 particles was 14.5 ± 2 nm
(Figure 2d). The inset of Figure 2d presents the micrograph on which approximately
500 particles are numbered. Typical EDS patterns establish six prominent peaks which
confirm the presence of magnesium, calcium, phosphor, oxygen and carbon, respectively
(Figure 2c).
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Figure 2. SEM micrograph at low (a) and high (b) resolution of 10MgHApD nanocomposites, EDS
spectrum of 10MgHApD nanocomposites (c) and average particle size (d).

The element map scanning during the EDS analysis was conducted from the region
revealed in Figure 2a. The results regarding the element map scanning during the EDS
analysis of 10MgHApD nanocomposites are exhibited in Figure 3. The homogenous
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distribution of constituent elements Ca, P, O and Mg is observed. The C element is not
presented because it is not conclusive (the C contribution has two sources, the carbon band
and the dextran from the synthesized sample).
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3.3. Atomic Force Microscopy

The morphology of the 10MgHApD nanocomposites was further investigated using
AFM technique. Information about the sample’s morphology was obtained by recording
AFM topographies on surface areas of 10 × 10, 5 × 5 and 3 × 3 µm2 of the pellet surface
topography obtained from the 10MgHApD nanocomposites nanocomposites. The results
of the AFM studies are depicted in Figure 4a–f.
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Figure 4. 2D AFM images of 10MgHApD pellet’s topography recorded on an area of 10 × 10 µm2 (a),
5 × 5 µm2 (b), 3 × 3 µm2 (c) and their corresponding 3D representations (d–f).

The AFM topography reveals a surface with slight irregularities resulting from the
process of obtaining the pallets. The homogeneous distribution of the agglomerates formed



Polymers 2024, 16, 125 9 of 23

by nanoparticles was also observed. The AFM topography obtained on the surface area of
3 × 3 µm2 highlighted that the nanoparticles form agglomerates. In addition, the results
suggested that the agglomeration of particles exhibited nanometric sizes. Both the 2D
surface topography of the three investigated areas, as well as their 3D representation,
emphasized that the nanocomposites present a uniform and homogenous morphology.
Slight irregularities of the pellet surface could be observed. The roughness parameters,
RRMS, calculated for the areas of 10 × 10, 5 × 5 and 3 × 3 µm2 of the pellet surface
topography obtained from the 10MgHApD nanocomposites were 15.36, 13.56 and 10.91 nm,
respectively. It can be seen that the obtained values are very close. The values of the
roughness parameter suggest a homogeneous distribution of the agglomerates formed by
nanoparticles on the surface of the pallets.

The investigation of coating surfaces using AFM has become a cornerstone for as-
sessing nanoscale topographic changes. With its capability to map both topography and
mechanical properties, AFM plays a pivotal role in advancing nanotechnology, characteriz-
ing biomaterials, and optimizing devices [37]. In this regard, we assessed the morphology
and microtexture of 10MgHApD nanocomposites across various scales. The comprehensive
view of the overall morphology of the 10MgHApD pellet’s topography recorded on an area
of 10 × 10 µm2 and its 3D spatial configurations is depicted in Figure 5. The 3D topographic
map covering dimensions of 10 × 10 µm2 illustrates a relatively smooth surface with certain
irregularities formed randomly along the surface following the process of obtaining the
pallets. This behavior that appears on the surface of the pellets after the pressing process
could be beneficial, contributing to the improvement of the adhesive properties of the
surface [45] in order to develop applications in the biomedical field.
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To gain deeper insights into the 3D spatial configuration of the vertical growth profile
of the investigated surface, we conducted a detailed analysis of its microtexture. This
involved utilizing 3D AFM topographic maps with dimensions of 3 × 3 µm2, as shown
in Figure 6a,b. As it can be seen, the pellet surface appears nearly homogeneous and
uniform, displaying a finely tuned vertical profile indicative of low topographic roughness.
Additionally, the 10MgHApD particles are evenly distributed across the surface, show-
casing sizes ranging from 50 to 200 nm. The average roughness (Sa) was computed to
be 13 ± 0.2 nm, which is a markedly lower value than other values reported for different
coatings, e.g., 980 nm [46] and 47 nm [47]. Such behavior was also observed for the other
height ISO-based parameters: maximum peak height (Sp), maximum pit depth (Sv), and
maximum height (Sz) (Table 1). Notably, the low roughness of the pellet surface suggests
that the incorporation of MgHAp into the dextran matrix has a softening effect on the verti-
cal profile of the investigated surface, with the particles being shaped and embedded by the
polymer. Figure 6c shows the shape of the height distribution associated with the vertical
profile of the pellet surface and its Abbot Firestone curve [39,48]. As observed, the height
distribution of the investigated surface is centralized, a characteristic supported by the
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kurtosis value Rku ~3, signifying an almost perfectly platykurtic pattern [49]. Furthermore,
the distribution is almost symmetric, which is supported by the skewness value Rsk ~0 [50]
(Table 1). Additionally, the high quality of the investigated surface is also illustrated by the
Abbot Firestone curve, characterized by its typical S shape. In this regard, the curve attains
its peak value more rapidly at a specific relative height z value (in µm), providing evidence
that the height distribution follows an almost normal behavior.
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Table 1. Height parameters of 10MgHApD sample.

Sample
Parameters

Sa (nm) Ssk Sku Sp (nm) Sv (nm) Sz (nm)

10MgHApD 13.0 ± 0.2 −0.7 ± 0.1 3.1 ± 0.3 68.2 ± 4.7 102.8 ± 0.8 180.9 ± 15.0

Minkowski Functionals (MFs) serve as geometric measurements employed to charac-
terize and quantify the topological and morphological properties of geometric sets [51,52].
Their primary applications lie in morphological analysis, particularly in contexts such as
image analysis and the study of porous materials [37]. The Minkowski volume (V) limit
of the investigated surface, as depicted in Figure 7a, exhibits a characteristic S-like shape
and approaches its minimum rapidly. This behavior indicates that the volume of material
below a threshold is low, confirming the surface’s exceptionally smooth vertical profile.
The Boundary Minkowski (S) (Figure 7b) depicts a higher maximum value in 0.06, with a
distribution of points similar to a normal curve. This suggests that the surface boundary of
the sample is intricate, containing distinctive features in its contour. Finally, the Minkowski
connectivity (χ) exhibits a typical minimum negative and a sharp positive maximum value,
as shown in Figure 7c. This suggests that the investigated surface has homogeneous surface
percolation. This behavior may be associated with a regular distribution of gaps along the
pellet surface. Notably, these aspects of the nanocomposite morphology align with the
observations made about its morphological and microtextural properties (Figure 6a,b).
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Figure 7. The MFs functionals of the surface of 10MgHApD obtained from AFM image for
(a) Minkowski volume, (b) Minkowski boundary, and (c) Minkowski connectivity.

3.4. Monofractal Analysis

Analyzing the spatial complexity of surfaces using monofractal mathematics is crucial
for deciphering intricate 3D patterns of polymer surfaces in nanoscale [53]. This approach
offers a profound understanding of shapes, facilitating the optimization of industrial
processes, material design, and environmental modeling. By unraveling the underlying
geometry, monofractal mathematics emerges as a valuable tool for enhancing efficiency
and fostering innovation across various domains, e.g., biological [54], thin films [55], and
biomedical [56]. In our monofractal approach, we employed the Mandelbrot box-counting
method [37] to obtain the fractal dimension, whose fit is shown in Figure 8. Remarkably,
the smoothness of the nanocomposite surface is associated with relatively low spatial
complexity (FD < 2.5) (Table 2). Despite this, the surface exhibits an FD value > 2, indicating
the presence of topographic irregularities that give rise to long-range correlations. The
relatively low spatial complexity of the nanocomposites is also linked to the presence of
low dominant spatial frequencies, as indicated by the high value of the Hurst coefficient
(H > 0.5) (Table 2). Thus, the arrangement of the topographic heights in the pellet surface
microtexture promotes the development of a surface with low roughness and 3D spatial
complexity characterized by low spatial frequencies in the topographic profile.
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Table 2. Measures of monofractal parameters of the surface of 10MgHApD nanocomposites.

Sample Parameters

10MgHApD
FD H FS E

2.243 ± 0.007 0.757 ± 0.007 0.361 ± 0.160 0.897 ± 0.006

Furthermore, we observed that the pellet surface is not highly porous (FS < 0.5),
a characteristic that is not directly associated with the porous nature of the 10MgHApD
structure. According to Ţălu et al. [38], a surface with ideal surface percolation has to display
FS = 0.5, indicating a highly uniform hole distribution across the surface. In contrast, a
more percolable surface is expected to exhibit FS > 0.5. In this regard, it is evident that
the low roughness of the nanocomposites facilitated the development of a less porous
surface, primarily attributed to the presence of dextran polymer in its structure. In addition,
the average topographic entropy (E), a parameter linked to the uniformity of 3D spatial
patterns in the distribution of topographic heights, was calculated to be 0.897 ± 0.006. This
behavior implies the presence of more uniform spatial patterns (E < 0.5) than nonuniform
ones (E > 0.5), indicating high surface quality and resistance of the coating. Moreover,
surfaces with an E value ~1 tend to demonstrate homogeneous surface adhesion [40,57],
which is advantageous for biological applications, including cell anchoring. In conclusion,
our findings suggest that the 10MgHApD nanocomposites display monofractal behavior
characterized by low spatial complexity, low surface percolation, and high topographic
uniformity, largely attributed to the low surface roughness.

3.5. Multifractal Analysis

We conducted an in-depth examination of the pellet surface dynamics utilizing a
multifractal methodology. In fact, it is recognized that monofractals have limitations as
they solely rely on a single fractal dimension [37]. However, the analysis of multifractal
behavior of a multifractal sample is crucial because it can address inhomogeneous surface
complexity [37,57]. While the monofractal approach provides a global view of spatial
complexity, multifractal analysis allows for a more refined description of local and regional
variations using multiple scaling exponents [58,59]. This approach identifies specific scales
of complexity, revealing nonlinear details and heterogeneities critical for full sample char-
acterization, especially in systems where properties vary significantly at different spatial
scales, e.g., roughness and surface isotropy. The analysis of 3D spatial patterns in the
surface of 10MgHApD nanocomposites reveals unique multifractal properties, indicating
significant structural complexity, as displayed in Figure 9. The multifractal parameters
computed from the multifractal spectra of 10MgHApD nanocomposites are presented in
Table 3. The multifractal spectra curve (Figure 9a), characterized by a downward concavity,
serves as a hallmark of multifractal systems, with the maximum point corresponding to the
Hausdorff dimension. This dimension offers insights into the three-dimensional complex-
ity of the coating, highlighting structural variations at different scales. The spectra width
(∆α = αmax − αmin), calculated as 1.078, indicates a broad range of structural sizes within
the coating. Higher values suggest substantial diversity in structural scales, contributing
to the overall complexity of the material. Figure 9b illustrates a nonconstant relationship
between the generalized dimensions Dq and the moments q, indicating high multifractality.
This suggests that different regions of the nanocomposites exhibit varying degrees of fractal
complexity. The mass exponent τ(q) versus q curve analysis (Figure 9a) confirms the mul-
tifractal nature of the nanocomposites. The nonlinear behavior of this curve underscores
nontrivial variations in mass distribution across scales, adding an extra layer to under-
standing structural complexity. The fractal dimension difference (∆f = f (αmax) − f (αmin))
was found to be 1.985 and emphasizes the disparity in fractal dimensions in different parts
of the coating, highlighting marked variations in structural complexity. Notably, the low
roughness of the nanocomposites promoted the formation of a microtexture with unique
vertical growth dynamics marked by a strongly multifractal behavior. Comprehending the
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multifractality mechanism of the nanocomposites offers valuable insights for the design
of advanced materials, bioengineering, and other fields where 3D surface architecture
plays a pivotal role. Hence, these findings bear substantial implications, especially in the
nanomaterial utilization in biomedical applications which demand meticulous control over
structural properties, particularly in relation to their surface characteristics. Furthermore,
the conjunction of multifractal behavior with microtextural properties, such as low per-
colation and high topographic uniformity in the nanocomposites, indicates that surface
characteristics, including adhesion, friction, and resistance, are governed by distinctive and
advantageous surface dynamics. This feature is assigned as beneficial for its application in
the biological field.
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Table 3. Multifractal parameters computed from the multifractal spectra of 10MgHApD nanocomposites.

Sample
Parameters

αmax αmin ∆a f (αmax) f (αmin) ∆f

10MgHApD 3.109 2.031 1.078 −0.310 1.675 1.985

3.6. Fourier Transform Infrared Spectroscopy

The FTIR-ATR spectra of 10MgHApD nanocomposites, magnesium-doped hydroxya-
patite (10MgHAp) and dextran powder as reference spectrum are presented comparatively
in Figure 10a–i. According to previous studies [33,60], the vibration bands distinctive to
HAp were observed together with the characteristic bands of dextran (Figure 10).
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(d–f) and 10MgHAp (g–i).

For the magnesium-doped hydroxyapatite (10MgHAp) sample, the results of the FTIR
studies are presented in Figure 10g–i. The dominant maxima observed in the FTIR spectra
could be attributed mainly to the presence of the characteristic vibration of phosphate,
hydroxyl groups (from HAp structure) and adsorbed water molecules. The maxima found
between 500 and 620 cm−1 are characteristic of the ν4 triply degenerated asymmetric
stretching of phosphate groups [33]. Also, the maxima observed at 960 cm−1 are specific
to ν1 symmetric stretching of the phosphate group. The triply degenerated asymmetric
stretching ν3 maxima were observed between 980 and 1100 cm−1 spectral domain [33].
Moreover, the liberation and stretching vibration of hydroxyl groups are easily observed at
635 cm−1 and at around 3570 cm−1 [33]. In the FTIR spectra, we could also notice a maxi-
mum at around 1420 cm−1 and at 1454 cm−1, which is usually attributed to the vibration
of CO3

2− groups [33]. The presence of adsorbed water molecules in the studied sample is
confirmed by the maxima located at around 1630 cm−1 (specific to the bending vibrations)
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and by the one observed at around 3428 cm−1 (specific to the stretching vibrations) of water
molecules [33]. The presence of these intense and wide vibration bands confirms that the
10MgHAp samples are strongly hydrated.

The peak identified at about 465–470 cm−1 in FTIR spectra of 10MgHApD (Figure 10d)
was assigned to characteristic stretching modes of O-H bands [61]. The bands at about
520–573 and 600 cm−1 (Figure 10d) were associated with ν4 symmetric P-O stretching
vibration of the PO4

3− group [61,62]. Moreover, the peaks at 765, 846–872 and 984 cm−1

identified in Figure 10a,d represent the characteristic band sorption of dextran [63]. The
formation of HAp (Figure 10d) is given by the observation of the broad band centered
at 960–1121 cm−1 assigned to P-O asymmetric stretching of PO4

3− [61,64]. On the other
hand, the peaks that can be observed in 10MgHApD and dextran spectra in the range
1400–1426 cm−1 may be assigned to the dextran molecule ν(C–H) and δ(C–H) vibrational
modes [63]. In agreement with recent studies [61,63], the presence of peaks at around
872 cm−1 (ν2 bending vibrations) and 1418–1554 cm−1 (ν3 asymmetric stretching vibra-
tions) in the FTIR spectra of 10MgHApD was due to CO3

2− groups (Figure 10e). The
stronger peaks observed in the range of 846–1077 cm−1 in the FTIR spectra of dextran
(Figure 10a) were also identified in the FTIR spectra of 10MgHApD and could be assigned
to the stretching vibration of C–O–C [65]. Moreover, the bands in the range 1418–1460 cm−1

that can be assigned to C–O–H deformation vibration with contributions of O–C–O sym-
metric stretching vibration of the carboxylate group [65,66] were present in the FTIR
spectra of the two analyzed samples (Figure 10b,e). It can be seen that both analyzed
samples (10MgHApD and dextran) were strongly hydrated, as revealed by the intense
bands at around 1630–1640 cm−1 appertaining to the bending vibrations of adsorbed water
molecules (Figure 10b,e). The sample hydration is also confirmed and the intense vibra-
tion band is observed at around 3300 cm−1 that belongs to the stretching vibrations of
water molecules (Figure 10c,f) [33]. Moreover, the results of the FTIR studies indicate that
the presence of dextran in the sample induces a broadening and a slight displacement
of the maxima associated with the functional groups. Therefore, from this point of view,
the features revealed by FTIR measurements are in agreement with those provided by
XRD studies.

3.7. Antimicrobial Assay

Nowadays, approximately two-thirds of the global population suffer from various
dental affections, most encountered being tooth decay, which often leads to the apparition
of lesions with various degrees of severity. Even though the surface decay could be easily
treated, the tooth could become rapidly unhealthy due to inflammation or infection [67–69].
Recently, due to the emergence of microorganisms resistant to conventional therapies,
studies regarding the antimicrobial effects of various types of possible antimicrobial agents,
such as metallic ions (copper, iron, silver, magnesium, zinc), inorganic nanoparticles and
natural polymers, were the focus of researchers due to the need of finding novel solutions
having a wide-range action against common pathogens [70–74]. In this context, our study
is focused on the development of novel biomaterials based on magnesium-doped hydrox-
yapatite in dextran matrix for biomedical and dental applications. Therefore, we have
studied the antimicrobial activity of the 10MgHApD nanocomposites using Staphylococ-
cus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Streptococcus mutans ATCC
25175, Porphyromonas gingivalis ATCC 33277 and Candida albicans ATCC 10231 microbial
strains. The in vitro antimicrobial assays were performed in triplicate and the results
were presented graphically as mean ± SD. The results of the in vitro antimicrobial as-
says are depicted in Figure 11. The data suggested that the 10MgHApD nanocomposites
exhibited strong inhibitory activity against all the tested microbial strains. In addition,
the results of the in vitro antimicrobial experiments showed that the HAp nanoparticles
promoted microbial cell development and proliferation. The results highlighted that the
microbial cells CFU’s values were higher even than for the control (C+) for all the tested
microorganisms for all three incubation times (24, 48 and 72 h). Furthermore, the results
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also demonstrated that the 10MgHAp nanoparticles exhibited good antimicrobial activity
against all the tested microorganisms for all the incubation time intervals. The data also
emphasized that the incubation time played an important role in the antimicrobial activity
of both 10MgHApD nanocomposites and 10MgHAp nanoparticles. The results showed
that the 10MgHApD nanocomposites exhibited bactericidal activity against P. aeruginosa,
S. mutans and P. gingivalis bacterial cells, as well as fungicidal activity against C. albicans
fungal cells. The data also suggested that the bactericidal and fungicidal effects appear
after 48 and 72 h of incubation, respectively. In addition, the results also highlighted that
the samples were highly effective in reducing the CFU in the case of dental infection-related
bacterial strains, S. mutans and P. gingivalis, thus revealing that these types of biocomposites
could be successfully used in the development of novel application in dentistry. These
results are in good agreement with previously reported data regarding the antimicrobial
properties of hydroxyapatite doped with magnesium ions and also of composites based on
doped hydroxyapatite in dextran matrix [47,75,76]. Moreover, the data reported by Salem
et al. [67] suggested that there are tremendous benefits to employing materials based on
magnesium ions in dental restorative applications.
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against S. aureus, P. aeruginosa, S. mutans, P. gingivalis and C. albicans microbial strains. The results
were considered statistically significant at * p < 0.05.

In their study, Salem et al. [68] showed that the presence of Mg2+ promoted an increase
in the attachment rate, proliferation, differentiation, alkaline phosphatase activity, and
mineralization, leading to a potential improvement of a pulp-capping material. These
results, as well as the results obtained regarding the antimicrobial activity of 10MgHApD
nanocomposites, suggest that magnesium-based composites might be employed in the
development of novel future dental pulp-capping materials that could be used in regen-
erative endodontics applications. Magnesium is well known as a vital element that plays
an important role in the physiological processes within the human body, from supporting
muscle and nerve function to regulating blood pressure and contributing to bone health.
Even though the exact mechanism is not yet fully understood, in recent years, scientific
interest has expanded beyond magnesium’s traditional roles, uncovering unexpected an-
timicrobial properties. The exact mechanism as to how exactly the magnesium ions exhibit
antimicrobial activity still remains unclear, yet several suggestions have been explored in
the scientific community. The antimicrobial activity was observed for the first time in early
1900 by Professor Pierre Delbet [77], who found out after numerous tests that a MgCl2
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solution was the most effective due to the fact that it was not toxic to the surrounding
tissue, and it highly increased the leucocyte activity and phagocytosis. Later, Delbet [77],
reported that the solution based on MgCl2 proved to be efficient in the treatment of various
diseases, including the ones related to various microorganisms. In recent years, studies
have indicated that antibiotic efficacy could be notably enhanced in the presence of Mg2+

ions [78,79]. A prevailing hypothesis suggests that these divalent ions exert an influence
on the membranes of bacterial cells. One of the primary proposed mechanisms by which
magnesium ions demonstrate antimicrobial effects is through their capacity to interfere
with microbial cellular functions. Due to the fact that it is a divalent cation, magnesium has
the ability to compete with other metal ions, such as calcium and iron, for binding sites
within microbial cells. This competition can disrupt crucial cellular processes, ultimately
leading to compromising the growth and survival of bacteria and other microorganisms.
In their study, Som et al., regarding “divalent metal ion-triggered activity of a synthetic
antimicrobial in cardiolipin membranes” [80], reported that the divalent nature of the cation
affected the curvature of the bacterial membrane, which left the bacteria more vulnerable,
leading to an increase of the antibiotic’s effects. In addition, Xie et al. [B5] also reported
that the antimicrobial effects could be attributed to the fact that magnesium cations help
permeabilize the membranes. Magnesium was also reported to be effective in the case
of microorganism biofilms by destabilizing and disrupting them. Even though the exact
mechanism as to how exactly the magnesium ions have the ability to delay the biofilm
formation still remains unclear, several suggestions have been reported [80–83]. The stud-
ies suggested that magnesium ions possess the capability to interact directly with the cell
membrane, potentially hindering the formation of biofilm. Another possibility could be
attributed to their direct or indirect impact on the regulation of biofilm formation, leading
to a delay in the process. Furthermore, a recent investigation illustrated the impact of Mg2+

ions against the development of Bacillus biofilm, highlighting a down-regulation of the
expression of extracellular matrix genes by more than tenfold [84]. One other mechanism
regarding the antimicrobial activity of magnesium composites is attributed to the presence
of the existence of high concentrations of OH− on their surface, which leads to an increase
of the O2− concentration, causing the destruction of the bacterial cell wall [85]. On the
other hand, recently, dextran has gained attention in the scientific community for its diverse
applications, particularly in the field of antimicrobial applications. One of the primary
proposed antimicrobial mechanisms of dextran was reported to be the ability to inhibit
biofilm formation. Dextran has been reported to be able to interfere with the initial stages of
biofilm formation by preventing microbial adhesion to the surfaces. This behavior has been
attributed to its hydrophilic nature and ability to modify surface properties. Furthermore,
it has been reported that dextran’s antimicrobial effects could be related to its ability to
disrupt microbial cell membranes. In their studies, Amiri et al. [86] suggested that the poly-
mer interacts with the bacterial membranes, causing destabilization and also an increased
permeability. The mechanism responsible for this interaction is not yet fully elucidated,
but it is believed that dextran’s physical properties, such as molecular size and charge,
could have an important role in compromising the integrity of microbial membranes. This
disruption can lead to the leakage of cellular components, ultimately causing the bacterial
cell’s death. In addition to the direct effects of magnesium and dextran on microorganisms,
both magnesium ions as well as dextran have been found to modulate the host immune
response, enhancing the body’s natural defense mechanisms. Dextran could stimulate the
production of certain immune mediators, such as cytokines, and promote phagocytosis by
immune cells [87,88].

Even though more complex biological studies should be performed to ensure the bio-
logical effects of magnesium and dextran on the dentin formation as well as the composite’s
antimicrobial activity and cytotoxic dosage, these preliminary results bring significant in-
sight into the exquisite properties of these materials and their potential in future biomedical
as well as dentistry applications.
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3.8. In Vitro Biocompatibility Assay

Complementary information about the biological properties of the 10MgHApD nanocom-
posites was acquired by studying the biocompatibility of the nanocomposites using a
Human Gingival Fibroblasts (HGF-1) cell line, which exhibits a typical fibroblast morphol-
ogy. This particular cell line was isolated for the first time in 1989 from the gingiva of
a 28-year-old white male patient. The toxicity of the 10MgHApD nanocomposites was
evaluated by determining the cell viability of the HGF-1 cells after being exposed to the
nanocomposites for three different time intervals. The results of the cell viability assays are
depicted as a graphical representation in Figure 12.
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Figure 12. The graphical representation of the cell viability of HGF-1 cells exposed to 10MgHApD
nanocomposites for 24, 48 and 72 h. The data are presented as mean ± standard deviation (SD) and
are quantified as percentages of control (100% viability). The statistical analysis was performed using
the ANOVA single-factor test and p ≤ 0.05 was accepted as statistically significant.

The results of the MTT assay emphasized that the nanocomposites did not exhibit any
significant toxicity against the HGF-1 cells for any of the incubation times when the data
were acquired. The results showed that the viability was not significantly altered compared
to the control after 24, 48 and 72 h of exposure with the 10MgHApD nanocomposites,
which indicates a good biocompatibility of the samples. The results of the MTT reduction
assay represented in Figure 12 showed that the cell viability of the HGF-1 cells exhibited
values above 92% after the first 24 h of exposure to the 10MgHApD nanocomposites.
Moreover, the findings also determined that the cell viability increased, reaching 96% and
98%, respectively, after 48 h and 72 h of exposure. These findings are in good agreement
with other reported data regarding the biological properties of nanocomposites based on
HAp, magnesium ions, and different biopolymers [47,89–92].

4. Conclusions

The scanning electronic microscopy (SEM) with energy-dispersive X-ray (EDS) meth-
ods in combination with X-ray diffraction (XRD) and Fourier transform infrared spec-
troscopy technique were applied in this study for the complex investigation of the struc-
ture and homogeneity of synthesized 10MgHApD sample. SEM analysis of 10MgHApD
nanocomposites presented agglomerated particles with spherical morphology. The qualita-
tive powder-XRD study revealed the nature of the hexagonal HAp. FTIR investigations
demonstrated the presence of dextran in the 10MgHApD nanocomposites. Minkowski
Functionals indicated nonconventional yet high-quality surface patterns. These findings
deepen our understanding of biological surface interactions and have potential implications
in materials and biomedicine, which can be further explored for practical applications. The
in vitro antimicrobial assay of 10MgHApD nanocomposites against S. aureus, P. aeruginosa,
S. mutans, P. gingivalis and C. albicans microbial strains emphasized that the samples exhib-
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ited a strong inhibitory effect on all the tested microbial cells. Moreover, the results also
suggested that the 10MgHApD nanocomposite antimicrobial properties were influenced by
both the incubation time and also the bacterial cells. In addition, the results demonstrated
that 10MgHApD exhibited bactericidal activity against P. aeruginosa, S. mutans, P. gingivalis
and C. albicans microbial strains. The in vitro cell viability assay also demonstrated that
10MgHApD exhibited good biocompatibility properties towards HGF-1 cells. The results
obtained showed that this type of nanocomposite based on magnesium-doped hydroxyap-
atite in dextran matrix could be an effective antimicrobial agent that can be employed for
the treatment of various oral diseases as well as dental caries. As a result, it is obviously
seen that 10MgHApD nanocomposites have optimal properties for various dental field
applications and they can probably be used in other medical or food applications.
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51. Korpi, A.G.; Ţălu, Ş.; Bramowicz, M.; Arman, A.; Kulesza, S.; Pszczolkowski, B.; Jurečka, S.; Mardani, M.; Luna, C.; Balashabadi,
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