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Abstract: A finite-element model of the mechanical response of a magnetoactive elastomer (MAE)
volume element is presented. Unit cells containing a single ferromagnetic inclusion with geometric
and magnetic anisotropy are considered. The equilibrium state of the cell is calculated using the
finite-element method and cell energy minimization. The response of the cell to three different
excitation modes is studied: inclusion rotation, inclusion translation, and uniaxial cell stress. The
influence of the magnetic properties of the filler particles on the equilibrium state of the MAE cell is
considered. The dependence of the mechanical response of the cell on the filler concentration and
inclusion anisometry is calculated and analyzed. Optimal filler shapes for maximizing the magnetic
response of the MAE are discussed.

Keywords: magnetoactive elastomers; magnetorheological elastomers; theoretical modeling;
ferromagnetic filler; stiffening effect; magnetorheological effect; anisometric particles

1. Introduction

Magnetoactive elastomers (MAEs) are composite materials that consist of a flexible
polymer matrix and small magnetic particles, either micro- or nanometer in size, that are
embedded in the matrix [1–11]. These materials fall into the category of so-called smart
materials due to their ability to undergo significant changes in their physical properties
or overall behavior when exposed to controlled magnetic fields. Of particular interest is
the effect the magnetic field has on their deformational and viscoelastic properties, as well
as various electromagnetic properties, such as magnetization reversal curves, magnetic
permeability, electrical conductivity, and dielectric permittivity [8,9].

One notable phenomenon exhibited by MAEs is the magnetorheological (MR) effect.
This phenomenon causes significant changes in the storage and loss moduli of these mate-
rials when exposed to external magnetic fields, resulting in changes in their shear behavior.
This distinctive behavior has led to MAEs also being referred to as magnetorheological
elastomers [4]. The MR effect is the focus of much work on MAE properties and serves
as the basis for several important practical applications of MAEs, namely, soft robotics,
vibration control, haptic feedback devices, pressure sensors, wearable devices with tunable
pressure for biomedical purposes, etc. [12–21]. The ability of MAEs to rapidly change
material properties on demand makes these materials valuable in various fields where
controllable mechanical responses are needed.

The field of MAE studies has been experiencing active development for the past two
decades. Several comprehensive reviews are available that focus on fabrication, character-
ization, and applications of these materials [2,4–9,22]. The state of theoretical studies of
MAEs is discussed at length in [7,11,23,24]. The interest surrounding MAEs is driven by
their potential applications in civil engineering as vibration dampers, remotely controlled
switches, and noise control systems [25–31], in soft robotics as actuators [13,14,32–34], in
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entertainment as parts of haptic feedback devices [15,35–37], in biomedical devices as adap-
tive compressors and seals [38–42], in communication systems as microwave and radio
frequency filters [43–45], and in automobile production as active braking systems [46–48].
Historically, the majority of both fundamental and applied research concerning MAEs
has centered on harnessing the bulk properties of these materials. However, recent stud-
ies have unveiled MAEs as exceptionally promising materials for swiftly and reversibly
manipulating various surface properties. This particularly involves characteristics like
wettability [49–52], surface roughness [50,53], adhesion [54,55], and friction [56]. This
newfound insight opens the door to novel applications of MAE-based intelligent surfaces
across diverse domains. Examples include droplet-based microfluidics [57–61], devices for
transporting and distributing liquids [52,62–64], fog harvesting technologies [64,65], and
locomotion mechanisms for soft robots [66,67].

The primary underlying factor responsible for magnetic sensitivity of MAEs is believed
to stem from the restructuring of the ferromagnetic filler particles or, in other words,
their mutual rearrangement under the influence of external magnetic fields, involving
shifts in their relative positions or, equivalently, alterations in the microstructure of the
composite material [8]. This phenomenon draws parallels to the behavior observed in
magnetorheological fluids, where particles align themselves along magnetic field lines,
forming elongated clusters [68]. A significant reorganization can occur only when the
polymeric matrix is soft and possesses a shear modulus that falls below 100 kPa [9].

Despite significant progress in describing the behavior and properties of MAEs that
has been made over the last decade, a comprehensive theoretical framework capable
of explaining and predicting the diverse array of attributes and behaviors exhibited by
mechanically pliable MAEs has yet to be formulated. This challenge is attributed to the
magnetomechanical coupling, substantial variability in material composition, and the
necessity of accounting for the nonlinear properties of the constituent materials. The
magnetization of ferromagnetic particles displays a nonlinear relationship with the internal
magnetic field, and, in the case of hard magnetic particles, the influence of magnetic
hysteresis cannot be disregarded. When ferromagnetic particles are moved (translated
and/or rotated) within an applied magnetic field, the encompassing polymeric matrix
undergoes deformation. Magnetic interactions—both between individual magnetized
particles and between each particle and the external magnetic field—as well as elastic
forces originating from matrix distortions compete when an MAE specimen is subjected
to a magnetic field. In a broader context, elastomer matrices exhibit nonlinear viscoelastic
properties, further complicating the theoretical description. Clearly, the wide array of
synthesis conditions, material compositions, specimen shapes, and excitation parameters
(including magnitude, direction, and temporal behavior of the external magnetic field)
necessitates a comprehensive, multi-scale model for MAE materials.

Existing continuum models cannot describe filler restructuring in MAEs, which plays
an important role in defining their properties [69–72]. The continuum approach is used
for macroscopic description of the composite behavior. The works [73,74] showcased
an invariant-based analytical framework previously developed by the same authors for
dielectric elastomers applied to MAEs with an effective isotropic response. Macroscopic
deformation of MAE samples containing iron and ferrofluid particles was studied using
the homogenized free energy of the material. Micro- and mesoscopic modeling of MAEs
that explicitly considers the presence of microscopic filler particles and their magnetic
interactions has advanced significantly in the recent years [75–79]. However, the vast
majority of microscopic theoretical studies focus on MAEs with spherical filler particles. The
influence of the particle shape on the material properties has not been sufficiently explored.
Recently, several experimental works that focused on the response of polymer composites
containing elongated and platelet filler particles have been published [80–83]. It was shown
that the magnetorheological effect can be enhanced using anisometric filler. Furthermore,
the work [84] proposes to use anisometric filler particle as a probe for microrheology. It
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follows that a model with filler particle shape variability taken into account has value for
describing and analyzing new complex materials.

In this research, we consider the influence of filler inclusion shape on its displacement
in a magnetic field and the resulting change in the properties of magnetoactive elastomers
on the scale of a dense cluster of magnetic particles or a single ferromagnetic inclusion. The
relative simplicity of this approach allows us to focus on different elementary excitations of
the unit cell (representing an average volume element per inclusion) and to estimate how
each of them affects the structural and mechanical response of the composite material to
external load for the case of low filler concentration values. The cell boundary conditions
determine the general internal structure of the composite material and the influence sur-
rounding cells have on a selected cell in the proposed model. A force of mechanical nature
can be applied to the cell boundary, and a force of either mechanical or magnetic nature
can be applied to the ferromagnetic inclusion inside the cell. The inclusion is affected by
an external magnetic field and moves inside the polymer medium if the magnetic part
of the total energy dominates over the mechanical energy stored in the cell. The inclu-
sion’s displacement can be a result of the rotation of its magnetic moment in order to
align it with the external field’s direction, the center of mass of the inclusion moving in
non-uniform magnetic field, and the cell itself deforming under the influence of external
mechanical forces. The last factor can be attributed to the movement of other inclusions in
the material deforming the matrix and creating forces acting on the boundary of the cell
under consideration. It follows that the three main mechanical processes in the cell are
as follows: inclusion rotation, inclusion translation, and the deformation of the cell. The
method used in this work combines FEM simulations for the mechanical part of the prob-
lem and minimization of an energy functional corresponding to a magneto-mechanical cell
problem. To the best of our knowledge, this approach has not been used to consider MAEs
with anisotropic fillers, as most of the currently available research focuses on composites
containing spherical particles.

The paper is organized as follows: in Section 2, the modeling process and the general
modeling assumptions are explained for an MAE cell containing a single inclusion. In
Section 3, verification of the proposed model is carried out using two different theoretical
approaches. The results of FEM simulations of the mechanical response of the cell to
different mechanical excitations are presented and analyzed in Section 4. The influence of
uniform external magnetic fields on the state of the cell is discussed in Section 5. Finally,
the results are summarized in the concluding section.

2. The Modeling Process

Here we study the response of a composite volume element containing a single
inclusion embedded in polymer network (Figure 1). The size of the inclusion is assumed to
be large compared to the average distance between crosslink points in the polymer matrix.
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Figure 1. The geometrical setup of the model. (a) A cubic cell containing a single ferromagnetic 

inclusion; (b) spatial orientation of the inclusion; (c) prolate spheroid inclusion; (d) oblate spheroid 

inclusion; (e) rod-like inclusion; (f) disk-like inclusion. 

2.1. General Outline 

Let us consider the inclusions with both shape and magnetic anisotropy. The two 

main basic shapes are cylindrical and ellipsoidal. We consider an inclusion that possesses 

an axis of symmetry in this study. A cylindrical inclusion can have different ratios of its 

height to the diameter of its base (for example, greater or less than unity—a rod or a disk). 

An ellipsoidal inclusion is considered to be either an oblate or a prolate spheroid. One of 

the most important parameters characterizing the shape of the inclusion is the anisotropy 

parameter 𝑟  that is defined as a ratio of two of the inclusion’s linear dimensions: 𝑟 =

𝑙𝑎 𝑙𝑏⁄  (see Figure 1c–f). For example, for an ellipsoidal inclusion, the parameter 𝑟 is equal 

to the ratio of the longer axis length to the shorter axis length. Assuming that the direction 

of the external magnetic field is the same as the OZ axis, the inclusion’s position inside the 

cell is fully described by its center of mass radius vector 𝛿 and two angles: the angle be-

tween the inclusion’s symmetry axis and the XOY plane (𝜃) and the angle between the OX 

Figure 1. The geometrical setup of the model. (a) A cubic cell containing a single ferromagnetic
inclusion; (b) spatial orientation of the inclusion; (c) prolate spheroid inclusion; (d) oblate spheroid
inclusion; (e) rod-like inclusion; (f) disk-like inclusion.

2.1. General Outline

Let us consider the inclusions with both shape and magnetic anisotropy. The two
main basic shapes are cylindrical and ellipsoidal. We consider an inclusion that possesses
an axis of symmetry in this study. A cylindrical inclusion can have different ratios of its
height to the diameter of its base (for example, greater or less than unity—a rod or a disk).
An ellipsoidal inclusion is considered to be either an oblate or a prolate spheroid. One of
the most important parameters characterizing the shape of the inclusion is the anisotropy
parameter r that is defined as a ratio of two of the inclusion’s linear dimensions: r = la/lb
(see Figure 1c–f). For example, for an ellipsoidal inclusion, the parameter r is equal to the
ratio of the longer axis length to the shorter axis length. Assuming that the direction of the
external magnetic field is the same as the OZ axis, the inclusion’s position inside the cell is

fully described by its center of mass radius vector
→
δ and two angles: the angle between the

inclusion’s symmetry axis and the XOY plane (θ) and the angle between the OX axis and
the projection of the inclusion’s symmetry axis on the XOY plane (φ) (see Figure 1b).

Modeling of the unit cell is based around solving the boundary value problem in the
weak form for the inclusion movement in a cell using the finite-element method (FEM)
and energy minimization. The inclusion is placed at the origin point of the cell, and by
default θ0 = 0◦ and φ0 = 0◦ (as it is shown in Figure 1a). All linear dimensions are set to
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be dimensionless, and the unit cell is modeled as a cube with the edge length that depends
on filler volume concentration c. Thus, both the size and the volume of the modeled cell
are defined by the parameter c. The diameter of the spherical inclusion (the case of r = 1)
is taken as a unit of length in the dimensionless formulation. The volume of the inclusion
is kept constant in all simulations. It follows that the linear dimensions of the anisotropic
inclusion are defined by the anisotropy parameter r.

The total energy of the cell in the presence of external magnetic field
→
H can be expressed

as the sum of the magnetic energy of the cell Wmagn and elastic energy contribution Wel :

Wcell = Wmagn + Wel , (1)

After the dependence of Wel on inclusion rotation and displacement of its center of
mass as well as cell deformation is calculated using FEM simulations, the cell state can be
obtained by minimizing the energy functional Wcell with respect to parameters that charac-
terize the position of the inclusion and its magnetic moment. The cell state is completely
determined in this approach as mechanical FEM simulations provide us with the stress

and strain distribution dependence on the inclusion displacement parameters θ, φ, and
→
δ .

It is important to note that Wel can be calculated independently of the nature of the force
acting on the inclusion as it represents the mechanical reaction of the cell to an external
stimulus. This method of MAE description was established and used in [70] and allows
for separation of the mechanical component of the problem from the magnetic component.
Wel determines the mechanical response of the cell to inclusion displacement or cell de-
formation and Wmagn determines the forces that lead to this displacement/deformation.
While this model does not allow us to calculate macroscopic material properties without a
corresponding homogenization procedure, studying the response of an MAE cell allows
us to obtain the trends of filler restructuring and to evaluate the effect of the filler particle
shape on this process. We first focus on the mechanical part of the problem and study
how inclusion size and shape as well as filler concentration influence the cell response to
different types of mechanical excitations. Those types are the following: inclusion rotation,
inclusion translation along different directions, and uniaxial cell deformation.

2.2. Elastic Energy

The polymer surrounding the inclusion is represented by a hyperelastic medium with
the neo-Hookean elastic strain energy density function:

ψ =
G
2
(I1 − 3)− Gln(J) +

λ

2
ln2(J), (2)

Here, G is the shear modulus of the medium, λ is the Lame parameter, I1 is the first
invariant of the right Cauchy–Green tensor, J = detF̂ and F̂ is the deformation gradient
tensor that represents the relationship between the reference and current configurations of
the deformed system. The elastic energy of the cell can then be expressed as follows:

Wel =
∫

V\Vi

ψdV = Wel

(
θ, φ,

→
δ

)
, (3)

Here, V is the cell volume and Vi is the inclusion volume. The mechanical excitations
in the polymer matrix are caused by the movement of the inclusion, so the elastic energy is
equal to zero when the inclusion movement parameters are equal to their respective initial

values: θ = θ0, φ = φ0, and
→
δ = 0. The mechanical energy of the cell stored as a result of

inclusion movement also depends on the geometric and mechanical parameters of both
the cell and inclusion: linear dimensions of the cell Lx = Ly = Lz ≡ L, linear dimensions
of the inclusion la and lb, their shapes, Young moduli of the polymer matrix (Em) and the
inclusion (Ei), and their Poisson ratios (νm and νi, respectively). These dependences are
omitted in the expression for Wel , but are taken into account implicitly.
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As was stated above, in this work we consider three main “modes” of the cell response:
inclusion rotation, inclusion translation, and cell deformation. Each of these modes has
significantly different stress and strain distributions and different dependences of the cell
response on the geometric parameters of the inclusion. Under the influence of magnetic
field, a ferromagnetic inclusion becomes magnetized and rotates to align its magnetic
moment with the direction of the field. The main motivation for studying this mode of
inclusion displacement is the interaction between highly anisotropic magnetically hard
particles and a uniform external magnetic field. Translational motion of inclusions occurs
under the influence of non-uniform magnetic fields created both by external sources and
other ferromagnetic inclusions. Magnetic interaction between filler particles in MAEs
serves as the main motivation in this case. Finally, the deformation of the cell surrounding
each inclusion can be a result of external mechanical load or movement of the surrounding
inclusions. More detailed mathematical formulation of the mechanical problem is presented
in Appendix A.

A quadratic approximation of the stored energy dependence on the displacement
parameter can be used for small displacements. This corresponds to the case of linear
elasticity and leads to simple and easy to analyze expressions for the cell response.

For the case of inclusion rotation, elastic energy of the cell can be expressed in the
following way using linear approximation:

Wel,lin

(
θ, φ,

→
δ

)
=

1
2

Er(θ0, φ0)·(θ − θ0)
2, (4)

For the case of translational motion of the inclusion, elastic energy of the cell can be
expressed in the following way using linear approximation:

Wel,lin

(
θ, φ,

→
δ

)
=

1
2

(
Etx(θ0, φ0)δ

2
x + Ety(θ0, φ0)δ

2
y + Etz(θ0, φ0)δ

2
z

)
, (5)

The coefficients relating energy to inclusion displacement can be called effective
elastic moduli. Here, it is assumed that the external field is directed along the Z axis, and
the anisotropic shape of the inclusion leads to translation elastic modulus having three
components: Etx, Ety, and Etz. These effective moduli and the effective rotation modulus
Er depend on the initial position of the inclusion inside the cell. Deformation of the cell
caused by external forces can also be expressed in terms of the linear approximation. In the
case of uniaxial deformation, the energy dependence on the cell elongation/contraction
has the following form:

Wel,lin(εcell) =
1
2

Ed(θ0, φ0)ε
2
cell , (6)

Here, Ed is the effective elastic modulus and it can characterize stiffening of the cell
caused by the presence of hard filler in the composite, and εcell is the relative elonga-
tion/contraction of the cell. Strictly speaking, each effective modulus depends on εcell due
to cell deformation creating different geometric configurations. We refer to Er, Etx, Ety, Etz,
and Ed as effective elastic moduli for the respective cell excitation mode, despite them not
representing the real elastic modulus of the macroscopic sample, because they relate the
stored elastic energy to the displacement parameter in each case.

Additionally, nonlinearity can be introduced in a simple way via the dependence of
the effective moduli on the displacement parameters θ, δ and εcell : E = E(θ0, φ0, θ, δ, εcell).
The effective moduli increase with increasing displacement in nonlinear fashion, and while
this increase is insignificant for small displacements, our calculations show that it can reach
20% for large displacements and r ∼ 5.

This approach based on FEM modeling and energy minimization allows us to calculate
both local characteristics of the composite (stress and strain) and the characteristics of the
cell as a whole (elastic modulus) while reducing calculation times compared to a full-field
approach. This is important for studies of MAEs with anisometric filler on mesoscopic scale
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due to the need to consider a lot more filler configurations than in the case of spherical filler
particles. Additional parameters include particle shapes, sizes, and their spatial orientation.

3. Model Verification

In order to verify the model, we compared the results obtained using our FEM calcula-
tions with analytical predictions of two separate theoretical approaches to modeling the
mechanical properties of composite materials. These models describe specific cases of cell
deformation and inclusion rotation.

3.1. Elastic Modulus of Polymer Composites with a Small Fraction of Spherical Particulate

One of the most widely known models of composite elastic properties is the model
proposed by Guth and Gold [85] that was based on Einstein’s approach to describing the
viscosity of a spherical colloidal particle suspension [86]. This approach can be applied to
spherical particles dispersed in a solid polymer matrix and results in a general dependence
of a physical quantity q that characterizes the composite with a filler particle volume
concentration c:

q(c) = q0

(
1 + α1c + α2c2 + α3c3 + . . .

)
, (7)

Here, q0 is the value of q in the absence of filler particles. For the case of uniaxial
tension q = E, and Young’s modulus of the composite, represented by the power series, is
most commonly reduced to a linear or quadratic polynomial or a Guth–Gold model [87]:

Ed ≈ Em

(
1 + 2.5c + 14.1c2

)
= 1 + 2.5c + 14.1c2, (8)

In our dimensionless finite-element model, the elastic modulus of the polymer matrix
Em is taken as a unit of energy, so Em = 1. We can then compare FEM modeling with the
following form of the Guth–Gold model:

Ed/Em =Ed = 1 + 2.5c + 14.1c2, (9)

The comparison is shown in Figure 2a for 1% ≤ c ≤ 6%. It can be seen that both
the qualitative and quantitative agreement between the model and the results of FEM
calculations are very good and demonstrate the consistency of our approach. The results of
FEM modeling being higher than theoretical values can be attributed to both higher-order
terms in the general model and the numerical errors related to the mesh density.
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Figure 2. Comparison of FEM simulation results and analytical modeling: (a) uniaxial tension of a
cell containing spherical inclusion: dependence of Young’s modulus of the composite on the spherical
filler concentration; (b) rod-like inclusion rotation and comparison with the results of [84] for a filler
concentration of 1% by volume: dependence of the relative effective rotation modulus on rod-like
inclusion anisometry.
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3.2. Displacements of a Rod in a Polymer Matrix

Explicit analytical models of the mechanical properties of polymer composites have
been developed in a few notable works [84,88], and in most cases describe the influence of a
single rigid inclusion and its movement on the material response. The inclusion can be said
to be a probe that can help in studying the properties of the polymer matrix surrounding it.
The main difference between these theoretical setups and our approach is the assumption
of an infinite elastic medium, whereas the influence of the cell boundaries can be significant
in our model. The existing theory describing displacements of a rod is based on solving the
general field equation for displacement vector

→
u in a linear, homogeneous, and isotropic

elastic medium characterized by the Poisson ratio ν:

∇
(
∇·→u

)
+ (1 − 2ν)∇2→u = 0, (10)

The fundamental solution of this equation can be used to obtain the disturbance
created by the inclusion movement induced by an external force. The solution naturally
depends on the type of the inclusion movement and on the inclusion shape. The work [84]
considers an elongated single-domain ferromagnetic cylindrical inclusion rotating under
the influence of a uniform external magnetic field. The mechanical energy stored in the
medium is proportional to θ2, and the effective modulus can then be expressed as follows:

Etheory =
8r2(1 − ν)GmVi

3(3 − 4ν)ln r
=

πr3(1 − ν)EmD3

3(3 − 4ν)(1 + ν)ln r
≈ πD3r3

9ln r
=

4Vir2

9ln r
, (11)

Here, D is the diameter of the base of the cylinder and Gm is the shear modulus of
the polymer matrix. The corresponding results obtained using FEM modeling show that
for lower values of r the theory presented above provides a higher effective modulus
value than our calculations while for higher values of r the reverse is true (see Figure 2b).
Two important factors to consider in this case are the influence of cell boundaries and the
presence of a logarithmic function in the denominator. The logarithmic function can lead to
overestimation of the modulus value for r ∼ 2 due to its slow growth rate and ln r ≤ 1
in that case. The polymer medium is considered to be infinite in [84] while in our case
the boundaries affect the cell response. In our setup, the minimal distance between the
inclusion and the cell boundaries decreases with an increasing value of r, and that, in turn,
tends to increase the resulting effective modulus, which can explain the discrepancy for
r ∼ 5. The overall agreement between the theory and FEM modeling can be said to be
satisfactory with the considerations above taken into account.

The comparative analysis shows that the proposed single-inclusion modeling approach
for calculating elastic energy of the cell reproduces the analytical results obtained by other
researchers with reasonable accuracy, and thus our model can be said to be consistent with
prior theoretical studies.

4. Mechanical Modeling Results

FEM simulations of different deformation modes in a purely mechanical problem
were carried out to obtain the dependences of the mechanical response of the cell on both
the external forces and the geometric parameters of the inclusion: shape, dimensions, and
initial position inside the cell. The dependences of the effective elastic moduli of the cell
on the geometrical parameters of the inclusion and the filler concentration in the material
were considered. The filler concentration c was varied from 1% to 5% by volume.

4.1. Inclusion Rotation

Figure 3 shows the dependences of the effective modulus of elasticity Er for the
rotation of an oblate ellipsoidal inclusion on the parameter r for different values of the
filler volume concentration. As the concentration increases, the dependence of the cell
response on the geometric anisotropy of the inclusion becomes more pronounced. In this



Polymers 2024, 16, 118 9 of 27

case, the dependence itself is non-linear, which can be explained by the dependence of
the ellipsoid surface area on the length of its axes. Figure 4 compares the dependences of
the effective modulus Er on the parameter r for the cases of prolate and oblate ellipsoidal
inclusions. The presence of prolate filler particles leads to a more significant increase in
the response of the cell than in the case of oblate filler. This means that for a given filler
concentration, anisometry parameter, and filler magnetic properties, filler restructuring
is more pronounced in composites containing oblate filler particles. This result is an
agreement with experimental data [89].
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A more general dependence Er/Em = f (c, r) is shown in Figure 4. Figure 4 corre-
sponds to the case of an oblate spheroid; however, the calculations show that the effective
modulus increases more rapidly with the increase in r than with the increase in c for all
considered inclusion shapes. A following function was considered for approximation of the
f (c, r) dependence in order to analyze the results from the point of view of scaling laws:

Er/Em = 1 + E∗escrµ, (12)

Here, E∗, s, and µ are the model parameters describing the growth of the effective
modulus with c and r. Table 1 provides the values of these parameters for four different
inclusion shapes: prolate and oblate spheroids and two types of cylinders (disk and rod).
Cells containing elongated inclusions (prolate spheroids and rods) have the highest values
of the effective modulus as well as the more pronounced dependences of the modulus on
the anisotropy parameter r. The influence of the volume concentration is much weaker in
comparison. Both ellipsoids and cylinders serve as rough approximations of real inclusion
shapes, so neither can truly capture the behavior of particles and clusters with irregular
shapes (which are frequently used in synthesis of MAEs), but it is clear that filler structures
with elongated shapes can be used to create composites with high magnetically induced
stiffness even at low filler concentrations. On the other hand, magnetically hard platelet
filler structures can be used to create composites with a more pronounced response to
uniform magnetic fields as the lower effective moduli allow for filler restructuring. The
effective stiffness of the material in this case is still higher than the stiffness of a composite
filled with spherical particles and aggregates.

Table 1. Values of the modeling parameters E∗, s, and µ for the Er/Em = f (c, r) dependence
calculated for different inclusion shapes.

Parameter Prolate
Spheroid

Oblate
Spheroid Rod-like Cylinder Disk-like Cylinder

E∗ 1.7092 × 10−1 1.4455 × 10−1 1.1252 × 100 1.2013 × 100

s 1.2892 × 10−1 1.2968 × 10−1 1.0917 × 10−1 3.7523 × 10−2

µ 2.2644 1.6628 1.2759 0.631

All the given dependencies are calculated under the assumption of zero initial position

parameters θ0 = 0, φ0 = 0,
→
δ 0 = 0. The calculations showed that small values of the initial

position parameters do not lead to a noticeable change in the effective moduli. In particular,
at low concentrations, the value of φ0 practically does not affect the results, and varying θ0
between 0 and 90 degrees changes Er by less than 5%. However, the influence of the initial
position parameters increases significantly for larger concentrations and larger values of
r due to the decreasing distance between the inclusion and the cell boundaries. In a real
material, this corresponds to two anisometric inclusions being close to each other, which
leads to their relative orientations in space significantly affecting their movement. In this
approach, the main parameters of the cell are filler volume concentration c and inclusion
anisometry r.

4.2. Translational Motion of the Inclusion

Figure 5 showcases the difference between the dependences of the effective elasticity
moduli on the parameter r for the translational motion of a prolate and oblate spheroid
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inclusions along the major axis (Etx) and along the minor axis (Etz). The movement of
a prolate inclusion along its minor axis obviously perturbs a larger area of the polymer
matrix than movement along the major axis. The same holds true for an oblate inclusion.
Following the same considerations, it is easy to see that the effective translational modulus
is higher for the inclusion with an oblate spheroid shape.
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Figure 5. Dependence of the effective elastic modulus ratio (modulus for displacement along the
minor axis Etz vs. modulus for displacement along the major axis Etx) for the translational motion of
a prolate spheroid and oblate spheroid inclusion on the anisotropy parameter. The filler concentration
is 1%.

A more general dependence Et/Em = f (c, r) is shown in Figure 6. Figure 6 demon-
strates f (c, r) for the case of an oblate spheroid inclusion and translation along the in-
clusion’s major axis. The dependence of Etx on the inclusion shape is similar to the case
of Er discussed above with the exception of the growth with filler concentration being
more pronounced for both elongated shapes than their platelet counterparts. For Etz, the
dependence on the inclusion shape is reversed: Etz is higher and increases more sharply
for platelet inclusions. This is a natural result as the perturbations (and the resulting stress)
in the polymer matrix are significantly higher for movement in the direction perpendicular
to that of the major axis or the base of the inclusion.
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4.3. Uniaxial Extension of the Cell

Figure 7 shows an example of the dependence of the uniaxial tension elasticity mod-
ulus of a cell, Ed, on the parameter r for four different filler concentrations and different
inclusions with tension applied along the Z axis. At higher concentrations, the nonlinearity
of Ed(r) dependence becomes more pronounced, which can be associated with an increase
in the ratio of the cross-sectional area of the inclusion to the cross-sectional area of the cell
for the direction perpendicular to the tensile load vector.
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Figure 7. Examples of dependences of the effective tensile modulus of the cell on the inclusion
anisotropy parameter at θ0 = 0◦ for inclusions of the following shapes: (a) rod-like cylinder;
(b) disk-shaped cylinder; (c) prolate spheroid; (d) oblate spheroid.

It should be noted that r < 1 means that an elongated inclusion turns into a correspond-
ing platelet inclusion with θ0 increasing by 90◦ and vice versa. Comparing two reference
configurations for the cases of the inclusion’s largest section being perpendicular to the
load force (θ0 = 0◦) and parallel to it (θ0 = 90◦) can provide us with information on how a
composite would react to mechanical loads with different directions when anisotropic filler
has a preferred alignment. In case of ferromagnetic inclusions, a magnetic field can be used
to align them during the curing process. One can use the ratio of the effective moduli in the
reference configurations mentioned above to describe the anisotropy of Ed:

P =
Ed(c, r, θ0 = 90◦)
Ed(c, r, θ0 = 0◦)

, (13)

Figure 8 showcases the dependences of the ratio P on the inclusion anisotropy r and
confirms the previously obtained results: Ed is maximized when the largest section of the
inclusion is parallel to the mechanical load vector. The difference between Ed(c, r, θ0 = 90◦)
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and Ed(c, r, θ0 = 0◦) is noticeable and can reach 13% for r ∼ 5 in case of oblate particles
and 46% for prolate ones.
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Figure 8. Dependences of the coefficient P on the inclusion anisotropy parameter r for oblate spheroid
inclusions. Coefficient P is equal to the ratio of the tensile elastic modulus of the cell Ed at θ0 = 90◦ to
the modulus Ed at θ0 = 0◦.

Additionally, we evaluated the influence of the initial angle θ0 on the effective uni-
axial tension modulus. The spatial orientation of inclusions in MAEs is random when no
magnetic field is present, so it is important to consider how it affects the mechanical prop-
erties of the composite and what the average contribution of the initial spatial orientation
would be. Figure 9 shows the dependences of the relative effective modulus Ed/Em on the
inclusion anisometry for different values of the initial polar angle θ0. It is evident that the
influence of the initial polar angle is the most prominent for the case of θ0 = 90◦, if the
external load is aligned with OZ axis. A conclusion can be drawn that the effective elastic
modulus of the cell has the highest value when the direction of the largest linear dimension
of the inclusion is aligned with the direction of the external load. For inclusions with high
anisometry, the effect of the initial polar angle on the response of the cell can reach 15%.
On average, however, this value will be significantly lower.
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The choice between using cylinders or ellipsoids for approximating the shape of
the real inclusions in MAEs largely depends on both the filler particle material and the
calculation algorithm. Ellipsoids have a smoother surface, but may also have singularities
around their vertices. It can then be important to evaluate the differences in resulting
effective moduli between the cells containing ellipsoidal and cylindrical inclusions with
the same volume Vi. The ratio that describes this difference can be expressed as follows:

D =
Ed,cyl(c, r)
Ed,ell(c, r)

, (14)

Here, Ed,cyl and Ed,ell are the effective moduli for uniaxial tension for cells containing a
cylindrical and ellipsoidal inclusion, respectively. The dependences of ratio D on inclusion
anisotropy r were calculated for different values of filler concentration. It is interesting
to note that the behavior of D is different for cells with elongated and platelet inclusions,
and the differences become more prominent with the increase in concentration. This is
likely related to the effect the cell boundaries have on stress and strain in the cell, as the
edges of elongated and platelet inclusions approach the boundaries in different ways with
increasing r. The minimum distance between the inclusion and the boundaries is lower
for elongated inclusions, so the boundary effects are more pronounced in that case. Our
calculations show that D decreases monotonically and tends toward 1 with the increase in
r for cells with platelet inclusions and increases with r for cells with elongated inclusions.
For c ≤ 5% and r ≤ 5, the value of D does not exceed 1.12, so while it is important to take
the shape of the inclusion into consideration, different idealized approximations of the
real shape provide sufficiently similar results, so a geometrical configuration that is more
convenient from the modeling point of view can be chosen.

Figure 10 shows a more general form of the dependence Ed = Ed(c, r) for an oblate
spheroid inclusion. The approximation function used here to describe the dependence is
the same as in the rotation and translation cases:

Ed/Em = 1 + E∗escrµ, (15)
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Figure 10. The dependence of the effective uniaxial tension modulus of a cell on the inclusion
anisometry and filler volume concentration for a cell containing an oblate spheroid inclusion.

The values of the parameters E∗, s, and µ for Ed are listed in the Table 2. The baseline
parameter E∗ is higher for cells containing platelet inclusions; however, the growth pa-
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rameters s and µ are higher for cells containing elongated inclusions. The highest relative
effective modulus is achieved for cells with highly anisotropic cylindrical rods as inclusions.

Table 2. Values of the modeling parameters E∗, s, and µ for the Ed/Em = f (c, r) dependence
calculated for different inclusion shapes.

Parameter Prolate
Spheroid

Oblate
Spheroid

Rod-like
Cylinder

Disk-like
Cylinder

E∗ 1.7092 × 10−1 1.4455 × 10−1 1.1252 × 100 1.2013 × 100

s 1.2892 × 10−1 1.2968 × 10−1 1.0917 × 10−1 3.7523 × 10−2

µ 2.2644 1.6628 1.2759 0.631

Stress σ̂ and strain ε̂ tensor fields are the quantities that provide the most information
about the mechanical state of the system. Detailed analysis of σ̂ and ε̂ is outside the scope
of this paper due to a substantial amount of additional calculations required to perform
it, but considering the distribution of stress and strain inside the cell can be useful for
understanding the effect the cell boundaries have on the effective modulus. Stress and
strain can be calculated using well known expressions of the finite strain theory:

ε̂ = 1
2
(

F̂T F̂ − Î
)

σ̂ = 1
J F̂ ∂ψ

∂F̂
F̂T

, (16)

Î denotes the identity tensor. We use this more general form of σ̂ and ε̂ due to the
inherent nonlinearity of our model. Tensor quantities are difficult to represent visually
(stress and strain fields have six independent components), so we make use of a specific
scalar stress function in von Mises form:

σvM =

√
1
2

(
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2 + 6
(
σ2

12 + σ2
23 + σ2

13
))

, (17)

Examples of the sections of stress distributions for y = 0 are shown on Figure 11. The
distributions are highly anisotropic. The maximum stress is concentrated near the particle
surface. In accordance with previous conclusions, less characteristic stress is induced in
cells with tilted particles.
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tions are shown for a cell with a filler concentration 𝑐 = 1%, an oblate spheroid inclusion, 𝑟 = 3, 
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Figure 11. An example of a slice (y = 0) of the von Mises mechanical stress (a,b) and the zz-component
of the mechanical strain (c,d) distribution in a cell for the case of uniaxial tension. The distributions
are shown for a cell with a filler concentration c = 1%, an oblate spheroid inclusion, r = 3, θ0 = 0◦,
φ0 = 0◦ (a,c) and r = 3, θ0 = 45◦, φ0 = 0◦ (b,d). The deformation is fixed at 0.1% of L.

5. Inclusion Rotation in External Magnetic Field

Using the results obtained in the previous sections it is possible to simulate the state of
the unit cell under the influence of external magnetic field. This stationary state corresponds
to the minimum of the total energy where the mechanical part of the energy is determined
based on the purely mechanical FEM calculations. Let us consider the case of an anisotropic

ferromagnetic inclusion that rotates in external uniform magnetic field
→
H. For the sake

of simplicity, let us also assume that the inclusion is characterized by a single magnetic
moment vector

→
m. The total energy of the cell in the presence of external magnetic field H

can be expressed using the classic Stoner–Wohlfarth model and Wel discussed in Section 2.2:

Wcell = −mHcosα − KVisin2(θ0 + θ + α) + Wel

(
θ, φ,

→
δ

)
, (18)

The first term here corresponds to Zeeman energy with α being the angle between
→
m

and
→
H (or the Z axis). The second term represents the magnetic anisotropy energy with
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K being the magnetic anisotropy constant that is defined by the crystal structure of the
inclusion material and Vi being the inclusion volume. The magnetic anisotropy energy
term in this model serves as a form of magneto-mechanical coupling as it determines the
extent to which the rotation of the magnetic moment affects the geometric rotation of the
inclusion. We assume that the easy magnetization axis is aligned with the long axis of the
inclusion.

It is important to note that the external magnetic field H used here is the dimensionless
magnetic field calculated relative to

√
Em, where Em is the elastic modulus of a pure polymer

matrix. One can show that units for H and
√

Em are the same when expressed in terms of
basic CGS units. If the external magnetic field has a maximum magnetic flux value of 1 T
(which corresponds to magnetic field strength of 10 kOe), then the maximum dimensionless
field value for a material with Em = 10 kPa is around 31.62 and for the case of Em = 100 kPa
the dimensionless field can only reach the strength of 10.

The magnetization M depends on the material used as ferromagnetic filler. There
are two large groups of ferromagnetic materials: magnetically soft and magnetically hard
materials [90]. Magnetically hard materials have high remanence, so if we consider filler
with remanent flux Br higher than 1 T, then magnetization can be considered to be a
constant: M = Mr. One of the most widely used fillers for MAEs is the NdFeB alloy [91]
that can have remanence of around 1.3 T. For the case of Em = 10 kPa, this corresponds
to dimensionless M ≈ 41.11 and for the case of Em = 100 kPa, to M = 13. Magnetically
soft materials, on the other hand, have low remanence and thus cannot be described using
constant magnetization for any external field. To express the dependence of magnetization
on external magnetic field for fillers of this group we use the Fröhlich–Kennelly model [92]:

M(H) =
Ms H

H + Ms/χ0
, (19)

Here, Ms is the saturation magnetization and χ0 is the linear magnetic susceptibility
of the material. For another commonly used ferromagnetic filler, pure iron, these quantities
are as follows: Ms ≈ 1.7 × 106 A/m and χ0 ≈ 1100.

Finally, the anisotropy constant K is a magnetocrystalline constant that describes the
degree of magnetic anisotropy: the higher the anisotropy constant is, the more energetically
unfavorable the state with magnetization not corresponding to the preferred direction
is. For NdFeB, the anisotropy constant is K = 4.9 × 106 J/m3, which corresponds to the
dimensionless values of 490 and 49 for Em = 10 kPa and Em = 100 kPa, respectively. For
pure iron, K = 4.8 × 104 J/m3, so the dimensionless magnetic anisotropy constant is 4.8
and 0.48 for the cases of Em = 10 kPa and Em = 100 kPa, respectively.

Let us then consider the limiting cases of materials with K = 0 (infinitely soft) and
K = ∞ (infinitely hard). The former case corresponds to the free rotation of the magnetic
moment in an external magnetic field. One can expect that the magnetic field in this case
will not affect the particle position and the resulting modulus of the composite assuming
interactions between the particles at low filling concentrations are negligible. The latter
case corresponds to the inclusion rotation strictly following its magnetic moment, and the
resulting equilibrium angle will be defined by an interplay between elastic energy and
Zeeman energy. For the realistic cases of 0 < K < ∞, the inclusion behavior is defined by
the ratio between the anisotropy constant and the effective elastic modulus A = K/Er, as
will be shown further.

As it was noted previously, if the energy of magnetic anisotropy is not significant
enough, the restructuring due to inclusion rotation is going to be less prominent. This is
especially relevant for magnetically soft filler. Analysis shows that within the framework of
the model used in this study, the ratio of magnetic anisotropy constant A to effective elastic
modulus Er can represent the ratio of magnetic anisotropy energy to elastic energy and
serve as a characteristic of the θ(H) dependence. The value of A = K/Er that corresponds
to the transition from monotonically increasing θ(H) to a function with an extremum (or
the other way around) can be denoted as Ac. Thus, if A < Ac, then θ(H) has a maximum
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and increasing the strength of the external magnetic field past the value corresponding to
that maximum does not lead to further filler restructuring. On the other hand, if A > Ac,
then increasing the magnetic field always creates stronger material response. Figure 12
demonstrates this result by showing the difference in inclusion movement between the
two cases discussed above. The maximum in the θ(H) dependence arises when absolute
values of all three terms of Wcell are comparable to each other. This is realized if A < Ac.
In that case, the anisotropy energy is significant enough to force the inclusion to follow
its magnetic moment. As Zeeman energy increases with the external magnetic field, the
coupling between the magnetic moment and the geometric axis of the inclusion becomes
weaker, resulting in partial relaxation of the inclusion (the value of θ decreases). If A > Ac,
magnetic anisotropy can always keep up with Zeeman energy leading to monotonically
non-decreasing θ(H).
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Figure 12. Different types of inclusion rotations in the presence of external magnetic field that can be
determined by the ratio of the magnetic anisotropy energy to stored mechanical energy A = K/Er.

In order to calculate the value of Ac, let us consider the conditions that lead to θ(H)
having an extremum. The obtained function θ(H) minimizes the energy functional Wcell ,
thus, the following holds true:

∂W
∂α

= 0,
∂W
∂θ

= 0
α=α(θ)⇒ f (H, θ(H)) = 0, (20)

This means that θ(H) can be analytically expressed as an implicit function. The poten-
tial extremum point can then be obtained via the following system of nonlinear equations:{

f (H, θ(H)) = 0
θ′(H) = − fH/ fθ = 0

, (21)

This system was solved numerically for different sets of physical parameters (M, K, Er)
and different initial values of H and θ. Our calculations show that for 0 < M < 100,
0 < K < 500, and 1 < Er < 10, the function θ(H) can only have a maximum when A < 1.5.
Thus, Ac ≈ 1.5 for both cells containing magnetically soft and magnetically hard fillers. This
value is slightly reduced for materials with low saturation magnetization. Let us compare
two magnetically soft materials: for one, the saturation magnetization is equal to that of
pure iron, and for the other, it is 10 times less than that of pure iron. The value of Ac of the
second material is only ~2.1% less than that of the first material. The same comparison for
magnetically hard materials pre-magnetized to saturation with a baseline corresponding
to NdFeB leads to ~5.6% difference in Ac values. The expected deviation of Ac from 1.5 is
less than 5% for realistic cases of ferromagnetic fillers used in MAE synthesis. This means
that in order to synthesize a composite with the highest response to magnetic field for low
filler concentration values, the ferromagnetic filler material should be characterized by a
magnetic anisotropy constant K > 1.5Er (in CGS units). For example, oblate filler particles
with r = 5 at concentration c = 5% by volume should have magnetic anisotropy constant
K > 7.235 × 104 J/m3, if they are dispersed in a polymer matrix with a Young’s modulus of
10 kPa. This value of magnetic anisotropy constant is 72% higher than that of pure iron.
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The corresponding value for the case of prolate filler particles is 3.445 × 105 J/m3. In order
for A to be equal to Ac for filler particles with magnetic properties similar to pure iron
in this case, the Young’s modulus of the matrix has to be equal to 5.8 kPa and 1.2 kPa for
the oblate and prolate spheroid particles, respectively. It then follows that magnetically
hard fillers with oblate shapes are more suitable for the purpose of creating MAEs with the
highest degree of filler restructuring at low filler concentrations.

Figure 13 shows an example of the dependence of the resulting polar rotation angle of
a disk-like inclusion on the magnitude of the dimensionless magnetic field assuming filler
volume concentration to be 1% by volume. The general form of the dependence depicted
in Figure 13 is determined by the anisotropy constant value and the magnetization of the
inclusion. The magnetic moment of a particle in this model is considered to be independent
of its shape. The rotation angle reaches saturation when the angle between the magnetic
moment of the particle and the external field is minimized, and the magnetic anisotropy
energy and the elastic energy of the cell cancel each other out.
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Figure 13. Dependence of the rotation angle of a prolate spheroid inclusion on the magnitude of the
external magnetic field for various values of the anisotropy parameter. The filler concentration is 1%
by volume. The magnetic anisotropy constant K is set to 4.9 × 106 J/m3 corresponding to NdFeB
material properties.

The higher the anisotropy parameter r is, the less rotational freedom the inclusion has
due to the effective elastic modulus of the cell increasing with increasing r. Additionally,
the inclusion volume is kept constant throughout the parametric sweep. The modeling data
suggests that the θ(H) dependence can be described using a sigmoid function for any given r
while the θ(r) dependence can be described with a power function for any given H. Therefore,
it was decided to use the following scaling function to describe the θ = θ(H, r) dependence:

θ(H, r) = θ∗(r0 − r)ν H/H∗√
1 + (H/H∗)

2
, (22)

An example of a θ = θ(H, r) surface is shown in Figure 14. It corresponds to a NdFeB
inclusion with a prolate spheroid shape and filler volume concentration c = 1%.
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nal magnetic field for a cell containing a magnetically hard prolate spheroid inclusion with filler
concentration of 1% by volume.

The θ(H) dependence determines the degree of filler restructuring and, through it,
the stiffening effect. As such, it is important to know the characteristics of the filler one
needs to disperse in a given polymer matrix to achieve the highest response of the resulting
composite to external magnetic field. In particular, the shape of the θ(H) curve indicates
whether or not strong magnetic fields cause the strongest composite response.

6. Conclusions

In this study, we have formulated, tested, and analyzed a numerical dimensionless
model of a magnetoactive elastomer volume element containing ferromagnetic inclusions
with geometric and magnetic anisotropy. The model employs a single-inclusion cell, de-
scribing the cell’s reaction to an external magnetic field within a simple approximation
framework, disregarding magnetic interactions between the different inclusions. Those
inclusions can represent micro-scale ferromagnetic filler or pre-magnetized particle ag-
gregates that formed under the influence of external magnetic field before the start of the
simulation. The main purpose of this work was to study the effects of the inclusion’s
shape and magnetic characteristics on the cell response to external forces by dividing the
problem into two parts: purely mechanical and magneto-mechanical with pre-determined
mechanical properties. Mechanical aspects of the modeling were tackled through finite-
element method simulations, while the magnetic response of an inclusion with anisotropic
ferromagnetic properties was addressed using the Stoner–Wohlfarth model.

First, we examined the mechanical response of cells to external stimuli, considering
three deformation modes: particle rotation, particle translation, and cell elongation. The
mechanical aspect of the problem has significance on its own, as it can be applied to
any composite material that contains filler inclusions. Our analysis of rotational and
translational motion demonstrated how particle shape influences restructuring within the
polymer matrix, enabling us to quantify the effects of particle shape and anisotropy. A
general scaling expression for the anisometry and concentration dependence of the effective
rotational modulus was derived, and the scaling exponents for different inclusion shapes
were calculated by fitting FEM results. The results indicated that for the same level of
anisometry, oblate filler particles have a lower effective rotational modulus compared to
prolate particles. This means that the oblate particles can rotate under the influence of
smaller forces than the prolate particles, resulting in more effective restructuring in the
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polymer matrix for the same applied force. It was shown that translational motion in the
direction perpendicular to the major axis of the inclusion is more difficult than along it due
to greater perturbations of the matrix. Calculating the effective rotational and translational
moduli, and their relative values for different shapes and anisometry of inclusions, is crucial
for the further development of coarse-grained models in molecular dynamics simulations
of MAEs containing anisometric particles.

The cell uniaxial tension analysis enabled us to estimate the elastic modulus of the
composite material for different inclusion shapes and anisometries at low filling degrees.
The study demonstrated that anisometric inclusion orientation relative to the external force
direction significantly affects the cell elastic modulus. It is maximized when the inclusion’s
largest linear dimension aligns with the direction of the external load. For high anisotropy,
the modulus value drops by 15% if the particle major axis is oriented perpendicular to the
external force. These results are in agreement with recent experimental data obtained for
anisotropic MAEs that were synthesized in magnetic fields and thus acquired an oriented
structure of anisometric magnetic particles [83]. The impact of the inclusion shape was
analyzed within the developed approach and the scaling laws for the cell elastic modulus
were found depending on the particle anisometry and concentration.

Subsequently, we obtained the dependences of the inclusion displacement on the
external magnetic field and analyzed ferromagnetic properties of the inclusions required
for achieving the highest degree of filler restructuring. Our findings indicate that even
low concentrations of anisometric magnetic particles in a MAE can lead to considerable
augmentation in elastic properties when a uniform magnetic field is applied.

The most intriguing discovery is the identification of two distinct particle behavior
scenarios in a magnetic field, depending on the ratio of magnetic anisotropy energy to
the elastic energy of the cell, characterized by the parameter A = K/Er, where K and
Er represent the anisotropy constant and effective rotational modulus, respectively. In
the first scenario, which occurs when A is higher than a critical value Ac, the particle’s
rotational angle increases steadily with the magnetic field, causing it to align with the field.
In contrast, the second scenario occurs when A < Ac and the magnetic anisotropy is not
as strong. In this case, the particle initial rotation with the magnetic field is followed by
the decoupling of the magnetic moment from its anisotropy axis and the decrease in the
rotational angle.

The most important qualitative conclusions that can be drawn from the obtained
results can be formulated as follows:

• For a given degree of filling, increasing the anisometry of the filler particles increases
the modulus of the cell;

• At fixed anisometry, the effect of the particles on the elastic modulus of the cell is
maximized when the orientation of the major axis of the inclusion is parallel to the
applied mechanical force;

• The higher the anisometry of the inclusion, the greater the force required to ro-
tate it; however, for the same anisometry, oblate particles rotate more easily than
prolate particles;

• The effect of the external magnetic field on the rotation of the inclusion increases with
the magnetic anisotropy of the inclusion.

Additionally, we substantiated the applicability of this approach for MAEs with low
(around 5% by volume) filler concentrations by comparing the simulation results with
two previously published analytical models. It should be noted that even for such low
concentrations, the influence of the shape and dimensions of an anisotropic inclusion on the
cell response is significant and allows one to increase the effective elastic moduli of the cell
by up to two orders of magnitude compared to the spherical inclusions case. The obtained
results underscore the efficacy of incorporating anisometric magnetic particles in MAE
composites to fabricate devices with highly tunable mechanical properties. The modeling
of interactions between anisometric inclusions and the averaging of results to describe
processes on larger scales are the focus of our current research. As most limitations of the
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presented model are rectifiable without altering the core components, we deduced that this
model represents a step towards creating a robust and universally applicable numerical
tool for scrutinizing the local restructuring in MAEs.
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Appendix A

In the case of hyperelastic media, the boundary value problem of elasticity is equivalent
to a minimization problem for the total energy of the system W:

W =
∫

V
ψ
(→

u
)

dV −
∫

V

(→
f ,

→
u
)

dV −
∫

Γ

(→
b ,

→
u
)

dS, (A1)

Here, ψ is the stored strain energy density function,
→
u is the displacement field inside

the cell,
→
f represents the conservative body forces per unit of volume,

→
b represents the

conservative boundary forces per unit of area, V is the domain in which the problem is
being solved, and Γ is the external boundary of V. The variational formulation of the
minimization problem can be written in the following way:

L(u, v) = dW(u+ϵv)
dϵ

∣∣∣
ϵ=0

= 0 for all test functions v that satisfy the boundary conditions
of the boundary value problem and belong to the same differentiability class as u.

The model presented in this work allows for simulation of different mechanical prob-
lems by simply adding or removing load terms to the energy functional W or by changing
the boundary conditions. The three main cases considered here inclusion rotation, trans-
lational motion of the inclusion, and uniaxial cell tension. These are the three elementary
excitations of the cell that characterize its mechanical response to external influence. The
mathematical expressions governing the FEM problems in each case are presented below.

1. Pure rotation

Boundary conditions:
u|Γ = 0, (A2)

Here, u denotes all components of the displacement vector.
Energy functional of the cell:

Wmech,rot =
∫

V\Vi

ψmdV +
∫

Vi

ψidV −
∫

Vi

(→
T ,

→
u
)

dV → min, (A3)

Here, Vi is the inclusion volume, ψm and ψi are strain energy densities for the polymer

matrix and the inclusion, respectively, and
→
T =

→
T(x, y, z) is the torque field acting on the

inclusion. Its components are defined as follows:

Tx = −sgn(xcos φcos θ + ysin φ + zcos φsin θ)Tcos φsin θ

Ty = −sgn(xcos φcos θ + ysin φ + zcos φsin θ)Tsin φsin θ

Tz = sgn(xcos φcos θ + ysin φ + zcos φsin θ)Tcos θ

, (A4)
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This form of
→
T is a vector field with a specified absolute value T that “follows” the

inclusion’s rotation and is always perpendicular to the plane Π containing the axis of
rotation and the major axis of the inclusion. Additionally, it is antisymmetric with respect
to a plane perpendicular to Π. The angles φ and θ are shown on Figure 1b.

ψm = Gm
2 (I1 − 3)− Gmln(J) + λm

2 ln2(J)

ψi =
Gi
2 (I1 − 3)− Giln(J) + λi

2 ln2(J)
, (A5)

Here, Gm and Gi are shear moduli of the polymer matrix and the inclusion, λm and
λi are the Lame parameters of the polymer matrix and the inclusion. In the case of linear
elasticity approximation, the energy of the cell can be expressed as follows:

Wmr = kr·(θ − θ0)
2

1
V Wmr =

1
2 Er·(θ − θ0)

2, (A6)

θ is the angle of the inclusion rotation, θ0 is the angle of the initial spatial orientation
of the inclusion in the cell, and kr is the effective stiffness parameter.

2. Pure translation

Boundary conditions:
u|Γ = 0, (A7)

Energy functional of the cell:

Wmech,tr =
∫

V\Vi

ψmdV +
∫

Vi

ψidV −
∫

Vi

(→
F ,

→
u
)

dV → min, (A8)

Here,
→
F is the force acting on the inclusion. In the case of linear elasticity approxima-

tion, the energy of the cell can be expressed as follows:

Wmt = ktx·∆x2 + kty·∆y2 + ktz·∆z2

1
V Wmt =

1
2 Etx·∆x2 + 1

2 Ety·∆y2 + 1
2 Etz·∆z2, (A9)

∆x, ∆y, and ∆z are inclusion center of mass displacements along OX, OY, and OZ axes,
respectively.

3. Pure deformation

Boundary conditions:

u|Γz+
= ∆L/2 u|Γz− = −∆L/2

u|Γx+
= u|Γy+

= − 1
2

(
L1+ν

(L+∆L)ν − L
)

u|Γx− = u|Γy− = 1
2

(
L1+ν

(L+∆L)ν − L
), (A10)

Γz+, Γz−, Γx+, Γx−, Γy+, Γy− are the top, bottom, right, left, front, and back faces of
the cell, respectively, ∆L is the prescribed displacement on the boundary, L is the linear
dimension of the cell, and ν is the Poisson’s ratio of the polymer matrix.

Energy functional of the cell:

Wmech,de f =
∫

V\Vi

ψmdV +
∫

Vi

ψidV → min (A11)

In the case of linear elasticity approximation, the energy of the cell can be expressed
as follows:

Wmd = kd·(∆L)2

1
V Wmd = 1

2 Ed·
(

∆L
L

)2 (A12)
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