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Abstract: This article investigates the utility of machine learning (ML) methods for predicting and
analyzing the diverse physical characteristics of polymers. Leveraging a rich dataset of polymers’
characteristics, the study encompasses an extensive range of polymer properties, spanning com-
pressive and tensile strength to thermal and electrical behaviors. Using various regression methods
like Ensemble, Tree-based, Regularization, and Distance-based, the research undergoes thorough
evaluation using the most common quality metrics. As a result of a series of experimental studies
on the selection of effective model parameters, those that provide a high-quality solution to the
stated problem were found. The best results were achieved by Random Forest with the highest R?
scores of 0.71, 0.73, and 0.88 for glass transition, thermal decomposition, and melting temperatures,
respectively. The outcomes are intricately compared, providing valuable insights into the efficiency
of distinct ML approaches in predicting polymer properties. Unknown values for each character-
istic were predicted, and a method validation was performed by training on the predicted values,
comparing the results with the specified variance values of each characteristic. The research not only
advances our comprehension of polymer physics but also contributes to informed model selection
and optimization for materials science applications.

Keywords: physical characteristics analysis; machine learning; polymers; predictive analytics;
random forest; properties

1. Introduction

The article explores the application of ML techniques in predicting and analyzing the
physical characteristics of polymers. Harnessing the power of ML algorithms, the study
delves into diverse polymer properties, ranging from compressive and tensile strength to
thermal and electrical behavior. The prediction of physical characteristics in polymers is of
paramount importance, spanning various industrial and scientific applications. This predic-
tive capability not only enhances our fundamental understanding of polymer behavior [1]
but also catalyzes advancements in materials science [2], manufacturing processes [3],
and product development [4]. Let us describe the following examples of the polymers’
properties prediction needs:

*  Material Design and Engineering. Precise predictions of properties such as tensile
strength, elasticity, and thermal conductivity empower material scientists in design-
ing polymers with tailored attributes [5]. This facilitates the creation of innovative
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materials for specific applications, ranging from lightweight composites in aerospace
engineering [6] to durable polymers in medical devices [7].

*  Process Optimization. Understanding and predicting physical characteristics play
a crucial role in optimizing manufacturing processes. For instance, predicting melt
viscosity in polymer processing aids [8] in controlling the extrusion process, ensuring
the production of consistent and high-quality polymer products [9].

*  Quality Control in Polymer Manufacturing. The ability to predict physical character-
istics is instrumental in quality control within polymer manufacturing [10]. Predictive
models can assist in identifying deviations in real-time, enabling timely adjustments
in the production process to maintain desired material properties.

¢  Environmental Impact Assessment. Predicting properties is essential in determining
their biodegradability and recyclability [11]. It contributes to the assessment of a
polymer’s environmental impact. This knowledge is particularly relevant in the
development of sustainable materials, aligning with the growing emphasis on eco-
friendly practices.

*  Pharmaceutical and Medical Applications. In the field of pharmaceuticals, predicting
characteristics can help to determine drug release rates from polymer matrices [12]. It
is vital for designing controlled drug delivery systems. Similarly, in medical applica-
tions, predicting the mechanical properties of biocompatible polymers is crucial for
developing implants and medical devices.

The research employs a variety of regression models, including Lasso Regression [13],
Elastic Net [14], Decision Tree Regressor [15], Bagging Regressor [16], AdaBoost Regres-
sor [17], XGBoost Regressor [18], Support Vector Regressor [19], Gradient Boosting Regres-
sor [20], Linear Regression [21], and Random Forest Regressor [22].

Lasso Regression shines in feature selection by inducing sparsity through the reg-
ularization of some coefficients to zero [23]. While promoting model simplicity, it does
come with the caveat of potentially discarding relevant features and displaying sensitivity
to outliers.

Linear Regression, known for its simplicity and interpretability, is suitable for captur-
ing linear relationships [24]. However, its assumption of linearity may limit its performance
with intricate, non-linear data. On the other hand, Polynomial Regression, offering flex-
ibility to capture non-linear relationships, is susceptible to overfitting, particularly with
higher-degree polynomials.

Support Vector Regression (SVR), effective in high-dimensional spaces and robust
to outliers, demands careful selection of kernel and parameters due to its computational
intensity [25]. Decision Tree Regression, with its capability to handle non-linearity and in-
teractions, is visually interpretable but prone to overfitting and sensitive to small variations
in data.

Random Forest Regression, an ensemble of decision trees, mitigates overfitting but
introduces complexity and challenges in interpretation [26].

Gradient Boosting Regression, known for its high predictive accuracy by correcting
errors of previous models sequentially, is susceptible to overfitting and requires meticulous
hyperparameter tuning [27].

Elastic Net combines the strengths of Lasso and Ridge Regression, offering a balance
between feature selection and regularization. However, navigating the optimal mix of L1
and L2 penalties poses a challenge [28].

Decision Tree Regressor excels in capturing non-linear relationships and intricate
interactions within the data. Its visual interpretability is a notable asset, but caution
is warranted as decision trees are susceptible to overfitting, particularly with complex
data [29].

Bagging Regressor, an ensemble technique, mitigates overfitting by aggregating the
predictions of multiple decision trees. While enhancing model robustness, it introduces
complexity and may be less interpretable [30].
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AdaBoost Regressor focuses on sequentially improving model performance by em-
phasizing misclassified instances. It tends to be less prone to overfitting but is sensitive to
noisy data [31].

Gradient Boosting Regressor iteratively builds models, correcting the errors of previ-
ous ones [32]. It boasts high predictive accuracy but demands careful parameter tuning to
avoid overfitting.

XGBoost Regressor, an extension of Gradient Boosting, excels in predictive accuracy
and handles missing data effectively [33]. However, it necessitates careful tuning of hyper-
parameters and can be computationally intensive.

When generating input for models predicting various physical characteristics of poly-
mers, a diverse set of features such as melting temperature, density and others, and process-
ing conditions are meticulously considered. The inclusion of these multifaceted attributes
ensures a comprehensive representation of the intricate relationships governing the poly-
mers’ behavior, enhancing the models’ predictive capabilities.

Each model undergoes rigorous assessment using metrics such as Mean Squared
Error [34], R-squared [35], Root Mean Squared Error [36], Normalized Mean Squared
Error [37], Mean Absolute Error [38], and Mean Percentage Error [39]. Due to the varying
dimensions of the characteristics and the unequal number of non-zero values for each
characteristic, it did not make sense to consider Mean Squared Error (MSE) and Mean
Absolute Error (MAE). Since Normalized Mean Squared Error (NMSE) is expressed as
1—R?, only the coefficient of determination (R?) and Mean Percentage Error (MPE) were
considered as objective metrics. The outcomes are then compared and contrasted, shedding
light on the effectiveness of different ML approaches for predicting polymer properties.

The findings not only contribute to advancing the understanding of polymer physics
but also offer valuable insights into the selection and optimization of ML models for
materials science applications. This research is a significant step towards leveraging ML
to enhance our comprehension of complex material behaviors, paving the way for more
efficient and accurate predictions in polymer science.

2. Materials and Methods
2.1. Dataset Preparation

The original dataset contained information on 66,981 different characteristics [40] of
polymer materials, representing 18,311 unique polymers with 99 unique physical character-
istics, each characterized by varying quantities of known physical attributes [41]. Among
these characteristics is crucial information in the form of Simplified Molecular Input Line
Entry System (SMILES) strings.

In Figures 1 and 2, the vertical bars represent the count of non-null values for each
characteristic across the dataset. The index corresponds to the names of the characteris-
tics, and the vertical axis indicates the count of non-null values. For understanding the
completeness of the dataset the numerical annotations on top of each bar provided.

Tables A1l and A2 provide an overview of key characteristics, including counts, means,
standard deviations, minimum and maximum values, medians, and units, offering a
comprehensive understanding of the dataset under consideration.

The SMILES strings in the dataset adds a significant dimension to the information avail-
able for each polymer material [42]. SMILES provides a standardized and human-readable
representation of the chemical structure of molecules. This chemical notation system not
only facilitates the accurate identification of distinct polymers but also opens avenues for
exploring the relationship between molecular structure and physical characteristics.
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Figure 1. Count of non-null values for each characteristic across the dataset for a count exceeding 250.
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Figure 2. Count of non-null values for each characteristic across the dataset for a count ranging from

50 to 250.

The representation of the dataset transformation process is shown in Figure 3.
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Figure 3. Schematic representation of the dataset transformation process. The original dataset under-
goes a series of transformations to create datasets of varying dimensions, each tailored for training on
individual physical characteristics. The vectorization involves encoding the SMILES notations into
1024 binary features, facilitating machine learning model training on diverse molecular attributes.
Then Prediction Imputation has been used to estimate unknown values for each characteristic. Subse-
quently, a validation of the method was conducted by training on the predicted values and comparing
the outcomes with the specified variance values associated with each characteristic.
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For each polymer, there was information on the median value of the physical char-
acteristic and the possible variance, although often information about the variance was
missing. None of the polymers had complete information on all characteristics.

To initiate the machine learning process, the original dataset underwent a structural
transformation. Each row now represents the following structure: the first column contains
the material’s name, the second contains the corresponding SMILES string, the third
indicates the number of known characteristics for that material, and the fourth lists the
names of these characteristics. The subsequent 98 columns contain the median values
of all characteristics, and another 98 columns contain the range values for each of these
characteristics. This new data structure provides convenience for further analysis and the
application of machine learning methods.

The process of vectorizing SMILES into a binary feature vector using RDKit Python
library is a crucial step in the analysis of polymer materials [43]. SMILES serves as a
string representation of chemical compound structures, and its vectorization is a key stage
for applying machine learning methods. To achieve this transformation, a technique is
utilized that assigns a unique binary code to each SMILES character. The resulting binary
vectors, with a length of 1024, constitute a set of bits reflecting the chemical structure of
compounds. This process provides an efficient representation of information about the
molecular structure, making it accessible for analysis and processing by machine learning
algorithms. Through the vectorization of SMILES, unique numerical representations are
created, serving as a valuable tool in addressing tasks related to predicting the physical
characteristics of polymers.

2.2. Model Training for Predicting the Physical Characteristics of Polymer

In the process of preparing the dataset for predicting the physical characteristics
of polymers, multiple transformations were applied to create an optimal data structure.
The original dataset, comprising 66,981 unique characteristics of various polymer materials,
included information about median values and dispersion. However, this information
was often incomplete. To enhance the efficiency of machine learning model training,
it was decided to iteratively create new datasets, each consisting of 1024 columns for
representing SMILES and an additional column for each physical characteristic containing
non-empty values.

Subsequently, each of these created datasets was split into training and testing sets
at an 80% to 20% ratio, respectively. In the training phase, diverse machine learning
regression models, including but not limited to KNeighborsRegressor, Lasso, Elastic Net,
Decision Tree, Bagging, AdaBoost, XGBoost, SVR, Gradient Boosting, Linear Regression,
and Random Forest, were utilized to optimize the prediction of physical characteristics
in polymer materials. Model performance was evaluated using metrics like MSE (Mean
Squared Error), RMSE (Root Mean Squared Error), NMSE (Normalized Mean Squared
Error), MAE (Mean Absolute Error), MPE (Mean Percentage Error), R2. Additionally,
a custom metric was introduced, accounting for the difference between predicted and true
values, considering a predefined non-zero dispersion value. The obtained evaluation results
enable more effective utilization of trained models for predicting the physical characteristics
of polymer materials.

Hyperparameter optimization has been conducted for each model to maximize its
predictive capability. Techniques such as grid search, random search to systematically
explore the hyperparameter space and identify configurations that yield improved model
performance [44].

Subsequently, all the obtained metrics for each feature with post-training on every
model were saved in separate files. Following this, a graph analytical processing of these
files was conducted to determine the optimal machine learning models for each characteristic.
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2.3. Using Prediction Method for Imputation of Missing Values of Polymer Physical
98 Characteristics

In contemporary polymer research, extensive datasets of physical characteristics are
often analyzed, providing valuable information about material properties. However,
the data collection process introduces the challenge of missing values, creating a hurdle in
accurately reconstructing the complete dataset. This study introduces a novel approach to
address this issue, based on the Prediction Imputation method.

The Prediction Imputation method [45] is a way to fill missing values in data by
utilizing machine learning models. In this research, we applied this method to predict
missing values for each polymer’s physical characteristic, with the number of missing
values varying for each characteristic.

The process involved selecting a suitable machine learning regression model, training
it on known data, and then using the trained model to predict values where they were
missing. The evaluation of the method included comparing predicted values with real ones,
where available.

This innovative approach to handling missing data opens new perspectives for accu-
rate analysis of polymer physical characteristics, improving data recovery and providing
more reliable research results.

The analysis of obtained metrics identified optimal regressors for each characteristic,
forming a diverse set of best machine learning models. Each applied model was saved
using the joblib library for subsequent use.

Subsequently, in accordance with information about the best models, missing values
for each characteristic were predicted using the corresponding optimal regressor. These
predicted values were merged with the known values, creating a dataset where all charac-
teristics were filled according to the best models used.

Thus, this approach not only efficiently utilizes predictive models for recovering
missing data but also allows adapting model selection for each specific characteristic,
ensuring more accurate investigation of polymer physical properties.

2.4. Examination of Our Approach

To assess the quality of predicted characteristic values, the same series of experiments
were conducted to evaluate the consistency between predicted and actual data. For each of
the 66 characteristics (for three out of 68 characteristics for which the number of non-zero
values was initially greater than 50, the model could not be saved), where the initially
known values exceeded 50, an 11-fold experiment was performed.

The specificity of the experiment involved using only predicted values as the training
set, while the test set consisted of actually known characteristic values. This approach al-
lowed for evaluating the accuracy of predictive models, considering real data, and provided
more reliable indicators than using random or other sample separation methods.

Consistency assessment was conducted using the variance metric. The results of
these experiments provide information about the degree of alignment between predicted
values and actual data for each regression model, as well as a comprehensive picture across
all characteristics.

An important implication of these experiments is the possibility of selecting the most
effective models for each specific characteristic, ultimately enhancing the accuracy and
reliability of predicting polymer physical property values. The obtained assessments
can be utilized to choose optimal regressors for further research in materials science and
polymer science.

2.5. Categories of Characteristics

The dataset encompasses a diverse array of physical characteristics, each contributing
valuable insights into the multifaceted nature of polymer materials. These characteristics
are systematically categorized to capture the wide-ranging aspects of a material’s behavior.
Compression characteristics and tensile property delve into the material’s response to forces,
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providing crucial information about its strength and deformability. Creep characteristics
illuminate the material’s behavior under sustained loads over time, offering insights into
long-term structural integrity. Dilute solution property and rheological property focus
on the material’s behavior in solution and its flow properties, respectively, aiding in
applications like polymer processing.

The dataset also includes categories such as electric property, shedding light on the
material’s conductivity and dielectric properties. Flexural property and shear property
offer a nuanced understanding of the material’s response to bending and shearing forces,
respectively. Hardness quantifies the material’s resistance to indentation or scratching,
while impact strength gauges its ability to absorb sudden impacts. Optical property
provides insights into light interaction, and heat characteristics and thermal property delve
into the material’s response to temperature changes, including its thermal conductivity
and expansion.

Heat resistance and combustion characterize the material’s performance under el-
evated temperatures, contributing to applications where heat stability is crucial. Other
physical property and physicochemical property serve as comprehensive categories that
encompass a broad spectrum of diverse properties, ensuring a holistic examination. This
systematic categorization enhances the dataset’s utility, facilitating targeted exploration and
modeling of specific polymer traits for various industrial applications. Figure 4 illustrates
the comprehensive spectrum of physical polymer characteristics explored in this study.

Physicochemical property:

Compression characteristics:
Compressive modulus
Compressive stress strength at break
Compressive stress strength at yield
Dynamic compressive properties storage modulus
Dynamic compressive properties loss tangent
Dynamic compressive properties loss modulus

Heat characteristics:
Brittleness temperature

Heat resistance and
combustion:
Oxygen index

Deflection temperature under load hdt

Softening temperature

Vicat softening temperature

Impact strength:
Charpy impact
1zod impact

Electric property:
Dielectric constant ac
Dielectric loss factor
Dielectric loss tangent
Electric conductivity
Surface resistivity
Volume resistivity

Dilute solution property:
Intrinsic viscosity eta
Radius of gyration
Second virial coefficient
Diffusion coefficient
Sedimentation coefficient

Cohesive energy density
Gas diffusion coefficient d
Gas permeability coefficient p
Gas solubility coefficient s
Hansen parameter delta-d: dispersion
component
Hansen parameter delta-h: hydrogen bonding
Hansen parameter delta p polar
Interfacial tension
Solubility parameter
Surface tension
Water absorption
Water vapor transmission
Contact angle

Polymers’

Characteristics

Creep characteristics:
Tensile creep compliance
Tensile creep modulus
Tensile creep recovery
Tensile creep rupture time
Tensile creep strain
Flexural creep strain
Tensile creep rupture strength

Shear property:
Dynamic shear properties storage modulus
Dynamic shear properties loss modulus
Dynamic shear properties loss tangent
Shear modulus
Shear stress strength at break
Shear stress strength at yield

Tensile property:
Dynamic mechanical properties storage
modulus
Dynamic mechanical properties loss modulus
Dynamic mechanical properties loss tangent
Elongation at break
Elongation at yield
Fiber tensile elongation at break
Fiber tensile modulus
Fiber tensile stress strength at break
Tensile modulus
Tensile stress strength at break
Tensile stress strength at yield

Hardness:
Shore hardness

Flexural property:
Dynamic flexural properties storage
modulus
Dynamic flexural properties loss modulus
Dynamic flexural properties loss tanget

Flexural modulus

Flexural stress strength at break

Flexural stress strength at yield

Physical property:
Bulk modulus
Compressibility
G value
Pvt relation pressure
Pvt relation specific volume
Pvt relation temperature
Radiation resistance
Density Specific volume

Thermal property:
Crystallization kinetics r
Crystallization kinetics k
Crystallization kinetics n

Crystallization kinetics half time of crystallization
Crystallization temperature
Glass transition temperature
Heat of crystallization
Heat of fusion
Heat of fusion mol conversion
Thermal decomposition temperature
Thermal decomposition weight loss
Isothermal weight loss temperature
Isothermal weight loss time
Lc phase transition temperature

Melting temperature
Specific heat capacity cp
Specific heat capacity cv

Thermal conductivity

Thermal diffusivity

Rheological property:
Dynamic viscosity loss
tangent

Figure 4. Graph depicting all possible characteristics of physical polymers featured in this study.
The characteristics are grouped according to their categories, providing a systematic overview of
various aspects of the physical properties of polymer materials.
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The characteristics are systematically arranged based on their respective categories,
offering a structured representation of diverse aspects of polymer material properties.
The description of each physical characteristic presented in the dataset is provided in
Appendix B.

3. Results

Experimental conditions involved transforming SMILES representations into binary
features and training models individually on each characteristic using non-empty values.
The experiment utilized an Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz for computational
tasks [46].

In Figure 5, RZ scores are illustrated for 68 characteristics, each of which has more than
50 non-zero values in the original dataset. Thirty-one (31) characteristics exhibit R? values
within the range of 0.5 to 1.
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Figure 5. Array of R? Scores, each point is a testament to the mastery of machine learning models in
deciphering the intricacies of physical traits.

The alignment of optimal metric values across all regression models for each character-
istic highlights a consistent pattern. This alignment emphasizes the robust performance of
machine learning models in predicting physical characteristics of polymers, particularly for
the identified subset of characteristics. The coherence in results across various models un-
derscores the reliability and effectiveness of the chosen models in capturing the underlying
patterns in the dataset.
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Optimal regression models and metrics for physical characteristics are shown in
Table 1. The table presents the most effective regression models and associated metrics
for predicting various physical characteristics of polymers. Each row corresponds to a
specific characteristic, showcasing the selected regression model, the maximum R? score
achieved, and the corresponding Normalized Mean Squared Error (NMSE). The models
were carefully evaluated, and the results offer insights into the predictive performance for
different characteristics in the polymer dataset.

Table 1. Optimal regression models and R? best scores for physical characteristics.

Characteristic Data Size ! Best Regressor Max R> MPE
Glass transition temperature 8092 Random Forest 0.88 1.23
Thermal decomposition temperature 6325 Random Forest 0.73 2.25
Melting temperature 3844 Random Forest 0.71 1.05
Intrinsic viscosity ETA 1978 Gradient Boosting 0.74
Specific volume 1739 XGBoost 0.71 2.75
Density 1739 XGBoost 0.56 0.5
Elongation at break 1139 Gradient Boosting 0.55
LC phase transition temperature 961 Random Forest 0.79 3.02
Softening temperature 777 Random Forest 0.68 20.73
Refractive index 685 XGBoost 0.73 0.91
Crystallization temperature 457 Random Forest 0.69 6.3
Surface tension 348 Bagging 0.59 0.06
Solubility parameter 324 XGBoost 0.77 0.04
Cohesive energy density 324 XGBoost 0.82 0.96
Dynamic mechanical properties loss tangent 301 Gradient Boosting 0.52
Isothermal weight loss temperature 273 XGBoost 0.97 0.13
Isothermal weight loss time 228 XGBoost 0.86
Oxygen index 176 XGBoost 0.65 12.24
Dynamic shear properties storage modulus 141 KNeighborsRegressor 0.51
Heat of crystallization 124 Random Forest 0.65
Deflection temperature under load HDT 99 Random Forest 0.61 4.0
Fiber tensile stress strength at break 91 Decision Tree 0.63 1.1
Vicat softening temperature 82 Gradient Boosting 0.67 0.45
Brittleness temperature 81 KNeighborsRegressor 0.67 1.2
Thermal diffusivity 80 Bagging 0.94 413
Water vapor transmission 73 SVR 0.73
Hansen parameter delta p polar 59 Bagging 0.9 0.45
Hansen parameter delta-h: hydrogen bonding 59 AdaBoost 0.59 2.56
Crystallization kinetics k 59 XGBoost 0.97
PVT relation specific volume 56 Decision Tree 0.78 0.01
PVT relation pressure 53 Decision Tree 0.96

! The reported data size corresponds to the count of non-none values for each median parameter for each
characteristic.

Figure 6 depicts a graph of variance metric values for all initially known characteristics
of polymers. Different characteristics are marked on the x-axis, while the y-axis displays the
values of the variance metric, measuring the degree of correspondence between predicted
and actual values. Each stripe on the graph corresponds to one of the 66 characteristics,
where the initial number of known values exceeds 50.

The presented graph allowing for a visual assessment of the predictive models’ ef-
fectiveness for each specific characteristic. Stripes rising above indicate high accuracy in
predictions, while those descending below may suggest some disparities between predicted
and real values.
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Figure 6. Array of VM Scores, each point is a testament to the mastery of machine learning models in

deciphering the intricacies of physical traits.

Table 2 presents optimal variance metrics obtained by training on predicted values

and subsequently predicting known values for validation, demonstrating the model’s

performance on the dataset.

Table 2. Optimal regression models and best variance metrics (VM) scores for physical characteristics.

Best Regressor Max VM

Data Size !

Characteristic

1.0
0.96
0.96

Elastic Net

219
26
3567

Isothermal weight loss

temperature
PVT relation pressure
Thermal decomposition weight

AdaBoost

SVR

loss
Crystallization kinetics half time

0.96
0.94
0.92
0.91

AdaBoost
AdaBoost
Random Forest
Random Forest

26
26

of crystallization

PVT relation temperature
Vicat softening temperature

56

116
219
2968

Contact angle
Cohesive energy density
Thermal decomposition

0.9
0.89
0.83
0.82

Random Forest

XGBoost

temperature
Crystallization temperature

Gradient Boosting

331
40

AdaBoost

Fiber tensile modulus
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Table 2. Cont.

Characteristic Data Size ! Best Regressor Max VM
Deﬂect1on1 éil(lill:lilelr;l’fure under 38 Bagging 0.79
LC phase transition temperature 430 XGBoost 0.78
Elongation at yield 49 Gradient Boosting 0.77
Fiber tensile elongation at break 31 KNeighborsRegressor 0.77
Izod impact 23 KNeighborsRegressor 0.73
Surface tension 176 Bagging 0.73
Crystallization kinetics r 21 KNeighborsRegressor 0.72
Oxygen index 144 Bagging 0.69
Hansen parameter delta p polar 43 Bagging 0.69
Isothermal weight loss time 175 SVR 0.68
Glass transition temperature 6278 Random Forest 0.68
Solubility parameter 218 Gradient Boosting 0.66
Heat of crystallization 67 Lasso 0.65
Radius of gyration 45 Bagging 0.63
Elongation at break 854 Decision Tree 0.62
Fiber tensile stress strength at 57 SVR 0.62

break

Heat of fusion mol conversion 154 Bagging 0.61
Melting temperature 2182 Random Forest 0.57

! The reported data size corresponds to the count of non-null values for each variance parameter for each

characteristic.

4. Discussion

In recent years, there has been substantial interest in accelerating materials design and
discovery, spurred by initiatives like the Materials Genome Initiative and Integrated Com-
putational Materials Engineering [47]. This perspective aims to outline general problems,
information science methods, and outstanding challenges in the field of materials infor-
matics [48]. For example, ref. [49] introduces Polymer Genome [50], a web-based machine-
learning capability for near-instantaneous predictions of polymer properties. Study [51]
explores computational alternatives, Group Interaction Modeling (GIM), and Machine
Learning (ML), for predicting thermal and mechanical properties of polymers. The pa-
per [52] addresses challenges in utilizing machine learning for polymer discovery, focusing
on accurately representing complex, multi-scale structures. Ref. [53] introduces a promising
CGCNN framework that directly learns material properties from crystal structures, offering
a universal and interpretable representation. The paper [54] addresses the ongoing debate
in molecular property prediction by comparing two prominent classes of models—neural
networks applied to computed molecular fingerprints or expert-crafted descriptors and
graph convolutional neural networks. The authors of [55] introduce a data-driven frame-
work for predicting work functions of complex compounds, showcasing the effectiveness of
a random forest model in achieving high accuracy. The paper [56] contributes significantly
to the chemistry machine learning field by showcasing the potential of machine learning
methods in predicting bulk properties of molecules, specifically crystalline density.

In this study, we observed distinct patterns in the performance of regression models
across various characteristics, particularly focusing on the glass transition temperature,
thermal decomposition temperature, and melting temperature, which exhibited substantial
counts of non-null values (3844, 6325, and 8092, respectively).

This study presents an evaluation of various regression methods. The study does
not merely apply ML algorithms but goes further, conducting experimental studies to
select the best model for each physical characteristic. This meticulous approach showcases
a commitment to refining models for improved predictive accuracy, providing valuable
insights into the strengths and weaknesses of different ML approaches.

For characteristics with a higher number of non-null values, we noticed a proportional
increase in the R? score as the data size expanded. Specifically, the R? scores for glass
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transition temperature, thermal decomposition temperature, and melting temperature
were 0.71, 0.73, and 0.88, respectively. Random Forest emerged as the optimal regression
model for these characteristics, showcasing its ability to handle larger datasets and capture
complex relationships. These scores serve as a baseline for future work and highlight the
inherent strengths and limitations of each regressor in its default configuration.

On the other hand, for characteristics with a data size ranging from 176 to 2000,
XGBoost and Gradient Boosting demonstrated superior performance, outshining other
regression models. These findings suggest that these boosting algorithms excel in capturing
intricate patterns within datasets of a moderate size.

Interestingly, for characteristics with lower data sizes, ranging from 59 to 141, a mix
of regression models, including Decision Tree, Bagging, KNeighborsRegressor, AdaBoost,
and SVR, displayed competitive performance. The diversity in optimal models for these
characteristics implies that the choice of the most suitable regression algorithm may depend
on the specific characteristics of the dataset, and a one-size-fits-all approach might not
be appropriate.

Several factors could contribute to these observations. Firstly, the complexity of the
relationship between molecular features (captured by SMILES strings) and physical char-
acteristics may vary across different characteristics, influencing the model’s performance.
Additionally, the nature of the dataset, including the distribution of non-null values and the
diversity of polymer structures, might impact the effectiveness of certain regression models.
Further investigations into the specific molecular features contributing to the predictive
power of each model and a deeper understanding of the underlying chemical processes
could provide valuable insights into the observed patterns.

The results of the analysis of the variance metric presented in Table 2 yielded insightful
observations regarding the performance of predictive models based solely on predicted
values derived from optimal regressors. Surprisingly, a significant alignment was observed
between the majority of characteristics and the models, resulting in notably high variance
metric scores. This consistency suggests a robust predictive capability of the chosen
regressors across various physical properties of polymers.

Several factors contribute to the success of the models, while also shedding light on
potential pitfalls. Characteristics exhibiting exceptionally high values, such as volume
resistivity, might present challenges in prediction due to their intrinsic variability or non-
linear dependencies on other factors. Additionally, features with substantial data dispersion
or limited data points may introduce uncertainties, influencing the precision of predictions.

The remarkable congruence between characteristics and models implies a certain
universality in the efficacy of the selected regressors. The results underscore the adaptability
of these models across diverse physical attributes of polymers, enhancing their utility in
materials science research.

However, it is essential to acknowledge that the success of predictive modeling is
contingent on the nature of the characteristic being predicted. While the variance metric
serves as a comprehensive metric, its applicability can be context-dependent. High metric
scores indicate successful prediction, but the interpretation should consider the specific
challenges associated with each characteristic.

Depending on the size of the dataset, different models are considered the best fit
for various physical properties of polymers. This variation in model suitability can be
attributed to the complex and heterogeneous nature of polymer systems [57]. Large datasets
may facilitate the application of more complex models, such as ensemble methods or deep
learning, to capture intricate relationships [58], while smaller datasets may benefit from
simpler models to avoid overfitting [59].

The reasons for the different natures of models include the distribution of data [60],
the presence of non-linearities and interactions in physical properties [61], and the di-
mensionality of the feature space. In high-dimensional feature spaces, models like Lasso
Regression or Elastic Net may be preferred for feature selection and regularization, while
simpler models like linear regression may suffice for fewer features.
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Similar phenomena are observed in other systems such as colloids [62], proteins [63],
and nucleic acids [64]. The optimal choice of models for predicting physical descriptors
varies based on the nature of the system and the characteristics of the data.

¢ Colloids: different models may be suitable for predicting properties such as par-
ticle size, shape, and stability, considering the diverse interactions and conditions
influencing colloidal systems [65].

*  Proteins: the structure and function of proteins may require distinct modeling ap-
proaches. For example, machine learning models like Random Forests may be effective
for predicting protein-ligand binding affinities [66], while simpler models may suffice
for secondary structure prediction [67].

*  Nucleic Acids: the unique properties of nucleic acids, such as DNA or RNA, may
demand different models for predicting structural features [68], interaction energies,
or other physical descriptors based on the specific characteristics of the dataset.

The discussions highlight both the achievements and challenges encountered in using
prediction imputation for estimating missing values in polymer physical characteristics.
The positive alignment of characteristics and models indicates the promising potential
of this approach, opening avenues for further refinement and application in the field of
materials science and polymer research.

5. Conclusions

In conclusion, this study aimed to predict missing values for various physical charac-
teristics of polymers using machine learning techniques. The predictive models, includ-
ing Random Forest, Gradient Boosting, and XGBoost, demonstrated strong performance,
with the Random Forest model achieving the highest R? scores of 0.71, 0.73, and 0.88 for
glass transition temperature, thermal decomposition temperature, and melting tempera-
ture, respectively. The validation process involved predicting unknown values, showcasing
the reliability of the models.

The best-performing model, Random Forest, displayed promising results in handling
the complexity of polymer characteristics. Future research could explore refining the
models further, considering additional feature engineering, and expanding the dataset to
enhance predictive accuracy. Additionally, investigating the transferability of the models to
different polymer datasets could contribute to the broader applicability of the developed
predictive framework. Some directions for further research are:

1.  Feature Engineering and Selection: explore advanced feature engineering techniques
and refine feature selection methods to identify the most influential characteristics.
Investigate the impact of incorporating domain-specific knowledge to enhance the
models’ ability to capture subtle nuances in polymer behavior.

2. Model Optimization: this includes experimenting with different ensemble methods,
regularization techniques, and model architectures to achieve a more robust and
accurate predictive framework.

3. Dataset Expansion: consider augmenting the dataset by incorporating data from
diverse polymer sources. A larger and more diverse dataset could provide a com-
prehensive understanding of polymer characteristics, enabling models to generalize
better across different types of polymers.

4. Cross-Dataset Validation: evaluate the transferability of the developed models by
validating them on external polymer datasets. Assessing the models’ performance on
different datasets will provide insights into their robustness and applicability across
various polymer compositions and properties.

5. Incorporating Temporal Aspects: if applicable, consider incorporating temporal
aspects into the models to capture any time-dependent trends or changes in polymer
characteristics. This could involve analyzing how polymers evolve over time under
different conditions.
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6. Interpretability and Explainability: enhance the interpretability of the models to
provide clearer insights into the features driving predictions. This could involve
employing techniques such as SHAP (SHapley Additive exPlanations) values to
explain the contribution of each feature to the model’s output.

7. Uncertainty Quantification: integrate methods for uncertainty quantification to pro-
vide more reliable predictions and confidence intervals. This is particularly important
in applications where understanding the uncertainty associated with predictions is
crucial for decision-making.

8.  Collaboration with Domain Experts: foster collaboration between data scientists and
domain experts in polymer science to gain deeper insights into the underlying physics
and chemistry. Leveraging domain knowledge can lead to the development of more
informed models and a better understanding of the relationships between polymer
characteristics.

By addressing these avenues, future research endeavors can contribute to the con-
tinuous improvement and applicability of machine learning models in predicting and
understanding the complex characteristics of polymers.
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Appendix A. Data Description

Table Al. Summary of physical characteristics (more than 300 values).

Characteristic Count Mean Std Min Max 50% Unit
Dynamic mechanical properties loss tangent 301 0.56 112 0.0 11.6 0.14
Thermal decomposition temperature 6325 401.0 112.87 18.0 1000.0 403.0 C
Tensile modulus 1103 3.69 13.03 0.0 202.0 2.1 GPa
Heat of fusion 623 0.01 0.01 0.0 0.12 0.01 kcal/g
LC phase transition temperature 961 191.76 95.37 -90.0 528.0 175.0 C
Thermal decomposition weight loss 5236 10.25 13.09 0.0 100.0 5.0 %
Melting temperature 3844 194.93 108.24 —54.0 580.0 186.35 C
Volume resistivity 943  1.15x10® 121x107 00  31x10® 45x10® ohm-cm
Dielectric loss factor 311 775.51 13608.97 0.0 240000.0 0.1
Cobhesive energy density 324 112.21 60.3 0.0 626.0 96.0 cal/cm3
Glass transition temperature 8092 145.18 110.69 —123.0 495.0 138.0 C
Density 1739 1.24 0.2 0.23 3.03 1.23 g/cm?
Water absorption 724 10.95 48.98 0.0 1065.0 2.5 wt%
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Table Al. Cont.

Characteristic Count Mean Std Min Max 50% Unit
Electric conductivity 1008  1.96 x 10°  61.73 x 10° 0.0 19.6 x10° 0.0 1/(ohm-cm)
Elongation at break 1139 51.98 157.26 0.26 3000.0 10.1 %

Tensile stress strength at break 1153 0.19 2.14 0.0 64.02 0.08 GPa
Intrinsic viscosity ETA 1978 1.43 12.4 0.0 495.0 0.52 dl/g
Solubility parameter 324 21.08 5.0 0.0 51.2 20.0 (J/cm?)1/2
Dynamic mechanical properties g 228 458 0.0 64.6 13 GPa
storage modulus
Refractive index 685 1.65 0.86 0.49 23.0 1.6
Gas diffusion coefficient d 444 0.0 0.0 0.0 0.0 0.0 cm?/s
Gas permeability coefficient p 717 0.0 0.0 0.0 0.0 0.0  cm3STP)em/(cm?-s-Pa)
Crystallization temperature 457 138.4 105.61 —120.0 496.0 124.0 C
Softening temperature 777 176.31 103.88 —185.0 800.0 173.0 C
Dielectric constant AC 763 22.51 403.72 0.12 11,002.15 3.26
Surface tension 348 30.95 13.08 5.75 72.5 31.13 mN/m
Specific volume 1739 0.83 0.15 0.33 43 0.81 cm3/g
Dielectric loss tangent 266.0 0.74 4.8 —0.03 55.0 0.02
Isothermal weight loss 2730 38935 165.13 100.0 900.0  350.0 C
temperature
Tensile stress strength at yield 267.0 0.07 0.05 0.0 0.4 0.06 GPa
Contact angle 255.0 73.96 19.85 15.0 158.9 76.0 degree
Gas solubility coefficient s 262.0 0.01 0.06 0.0 0.69 0.0 cm3(STP)/(cm3-Pa)
Table A2. Summary of Physical Characteristics (More than 50 up to 250 Values).
Characteristic Count Mean Std Min Max 50% Unit
Thermal conductivity 80 0.81 2.95 0.01 23.0 0.22 W/(m-K)
Hansen parameter delta—h: hydrogen bonding 59 8.03 3.5 0.0 16.0 74 (J/cm3)1/2
Flexural modulus 83 8.27 21.18 0.04 108.0 2.61 GPa
Vicat softening temperature 82 137.08  59.47 29.7 380.0 133.0 C
Dynamic mechanical properties loss modulus 203 2.47 222 0.0 260.0 0.1 GPa
PVT relation specific volume 56 0.85 0.17 0.4 1.17 0.85 em®/g
Water vapor transmission 73 0.82 2.38 0.0 15.0 0.01  gmil/ (cm?-24 h)
Dynamic flexural properties storage modulus 78 1.71 4.36 0.0 37.0 0.79 GPa
Hansen parameter delta p polar 59 7.11 4.84 1.1 19.5 6.1 (J/cm3)1/2
Crystallization kinetics k 59 0.66 2.25 0.0 15.07 0.01
Heat of fusion mol conversion 225 3.99 3.33 0.0 21.0 3.32 kcal/mol
Elongation at yield 84 22.45 50.18 0.08 334.0 8.3 Y%
Dynamic shear properties loss tangent 106 1.88 14.6 0.0 150.0 0.07
Dynamic shear properties storage modulus 141 0.43 0.67 0.0 3.65 0.03 GPa
Crystallization kinetics n 71 2.59 0.72 0.59 4.15 2.6
Heat of crystallization 124.0 10.39 9.95 0.29 49.3 8.3 cal/g
Dynamic shear properties loss modulus 92 0.05 0.11 0.0 0.7 0.0 GPa
Flexural stress strength at break 71 0.15 0.29 0.0 1.84 0.09 GPa
Isothermal weight loss time 228 86.9 33357 018 2500.0 13.8 h
Fiber tensile elongation at break 61 39.65 48.71 225 24234 210 %
Deflection temperature under load HDT 99 189.38  87.48 450  417.0 197.0 C
Specific heat capacity CP 214 0.38 0.25 0.0 2.52 0.35 cal/(g-C)
Fiber tensile stress strength at break 91 50.8 32954 017 30900 3.6 g/denier
Brittleness temperature 81 —-2215 3505 —80.0 90.0 —26.0 C
Dynamic flexural properties loss tanget 73 0.59 0.71 0.0 3.02 0.17
Oxygen index 176 35.85 14.05 4.5 95.0 34.0 %
PVT relation pressure 53 7491  135.54 0.0 598.8 35.0 MPa
Izod impact 53 16143 35027 0.02 1990.0 40.0 KJ/m

Thermal diffusivity 80 0.0 0.0 0.0 0.0 0.0 m?/s
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Table A2. Cont.
Characteristic Count Mean Std Min Max 50% Unit
PVT relation temperature 57 216.95 523.81 4.0 3822.0 87.5 C
Radius of gyration 120 33.15 36.39 0.5 26435 21.72 nm
Crystallization kinetics half time of crystallization 72 2389.53 606479  11.1  35,400.0 289.5 s
Second virial coefficient 101 0.15 1.07 -00 895 00  cm?®mol/g?
Hansen parameter delta—d: dispersion component 60 16.54 4.09 0.0 21.5 1753  (J/cm3)1/2
Fiber tensile modulus 74 90.59 156.26 3.86 847.0 43.5 g/denier
Crystallization kinetics r 53 1986.31 10,850.65 0.02 79,175.0 97.0 nm/s

Appendix B. Physical Characteristics

Appendix B.1. Physical Properties

1.

2.

Bulk Modulus: measures a material’s resistance to volume change under pressure. It
is crucial for understanding how a material responds to changes in pressure [69].
Compressibility: describes the degree to which a material can be compressed. It
is the reciprocal of bulk modulus and helps assess a material’s response to external
pressure [70].

G Value: represents the ratio of the strain energy stored in a material to the kinetic
energy. It provides insights into a material’s elastic behavior under deformation [71].
PVT Relation Pressure: describes the relationship between pressure and specific
volume in a material. It is essential for understanding the material’s response to
changes in pressure and volume [72].

PVT Relation Specific Volume: defines the correlation between specific volume and
pressure in a material. It is crucial for analyzing the material’s behavior under varying
pressure conditions [73].

PVT Relation Temperature: illustrates the relationship between temperature and
specific volume in a material. It is essential for studying how temperature influences
the material’s volume properties [74].

Radiation Resistance: measures a material’s ability to withstand the effects of ioniz-
ing radiation. This property is vital for materials used in radiation-exposed environ-
ments [75].

Density: represents the mass of a material per unit volume. Density is a fundamental
property that influences various material characteristics [76].

Specific Volume: describes the volume occupied by a unit mass of a material. It is the
reciprocal of density and provides insights into material compactness [77].

Appendix B.2. Compression Characteristics

1.

2.

Compressive Modulus: measures the material’s resistance to compression. Essential
in the construction of structural elements made of polymers [78].

Compressive Stress Strength at Break: determines the maximum pressure a polymer
can withstand before breaking. Important for assessing the resilience of polymer
structures to mechanical forces [79].

Compressive Stress Strength at Yield: measures the strength of a polymer under
pressure before plastic deformation begins. Important for the preliminary evaluation
of the material’s structural reliability [80].

Dynamic Compressive Properties Storage Modulus: characterizes the material’s
ability to store energy under dynamic loading. Important for materials subjected to
cyclic loads, such as in damping materials [81].

Dynamic Compressive Properties Loss Tangent: reflects the fraction of energy loss
due to dynamic deformation. Important in the development of materials with effective
damping properties [82].
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6.

Dynamic Compressive Properties Loss Modulus: determines the energy loss during
dynamic deformation. Important for materials designed for sound absorption or
vibration reduction [83].

Appendix B.3. Creep Characteristics

1.

Tensile Creep Compliance: determines the polymer’s ability to undergo deformation
under constant tensile load. This is crucial for assessing the long-term stability of
polymer materials under constant force or load [84].

Tensile Creep Modulus: measures the elasticity of the polymer when deformed under
constant force. This parameter is useful in designing materials for applications where
resistance to constant mechanical loads is important [85].

Tensile Creep Recovery: evaluates the polymer’s ability to return to its original shape
after deformation under tensile loading. This is important, for example, for materials
used in springs or elastic elements [86].

Tensile Creep Rupture Time: specifies the period during which the polymer under-
goes deformation before rupture under tensile loading. This is an important charac-
teristic for assessing the material’s resistance to long-term mechanical loads [87].
Tensile Creep Strain: measures the level of deformation a polymer can undergo under
constant tensile force. This is important for understanding the material’s behavior
under constant load and can be used in the design of structural elements [88].
Flexural Creep Strain: evaluates the deformation of the polymer under constant load
during bending. This characteristic is important, for example, when using polymer
materials in structures subjected to constant bending forces [89].

Tensile Creep Rupture Strength: determines the maximum load a polymer can
withstand before rupture under constant tensile force. This is a crucial parameter for

assessing the durability and resilience of polymer materials under constant mechanical
loads [90].

Appendix B.4. Dilute Solution Property

1.

Intrinsic Viscosity (17): measures the polymer’s resistance to flow in a dilute solution,
providing insights into its molecular size and structure. Intrinsic viscosity is crucial
for understanding the polymer’s solubility and processing behavior [91].

Radius of Gyration: defines the average distance of polymer segments from the
center of mass, indicating the spatial extent of the polymer chain in solution. This
property is significant in studying polymer conformations [92].

Second Virial Coefficient: describes the non-ideality of polymer solutions, providing
information about the intermolecular interactions and solute-solvent interactions.
This coefficient influences the solution behavior and phase separation [93].
Diffusion Coefficient: represents the rate at which polymer molecules spread through
the solution, influencing mass transport and the polymer’s ability to interact with its
surroundings [94].

Sedimentation Coefficient: measures the rate at which polymer particles settle under
the influence of gravity in a centrifugal field, providing information about particle
size and shape in solution [95].

Appendix B.5. Electric Property

1.

Dielectric Constant (AC): reflects the material’s ability to store electrical energy in
an alternating current (ac) field. The dielectric constant influences the capacitance of
electronic components [96].

Dielectric Loss Factor: measures the efficiency with which a dielectric material con-
verts electrical energy into heat. This property is crucial in applications where minimal
energy loss is desired [97].
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Dielectric Loss Tangent: describes the ratio of the dielectric loss factor to the dielec-
tric constant, providing insights into the material’s efficiency in handling electrical
energy [98].

Electric Conductivity: represents the ability of a material to conduct electric current.
This property is essential in various electronic and electrical applications [99].
Surface Resistivity: defines the electrical resistance across the surface of a material,
influencing its performance in applications where surface conductivity is critical [100].
Volume Resistivity: measures the electrical resistance through the volume of a mate-
rial, providing information about its overall resistance to electric current flow [101].

Appendix B.6. Flexural Property

1.

Dynamic Flexural Properties Storage Modulus: characterizes the material’s ability
to store energy under dynamic flexural (bending) loading conditions. Important for
materials subjected to cyclic loads [102].

Dynamic Flexural Properties Loss Modulus: determines the energy dissipation ca-
pacity of the material during dynamic flexural deformation. Relevant for applications
requiring effective damping [103].

Dynamic Flexural Properties Loss Tangent: reflects the ratio of the loss modulus to
the storage modulus in dynamic flexural deformation, providing insights into the
material’s damping behavior [104].

Flexural Modulus: measures the material’s stiffness and resistance to bending de-
formation. Crucial in designing structural components where flexural strength is
essential [105].

Flexural Stress Strength at Break: indicates the maximum stress a material can with-
stand before fracturing under bending stress. Important for evaluating the material’s
structural integrity [106].

Flexural Stress Strength at Yield: measures the material’s stress resistance under
bending before exhibiting plastic deformation. Important for assessing structural
reliability under flexural loads [107].

Appendix B.7. Hardness

1.

Shore Hardness: measures the resistance of the material to indentation or penetra-
tion. Shore hardness is a valuable indicator of a material’s overall hardness and
durability [108].

Appendix B.8. Heat Characteristics

1.

Brittleness Temperature: indicates the temperature at which a material transitions
from a flexible to a brittle state, providing insight into its low-temperature perfor-
mance [109].

Deflection Temperature under Load (HDT): represents the temperature at which
a standard test bar experiences a specified deformation under a specific load. HDT
is crucial for understanding a material’s ability to withstand elevated temperatures
while supporting a load [110].

Softening Temperature: defines the temperature range at which a material starts to
soften, losing its rigidity. Softening temperature is essential for assessing a material’s
behavior under heat [111].

Vicat Softening Temperature: determines the temperature at which a needle pene-
trates a material under a specified load. Vicat softening temperature provides insights
into the heat resistance and stability of a material [112].

Appendix B.9. Heat Resistance and Combustion

1.

Oxygen Index: measures the minimum concentration of oxygen in a mixture with
an inert gas that supports the combustion of a material. This parameter is crucial for
evaluating a material’s fire resistance and combustion characteristics [113].
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Appendix B.10. Impact Strength

1.  Charpy Impact: assesses a material’s resistance to sudden impact by measuring the
amount of energy absorbed during fracture. Charpy impact testing is widely used to
evaluate the toughness of materials [114].

2. Izod Impact: similar to Charpy impact testing, Izod impact testing measures a mate-
rial’s resistance to impact. It assesses the energy required to break a notched specimen
under a sudden impact [115].

Appendix B.11. Optical Property

1.  Refractive Index: determines the degree to which light is refracted or bent as it
passes through a material. Refractive index is essential for understanding optical
transparency and performance in various applications [116].

Appendix B.12. Physicochemical Property

1.  Cohesive Energy Density: represents the energy required to separate unit volumes of
material. It is a measure of the cohesive forces within a substance [117].

2. Gas Diffusion Coefficient (D): describes the rate at which gas molecules diffuse
through a substance. It is crucial for understanding gas transport properties [118].

3.  Gas Permeability Coefficient (P): measures a material’s ability to allow gas perme-
ation. It is essential for applications where gas barrier properties are significant [119].

4. Gas Solubility Coefficient (S): represents the capacity of a material to dissolve gases.
This property is vital for understanding gas absorption in polymers [120].

5. Hansen Parameter 6 — d: Dispersion Component: describes the dispersion forces
within a material. It is part of the Hansen solubility parameters, which characterize
solute-solvent interactions [121].

6. Hansen Parameter 6 — h: Hydrogen Bonding: represents the hydrogen bonding
contribution to the Hansen solubility parameters. It provides insights into materials’
compatibility with various solvents [122].

7.  Hansen Parameter § — p: Polar: describes the polar forces within a material. It is
another component of the Hansen solubility parameters [123].

8.  Interfacial Tension: measures the energy required to increase the surface area between
two phases. It is crucial for understanding interactions at material interfaces [124].

9.  Solubility Parameter: represents the overall solubility characteristics of a substance.
It is a combination of the Hansen parameters and is used to predict material compati-
bility [125].

10.  Surface Tension: describes the force acting on the surface of a liquid that tends to min-
imize the area. Surface tension is vital for understanding wetting and adhesion [126].

11. Water Absorption: measures the ability of a material to absorb water. It is essential
for assessing the material’s response to humid environments [127].

12. Water Vapor Transmission: describes the rate at which water vapor permeates
through a material. It is crucial for applications requiring water vapor barrier proper-
ties [128].

13. Contact Angle: represents the angle formed between a liquid droplet and a solid
surface. It provides insights into the wettability of a material [129].

Appendix B.13. Rheological Property

1. Dynamic Viscosity Loss Tangent: describes the ratio of the loss modulus to the
storage modulus in the context of dynamic viscosity. It provides insights into the
energy dissipation behavior of the material under dynamic conditions [130].

Appendix B.14. Shear Property

1. Dynamic Shear Properties Storage Modulus: represents the ability of a material to
store elastic energy under shear stress in dynamic conditions [131].
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Dynamic Shear Properties Loss Modulus: describes the portion of energy that a
material loses as heat under shear stress in dynamic conditions [132].

Dynamic Shear Properties Loss Tangent: represents the ratio of the loss modulus to
the storage modulus in the context of dynamic shear properties. It provides insights
into the material’s response to shear forces [133].

Shear Modulus: measures a material’s resistance to deformation under shear stress.
It is crucial for understanding a material’s shear behavior [134].

Shear Stress Strength at Break: represents the maximum shear stress a material can
withstand before experiencing failure. It is an essential parameter for evaluating the
material’s shear strength [135].

Shear Stress Strength at Yield: measures the shear stress a material can withstand
before undergoing plastic deformation. This parameter is crucial for assessing the
material’s yield strength under shear forces [136].

Appendix B.15. Tensile Property

1.

2.

10.

11.

Dynamic Mechanical Properties Storage Modulus: represents the material’s ability
to store elastic energy under dynamic tensile conditions [137].

Dynamic Mechanical Properties Loss Modulus: describes the portion of energy that
a material loses as heat under dynamic tensile conditions [138].

Dynamic Mechanical Properties Loss Tangent: represents the ratio of the loss modu-
lus to the storage modulus in the context of dynamic tensile properties. It provides
insights into the material’s response to dynamic tensile forces [139].

Elongation at Break: measures the extent to which a material can stretch before experi-
encing rupture. It is a crucial parameter for evaluating the material’s ductility [140].
Elongation at Yield: measures the material’s deformation before it starts yielding un-
der tensile stress. This parameter provides insights into the material’s yield behavior
under tension [141].

Fiber Tensile Elongation at Break: describes the elongation capability of fiber materi-
als before experiencing rupture under tensile stress [142].

Fiber Tensile Modulus: represents the stiffness of a fiber material under tensile stress.
It is a critical parameter for assessing the material’s tensile rigidity [143].

Fiber Tensile Stress Strength at Break: represents the maximum tensile stress a fiber
material can withstand before undergoing rupture [144].

Tensile Modulus: measures the material’s resistance to deformation under tensile
stress. It is crucial for understanding the material’s tensile behavior [145].

Tensile Stress Strength at Break: represents the maximum tensile stress a material
can withstand before experiencing failure [146].

Tensile Stress Strength at Yield: measures the tensile stress a material can withstand
before undergoing plastic deformation. This parameter is crucial for assessing the
material’s yield strength under tensile forces [147].

Appendix B.16. Thermal Property

1.

2.

Crystallization Kinetics r: characterizes the crystallization kinetics of a material,
representing the rate of crystallization [148].

Crystallization Kinetics k: represents a parameter in the crystallization kinetics
equation, providing insights into the crystallization process [149].

Crystallization Kinetics n: another parameter in the crystallization kinetics equation,
influencing the rate of crystallization [150].

Crystallization Kinetics Half Time of Crystallization: describes the time required
for half of the crystallization process to occur [151].

Crystallization Temperature: represents the temperature at which a material under-
goes crystallization [152].

Glass Transition Temperature: indicates the temperature at which an amorphous
material transitions from a rigid to a rubbery state [153].
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7.  Heat of Crystallization: represents the amount of heat released or absorbed during
the crystallization process [154].

8.  Heat of Fusion: describes the heat energy required to change a substance from a solid
to a liquid state at a constant temperature [155].

9.  Heat of Fusion Mol Conversion: provides insights into the heat energy required for
the conversion of a mole of substance from solid to liquid state [156].

10. Thermal Decomposition Temperature: represents the temperature at which a material
starts to decompose thermally [157].

11. Thermal Decomposition Weight Loss: describes the weight loss associated with the
thermal decomposition of a material [158].

12. Isothermal Weight Loss Temperature: represents the temperature maintained during
a process where a material experiences weight loss [159].

13. Isothermal Weight Loss Time: describes the duration of time during which a material
undergoes weight loss under isothermal conditions [160].

14. LC Phase Transition Temperature: represents the temperature at which a phase
transition occurs in the liquid crystalline state [161].

15. Melting Temperature: indicates the temperature at which a material transitions from
a solid to a liquid state [162].

16. Specific Heat Capacity C,: describes the amount of heat energy required to raise the
temperature of a unit mass of a material by one degree Celsius at constant pressure [163].

17.  Specific Heat Capacity C: similar to C, but at constant volume, representing the heat
energy required to raise the temperature at constant volume [164].

18. Thermal Conductivity: describes the ability of a material to conduct heat [165].

19. Thermal Diffusivity: represents the ability of a material to conduct heat relative to its
ability to store heat. It is the ratio of thermal conductivity to volumetric heat capacity [166].
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