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Abstract: In this work, we engineered a corn-straw-based bio-foam material under the inspiration
of the intrinsic morphology of the corn stem. The explosion pretreatment was applied to obtain a
fibrillated cellulose starting material rich in lignin. The in situ esterification of cellulose was adopted
to improve the cross-linking network of the as-developed foam bio-material. The esterification of
lignin was observed in the same procedure, which provides a better cross-linking interaction. The
esterified corn-straw-derived bio-foam material showed excellent elastic resilience performance
with an elastic recovery ratio of 83% and an elastic modulus of 20 kPa. Meanwhile, with surface
modification by hexachlorocyclotriphosphazene-functionalized lignin as the flame retardant (Lig-
HCCP), the as-obtained bio-foam material demonstrated quite a good flame retardancy (with 27.3%
of the LOI), as well as a heat insulation property. The corn-straw-derived bio-foam material is
prospected to be a potential substitution packaging material for widely used petroleum-derived
products. This work provides a new value-added application of the abundant agricultural straw
biomass resources.

Keywords: bio-foam material; corn straw; in situ esterification; heat insulation; flame retardant property

1. Introduction

Porous polymer materials have applications in extensive aspects, such as purifica-
tion, separation, drug or fertilizer delivery, and packaging material, etc. In consideration
of only packaging materials, there is a huge demand for lightweight plastics, such as
polyethylene (PE) and polypropylene (PP), as well as synthetic polymer foams, such as
polyurethane (PU) and polystyrene (PS), at present and a continuous increasing trend in
the near future with changes in lifestyle and the increasing transportation of commodities.
It is estimated that about 265 million tons of synthetic plastic are produced each year,
while only 0.7 million tons of biodegradable plastic are made annually [1]. As a result,
the accumulation of plastic disposal in the environment pollutes the ecosystems of both
terrestrial and ocean environments globally, which has been recognized as the most serious
environmental pollution faced by mankind in this century. Both researchers and industry
are devoted to implementing sustainable substitutions for petroleum-derived synthetic
plastics. Biodegradable plastics are considered as the promising solution, which has been
intensively studied, and some commercial products have been realized [2–5]. Among
different types of degradable plastics, starch-based biodegradable plastics are the most
widely developed [6,7], which are mainly divided into two categories. The first category
is the degradation of starch into monomers, which are then converted into polylacticide
(PLA) or polygloycolic (PGA) plastics; the other category is the introduction of starch as
the main component to prepare composite plastics. The latter one plays the dominant role
currently. Starch is commonly introduced into the polyvinyl alcohol (PVA) matrix, which
has the properties of high elongation at break and light transmittance [8,9]. To improve
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the processability of the composites, different types of esterified starch are applied, or
bio-sourced proteins are introduced, such as gliadin and keratin, as additives at the same
time [10–12]. The application of non-edible natural resources to develop biocompatible
and biodegradable materials represents a better way to avoid the potential risks of com-
petition with food [13,14]. Cellulose is the most abundant biopolymer on Earth, which is
interesting for its mechanical properties and thermal stability. Researchers have adopted
isolated cellulose from biomass resources as reinforcement in thermoplastic corn starch
films [15,16], and starch/PVA bio-composites [17,18]. Cellulose-based porous materials
have also received significant attention because of their ease of tuning the pore size and
functionalization, which are beneficial for meeting the requirement of a variety of practical
applications [19–21]. A holistic lignocellulosic-biomass-derived biodegradable material
from rice straw has been successfully prepared based on the reinforcement of crystalline
cellulose microfibrils and the film-forming ability of the hemicelluloses and lignin mix-
tures [22], which boosted our interest to fabricate a 3D foam material completely from
agricultural residues.

Considering the preparation techniques for porous organic polymer scaffolds, super-
critical carbon dioxide foaming [23,24], hard template, and soft template methods [25] are
basically selected as needed. However, all of them have some limitations for the fabri-
cation of biomass-based porous materials due to their heterogeneity, low reactivity, and
low solubility. A facile ice template method has been reported to successfully prepare
porous starch with tunable anisotropic morphology, mechanical strength, and low thermal
conductivity by using waxy maize starch as the only starting material. By tuning the con-
centration of starch, which mainly consists of amylopectin, interconnected starch lamellas
are formed after unidirectional freezing followed by ice sublimation [26]. Lavoine and
coworkers reported a new dual-templating approach using ice and cellulose nanofibrils
(CNFs) as templates to control the porous architecture of the biomass-based foams where
the CNFs considerably enhanced the structural and mechanical integrity [27]. In most
cases, a cross-linking agent is introduced to obtain a stable network by forming covalent
bonds or ionic linkages. Moreover, a functional cross linker has been developed to adjust
the hydrophilic and hydrophobic properties of the porous materials and to realize exquisite
control over the pores [28,29]. As one of the main components of lignocellulosic biomass,
lignin typically constitutes 20–32% by weight [30]. The unique polyphenol structure of
lignocellulosic biomass renders lignin with many functional properties, such as ultravio-
let blocking, antioxidant, antibacterial, as well as flame retardant. With the intention of
packaging application safety, flame retardance is considered in this work.

Lignin has considerable potential in the development of sustainable flame retardants
for polymers due to its aromatic skeleton and high char-forming capability after combus-
tion [31–33]. However, bio-based materials have inherent downsides, partly because of their
increased flammability when subjected to heat flux or flame initiators, which limits their
range of application [34]. Therefore, we aimed to identify an efficient method to apply the
flame retardance of lignin to improve the comprehensive performance of bio-composites.
The modification of lignin with functional groups containing N and P [35] and using lignin
at nanoscale (LNP) to prepare a functionalized new flame retardant has been previously
reported [36].

The present work investigates the feasible engineering of agricultural straw into a
foam material as a potential sustainable alternative to non-biodegradable petroleum-based
products, for example, packaging applications for shipping convenience and safety. Under
the inspiration of the ordered porous architecture of the inner part of the corn stem, which
presents a certain compression and flexural resilience, we adopt corn straw as the raw
material to prepare a bio-foam material using a dissolution–regeneration method together
with freeze drying. Lignin was modified with HCCP and introduced into the as-prepared
bio-foam material as a flame retardant.
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2. Materials and Methods
2.1. Materials

Cotton pulp cellulose was purchased from Xinxiang Chemical Fiber Co., Ltd.
(Xinxiang, China), and dealkaline lignin and chloroform were purchased from
Shanghai Macklin Biochemical Co., Ltd. The vinyl acetate (VA), dimethyl sulfoxide (DMSO),
dimethyl formamide (DMF), carboxymethylcellulose sodium (CMCNa), calcium disodium
edetate (EDTACa), hexachlorocyclotriphosphazene (HCCP), and sodium hydroxide (NaOH)
were purchased from Chengdu Kelong Chemical Reagent Factory. The tetrabutylammo-
nium hydroxide aqueous solution (TBAH, 40 wt%) was obtained from Zhenjiang Runjing
High Purity Chemical Co., Ltd. (Zhenjiang, China), which was condensed to 50 wt% with a
rotary evaporator (40 ◦C) before use.

The corn straw was collected from the suburb of Chengdu, Sichuan. The corn straw
was detected to contain 49.7 wt% cellulose, 29.8 wt% hemicelluloses, 11.6 wt% lignin,
7.1 wt% lipids, and 1.8 wt% ash. It was steam exploded with a self-made machine under
the conditions of 2.2 MPa and 30 min of steaming time. After boiling and washing with
deionized (DI) water, the product was dried to obtain the steam-exploded corn straw (SEC).
The SEC was tested to contain 63.5 wt% cellulose, 2.3 wt% hemicelluloses, 15.6 wt% lignin,
13.9 wt% lipids, and 4.7 wt% ash. A cellulose analyzer (CA, FIWE Advance, Italy) was
used to analyze the main components of the raw corn straw and SEC according to the Van
Soest method.

2.2. Esterification of Steam-Exploded Corn Straw

As included in the Supplementary Materials, the conditions for the esterification of
cellulose with VA as the esterification reagent was preoptimized before conducting the in
situ esterification of the corn straw. Firstly, 1 g of SEC was dispersed in 40 mL of DMSO
at 60 ◦C and stirred for 15 min. Then, 2 mL of 10 mol/L NaOH solution was added and
stirred for 5 min. At the same time, a certain amount of VA was added to continue the
reaction under 120 ◦C for 20 min, and then ethanol was added at the end of the reaction. It
was filtrated and the solid content was washed with ethanol and water separately several
times. After being dried in ovens under 60 ◦C for 24 h, the esterified corn straw (ECS)
samples were obtained. Concretely, a three-factor and four-level orthogonal experiment
was designed and conducted as shown in Table S1, and the detailed conditions and results
are shown in Table S2. The pretreatment conditions of temperature, time, and the amount
of esterification reagent (VA) on the reaction efficiency were all studied. The samples were
named ECS−x according to the esterification efficiency (x: the number represents the degree
of substitution).

2.3. Preparation of the Bio-Foams from Steam-Exploded Corn Straw

The preparation of the bio-foams from steam-exploded corn straw was according to a
common procedure as follows: 2 g of TBAH (50 wt%), 8 g of DMSO, and 0.2 g of SEC or
ECS−x were added into a reaction bottle and mixed under magnetic stirring at 60 ◦C. The
cross-linking agents, which consist of 0.0216 g of CMCNa and 0.0144 g of EDTA in 1.2 g of
water, were then added. The mixture was poured into a cylinder mold of 1.5 cm × 2 cm
(diameter × height). After standing overnight, solvent exchange was conducted to obtain a
wet gel using ethanol. Finally, the samples were dried by a freeze dryer at −50 ◦C under
the pressure of 18 Pa for 48 h, and the bio-foams were obtained. Meanwhile, the bio-foams
prepared from SEC and ECS−x were respectively named as SEC foam and ECS−x foam.

2.4. Flame Retardant Modification of the Corn Straw Bio-Foam

The flame retardant was synthesized as detailed in the following procedure. Dealkali
lignin (0.5 g) was dispersed in DMF (15 mL) to be fully dissolved and then pyridine (2 g)
was added. By adding a solution of HCCP (1.5 g) in 5 mL DMF, the mixture was allowed to
stir at 80 ◦C for 8 h. Finally, the product was separated by centrifugation at 8000 rpm for
10 min, followed by washing with alcohol and DI water. The purified product was obtained
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after freeze drying at −50 ◦C under the pressure of 18 Pa for 48 h, and the resultant product
was named Lig-HCCP.

The preparation of the flame-retardant corn-straw-derived bio-foam material was
conducted in a common process as follows. After preparing 2 wt% ECS−4.5 solution (the
solvent was TBAH: DMSO with a mass ratio of 2:8), the cross-linking agents EDTA and
CMC were added. Then, ECS−4.5 was fully dissolved in the flame retardant Lig-HCCP (the
mass ratio of Lig-HCCP to straw acetate was 2:8). Finally, the resulting mixture was poured
into a mold, regenerated, dialyzed, and then freeze dried to obtain the bio-foam, which
was labeled the Lig-HCCP-ECS−4.5 foam.

2.5. Structure and Morphology Analysis

A Fourier-transform infrared spectrometer (FTIR, Bruker Tensor II, Germany) was
used to analyze the chemical structure of the specimens under various conditions. FTIR
spectra were collected at a spectral resolution of 4 cm–1, with 32 scans over the range from
4000 to 400 cm–1.

The aggregate structures of the samples were detected on an X-ray diffractometer
(X ‘Pert Pro, Panaco, Almelo, The Netherlands). The test adopted a copper target, and
the receiving slit was 0.3 mm, the operating voltage was 40 kV, the current was 30 mA,
the scanning speed was 10◦/min, and the scanning range was set from 5 to 60◦. The
crystallinity index (CrI) was calculated by Segal’s equation [37]:

CrI =
I002 − Iam

I002
× 100% (1)

where I002 is the maximum intensity at 22.5◦, and Iam is the lowest intensity of the amor-
phous area at 18.7◦.

Solid-state cross-polarization/magic-angle spinning (CP/MAS) 13C NMR spectra of
esterified cellulose and lignin were collected with a Bruker Advance III 400 MHz spectrom-
eter at room temperature with 1940 scans and a receiver gain of 1150 (the result is shown in
Figure S3).

Scanning electron microscopy (SEM, COXEM600, Daejeon, Korea) was used to observe
the microstructure of the materials. The samples were brittle broken and fixed on the
copper sample stage. After spraying gold with the ion sputtering instrument (SBC-12,
China Science & Technology Instrument, Beijing, China), the samples were detected under
a voltage of 12 kV.

2.6. Thermal Performance Analysis

The thermal properties of the samples were performed by DSC (Juper STA 449C,
NETZSCH, Selb, Germany). The temperature ranged from −10 ◦C to 280 ◦C and the
heating rate was 10 ◦C/min in a nitrogen atmosphere. The thermal stability was also tested
by a thermal gravimetric analyzer (STA 449 C, NETZSCH, Selb, Germany) with a heating
rate of 10 ◦C/min; the temperature ranged from 0 ◦C to 800 ◦C in a nitrogen atmosphere.

2.7. Compressive Mechanical Analysis

The compressive properties of the bio-foams were tested by an electronic universal
testing machine (CMT4000, Sansi-Taijie, Zhuhai, China) at room temperature at a rate of
5 mm/min.

2.8. The Degree of Substitution (DS) Analysis

A chemical reaction method was adopted to test the esterification efficiency, which
was the degree of substitution of -OH. Amounts of 0.2 g of ECS and 10 mL of aqueous
ethanol (70 vt%) were mixed and stirred for 30 min. Then, 5 mL of NaOH solution (0.5 N)
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was also added and the mixture was stirred for 48 h at 60 ◦C. At last, the superfluous NaOH
was neutralized with 0.1 N HCl:

DS =
(5 × 0.5 − 0.1Ve)− (5 × 0.5 − 0.1Vc)

0.2 − [(5 × 0.5 − 0.1Ve)− (5 × 0.5 − 0.1Vc)]× m × 10−3

(
mmol g−1

)
(2)

where Ve and Vc respectively represent the volumes (mL) of HCl solution added to the
esterified straw and straw (control). The m indicates the molar mass of the attached acetyl
residue [38].

2.9. The Simulation Analysis Method with Finite Element Procedures

The thermal conductivity of the bio-foams was tested by a thermal constant analyzer
(TPS2200, HotDisk, Goteborg, Sweden) at room temperature. The molar heat capacity at
constant pressure was tested by DSC (Q600, TA instrument, Newcastle, TL, USA). The true
density of the bio-foams was measured by ULTRAPYC1200e (Kanta Instrument, Florida,
USA) to calculate the porosity using the method of inert gas replacement (helium) at 100 ◦C.
COMSOL software was used to simulate the thermal insulation performance of Lig-HCCP-
SECs−4.5 foam at 60 ◦C and 100 ◦C. The simulation parameters were obtained according to
the above tests. The parameters were shown in the following Table S3.

2.10. Characterization of Flame Retardancy

The limiting oxygen index (LOI) is the lowest volume fraction concentration of oxygen
in a mixture of oxygen and nitrogen when the polymers start to burn at room temperature.
It was measured at room temperature by a TTech-GBT2406-1 intelligent critical oxygen
index analyzer according to GB/T 2406.2-2009 standard with specimen dimensions of
100 mm × 10 mm × 10 mm.

3. Results and Discussion
3.1. Characterization of Esterified Steam-Exploded Corn Straw
3.1.1. Morphological Characterization

The macroscopic and microscopic morphology of the raw corn straw in a vertical
section and a cross section are shown in Figure 1. Although both of them exhibited
porous structures with pore sizes of approximately 100 µm, the cross-sectional morphology
appeared more like a ‘honeycomb’, and there were many filamentous fibers perpendicular
to the cross section of the straw, which enhanced the strength of the straw leading to
the high strength and plastic properties [39]. Additionally, it was found that there were
abundant pores with a pore size of about 30–40 µm stacked layer by layer inside the fiber
in the vertical section, and most of them were rectangular without showing a honeycomb-
like structure.
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In the raw corn straw, cellulose is tightly packed with hemicellulose and lignin to form
a rigid cell wall structure, which severely prevents esterification [40–42]. It can be seen in
Figure S1a,b, after the explosion treatment, that the internal fiber bundles were separated
and crushed, and the hemicellulose was easily separated. After testing, the content of
hemicellulose decreased from the original 29.8 wt% to 2.3 wt%.

3.1.2. Esterification Efficiency

In order to clarify the impact factors on the esterification efficiency, an orthogonal
experiment with three factors and four levels was designed (as shown in Table S1). Corre-
spondingly, through range analysis, variance analysis, and significance analysis of the test
results, the primary and secondary factors affecting the efficiency and the best test scheme
were determined as shown in Table 1. The results showed that the main and secondary
factors affecting the degree of substitution were C > A > B, and the sample of the ECS−4.5,
which was prepared under the optimum condition, was determined. Under a significant
level of 0.05, the dosage of VA showed a significant difference.

Table 1. Variance analysis of all factors.

Temperature (◦C) Time (min) Amount of VA (mol)

k1 * 4.42 4.29 3.80
k2 * 4.23 4.15 4.29
k3 * 4.06 4.49 4.67
k4 * 4.59 4.37 4.54
SS * 0.313 0.284 1.184

Mean square 0.105 0.094 0.395
Optimal level A4 B3 C3

Influence effect C (Amount of VA) > A (Temperature) > B (Time)
* k1–k4: the average DS values of the four levels corresponding to each reaction factor; SS: the sum of squares
of deviations.

3.1.3. The Chemical Structure Characterization

As shown in Figure 2a, the FTIR spectra of the corn straw, SEC, and ECS−x were
demonstrated. The peaks located at 1427 cm−1, 1470 cm−1, and 1514 cm−1 were all
attributed to the aromatic ring vibration of lignin. The wide absorption peak near 3430 cm−1

was assigned to the stretching vibration of -OH in the straw [43,44]. For the raw corn straw,
the peak located at 1740 cm−1 was mainly due to the C=O stretching vibration of the
hemicellulose. After the explosion treatment, the peak intensity of SEC at 1740 cm−1 was
significantly reduced, which indicates that a large amount of hemicellulose was removed.
The result was in consistent with the previous results. As for the esterified products, the
peak located at 1740 cm−1 was assigned to the stretching vibration of the C=O in acetyl
groups. Noticeably, the greater the DS, the more intensive the peak at 1740 cm−1, indicating
that the content of C=O increased. Moreover, the esterification of cellulose or lignin with
VA was studied, and the FTIR spectra (Figure S2) showed that both of them could react
with VA. The FTIR spectra of all the ECS−x samples are shown in Figure S4.

As shown in Figure 2b, for the HCCP, the peaks located at 1182 cm−1 and 873 cm−1

were attributed to the stretching vibration of P-N and P=N in the phosphazene ring,
respectively, and the peaks located at 594 cm−1 and 503 cm−1 were both assigned to the
stretching vibration of the P-Cl [45,46]. For the flame retardant (Lig-HCCP), the peak
located at 960 cm−1 was attributed to the stretching vibration of P-O-C [46] manifesting the
successful synthesis of Lig-HCCP.

Additionally, the XRD diffractogram of the SEC and ECS−x are shown in Figure 3.
Cellulose contained both crystalline and amorphous phases which were connected by
intramolecular and intermolecular hydrogen bonds [47–50]. It can be seen that after the
explosion treatment, the crystal structure of corn straw hardly changed; the curves of the
corn straw and SEC contain 4 distinct and identical diffraction peaks located at 2θ = 15.1◦,
16.5◦, 22.6◦, and 34.8◦ corresponding to the (101), (101), (002), and (040) crystal planes
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of the cellulose I crystal type. However, this also illustrated the changes in crystallinity.
After the calculation (Segal method), the crystallinity of corn straw was 59.2%, while the
crystallinity was reduced to 36.9% after the explosion treatment, which might improve the
efficiency of the esterification. In the meantime, after the esterification, the crystal structure
was destroyed. The crystallinity was decreased with the increase in the DS due to the
introduction of acetyl groups, which hindered the formation of the crystalline structure.
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3.1.4. Thermal Properties

The thermal stability of the SEC and ECS−4.5 was also investigated. As shown in
Figure 4a,b, the esterification had little impact on the decomposition. In addition, the Tg
of the samples were obtained by DSC curves. As shown in Figure 4c, there was no glass
transition found in SEC, but the glass transition temperature of ECS−4.5 was 186 ◦C. It can
be seen that the introduction of the acetyl groups not only destroyed the hydrogen bond in
the SEC, but also allowed the movement of the molecules more freely.
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3.2. Morphology and Properties of the as-Prepared Corn Straw Bio-Foams
3.2.1. The Morphology

The morphology of the as-prepared bio-foam was observed by SEM, and the difference
between bio-foams prepared by SEC and ECS−4.5 was compared. As shown in Figure 5,
it was easy to observe that both exhibited a porous microstructure and the pores were
much smaller than the original corn straw. However, the pores in the SEC foam were larger
and the density was lower when compared with the ECS−4.5 foam, which might be due
to the strong intra-molecular hydrogen bonds in cellulose making it chemically inert and
hindering the cross-linking reaction during the sol–gel process [51]. The results show that
the bio-foam prepared from ECS−4.5 had a higher specific surface area compared with that
from SEC.
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3.2.2. Mechanical Properties

The mechanical properties of the as-prepared bio-foam materials were evaluated by a
single 40% strain compression as shown in Figure 6.
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As shown in Figure 6, the as-engineered bio-foam material from the steam-exploded
corn straw (SEC) had a maximum compression strength of 18.3 kPa at 40% stress. How-
ever, the compression strength for the ECS−4.5 bio-foam, which was derived from the
esterification-modified SEC was detected to be 7.9 kPa. The bio-foam material fabricated
from the ECS−4.5 showed more flexibility. The structure of the SEC-derived bio-foam
might be slightly damaged at 40% stress and showed no resilience. Figure 6b,c respectively
represent the initial state of ECS−4.5 foam and the recovery state after 40% strain. The
ECS−4.5 foam shows good resilience, with an elastic recovery rate of 83% and an elastic
modulus of 20 kPa. As for the Lig-HCCP-ECS−4.5 bio-foam material, the introduction of
flame retardants did not significantly affect the porous framework, which still showed
good resilience performance.

3.2.3. Thermal Insulation

To further investigate the thermal insulation of the as-developed bio-foam materials,
infrared thermal imaging tests were conducted as shown in Figure 7a,b.
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After being heated at 101 ◦C for 1 h, the temperature of the upper surface point only
increased to 45 ◦C from the initial 22.5 ◦C. Theoretically, the heat conduction here was
mainly achieved through gas convection and the framework of the solid. The smaller the
holes in the bio-foam, the greater the barrier to heat transfer [52]. Based on the previous
test results, the ECS−4.5 and Lig-HCCP-ECS−4.5 foam might have smaller pores rendering
better heat insulation performance.

To further illustrate the essential process of heat conduction, the thermal insulation of
the samples was indicated in terms of the simulation analysis method with finite element
procedures. As shown in Figure 7c,d, the parameters of physical properties (as shown in
Table S3) were used in simulation calculation, and the results are consistent with the actual
situation. The Lig-HCCP-SEC−4.5 foam had excellent thermal insulation performance at
100 ◦C which resulted from the porous and dense structure of the material.

3.2.4. Flame Retardancy

The limiting oxygen index (LOI) of the bio-foam materials before and after modifi-
cation with the Lig-HCCP were detected. It was found that the LOI values of the steam-
exploded corn straw (SEC)-derived bio-foam and the esterified steam-exploded corn straw
(ECS−4.5) were almost the same, 23.5% and 23.7%, accordingly. After modification with
the flame retardant (Lig-HCCP), the LOI of the Lig-HCCP-ECS−4.5 was improved to 27.2%,
which was due to the flame retardant material. Combined with the previous analysis, it
could be inferred that the existence of N and P in the Lig-HCCP-ECS−4.5 foam could be
decomposed during combustion and released gas that inhibited the combustion [53]. At the
same time, the lignin intrinsic flame retardance and its polyphenol structural characteristics
also contributed to heat transfer.

4. Conclusions

In summary, corn straw was adopted as the starting material to obtain bio-foam
materials with a facile dissolution–regeneration method in this work. The steam-explosion
pretreatment of the pristine corn straw was conducted to obtain the fibrillated cellulose
reach in lignin, which was then esterified in situ to improve the cross-linking reaction
efficiency. Furthermore, the as-prepared bio-foam materials were modified with the lignin-
derived flame retardant Lig-HCCP. The results show that this esterification method can
successfully modify the hydroxyl groups in both cellulose and lignin, which can efficiently
improve the interaction between lignin and cellulose to result in the formation of a cross-
linking network. The SEC bio-foam had a maximum compression strength of 18.3 kPa
at 40% stress. Although the ECS−4.5 bio-foam had a compressive strength of 7.9 kPa, it
showed an elastic recovery ratio of 83% and an elastic modulus of 20 kPa. The as-prepared
bio-foam materials also presented quite good heat insulation and flame retardance. In the
future, this corn-straw-based bio-foam material could be potentially used in the production
of packaging materials, thus creating alternatives for petroleum-based synthetic polymers,
for example, polyurethane foam.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15092222/s1, Figure S1: SEM images of raw corn straw (a);
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after esterification; Figure S3: The 13C NMR spectra of esterified cellulose (a) and lignin (b); Figure S4:
FT-IR spectra of raw straw and all esterified products [54,55]; Table S1: The orthogonal experimental
design for the esterification modification of the steam-exploded corn straw; Table S2; Summary
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simulation analysis method of thermal insulation performance.
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