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Abstract: The present work explored alkali–treated coconut petiole fibers (ACPFs) characterization
and the effect of fiber loadings on the mechanical properties of poly (lactic acid) (PLA)/ACPF
composites for the first time. The physical, mechanical, and interfacial properties, as well as the
morphology of the ACPFs were reported. It was found that ACPFs with a density of 0.92 g/cm3 have
average tensile strength and tensile modulus equal to 355.77 MPa and 5212.36 MPa. The interfacial
strength between ACPFs and PLA was high (14.06 MPa), attributed to the micro–sized holes on the
fibers, as established from SEM micrographs. Then composites with varying fiber loadings were
fabricated by melt–blending and compression molding. The mechanical (tensile, flexural, and impact)
performance of composites was reported. Based on the high interfacial strength between fibers and
PLA and the unique “spiral” structure of fibers, the composites reached a high impact strength of
8.2 kJ/m2 and flexural modulus of 6959.70 MPa at 50 wt.%, representing 150% and 50% improvement
relative to pure PLA.

Keywords: bio–composite; coconut petiole fiber; polylactic acid; alkali treatment; mechanical property;
interfacial adhesion

1. Introduction

Nowadays, oil resources are gradually becoming scarce, and the environmental con-
sciousness of people is gradually increasing. People tend to use renewable materials [1–5].
Among various environmentally friendly materials, natural fibers reinforced polymer
composites are getting more attention because of their degradability and low cost [6–9].
Nowadays, natural fiber–reinforced polymer composites are replacing synthetic counter-
parts in a variety of locations such as the automotive field and construction industries.

Plant fibers are composed of cellulose, hemicellulose, lignin, waxes, and pectin. The
climatic conditions, soil, and part of the plant decide the ratio of its constituents, which
determines the mechanical properties of the fibers [10,11]. The most used natural fibers are
kenaf, jute, sisal, and flax [12–14]. Before the manufacture of composites, the surface of fibers
was usually modified to enhance the bond between the fibers and the matrix [15–17]. The
surface treatments include alkali, silane, peroxide, benzoyl chloride treatment, etc. Alkali
treatment was often used because of its simple operation and good treatment effect [18–20].
Arthanarieswaran et al. reported that alkali treatment can partially remove impurities such
as hemicellulose, lignin, and pectin from the fiber, and the cellulose content and crystallinity
increased, which leads to a significant improvement in the mechanical properties of the
fiber [21]. Kapatel reported that the fiber/matrix adhesion of jute/epoxy composites
was improved by removing impurities from the jute fabric surface after alkali treatment,
resulting in the improvement of the mechanical properties of the composites [22].
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Coconut (Cocos nucifera L.) belongs to the palm family. The height of the plant is
15–20 m and its leaves are pinnate, 3–4 m long. The main producers are Sri Lanka, Malaysia,
India, and the Philippines. Coconut is an abundant source of natural resources that can
be used in many industrial fields. Coconut shells can be made into a variety of utensils
and handicrafts. Fibers from different parts of the coconut palm tree can be extracted and
utilized. Satyanarayana et al. examined the size, density, tensile strength, and percentage
elongation of fibers extracted from the spathe, leaf sheath, and back of the petiole [23].
Xu et al. successfully extracted cellulose nanofibers from coconut palm petioles by grinding
and chemical treatment. The fibers showed high crystallinity and good thermal stability and
might be used to prepare fiber–reinforced materials [24]. Coconut petioles can also be used
to make brushes and the fibers at the end of coconut petioles are exposed. It is therefore
important to extract and characterize the fibers and use them as reinforced materials. PLA
is a thermoplastic polymer produced from lactic acid with specific advantages such as
good processability, low processing temperature, and good biocompatibility [25–28]. So far,
much research has been conducted to use natural fibers to reinforce PLA [29–31]. Lv et al.
successfully prepared sisal fiber/ PLA composites by melt–blending and compression
molding. When the fiber content was 30 wt.%, the impact strength reached 4.5 kJ/m2.
But few works of literature are available on composites fabricated with PLA reinforced by
coconut petiole fibers [32].

The main aim and contribution of this study are to extract a new fiber from coconut
petioles and investigate the reinforcing effect of its unique morphology on composites. The
functional group and the morphology of alkali–treated coconut petiole fibers (ACPFs) were
characterized with Fourier Transform Infrared Spectroscopy (FT–IR) and scanning electron
microscope (SEM), respectively. In addition, density, tensile strength, tensile modulus,
and interfacial strength were determined. Then PLA/ACPF composites were prepared by
melt–blending and compression molding. The mechanical (tensile, flexural, and impact)
properties of the PLA/ACPF composites with varying fiber loadings were studied. This
work provides a basis for future research on this fiber as an alternative reinforcement in
bio–composite materials.

2. Materials and Methods
2.1. Materials

PLA, 4032D, was obtained from Nature Works. Its density was 1.24 g/cm3, and its melt
flow rate (MFR) was 7 g/10 min at 190 ◦C and 2.16 kg load. Coconut petioles were obtained
from Zhanjiang, Guangdong Province. Sodium hydroxide (NaOH) reagent and acetone
reagent were produced by Shandong Gushuo Biotechnology Co., Ltd (Jining, China). Water
used in the experiments was deionized.

2.2. Fiber Extraction and Pretreatment

Figure 1 shows the extraction process of coconut petiole fibers. First, coconut petioles
were dried and knocked to separate coconut petiole fibers. Coconut petiole fibers were cut
short and washed thoroughly in deionized water to eliminate unwanted impurities such as
dust. The CPFs were dried in an oven for 8 h at 80 ◦C to remove water.
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To remove impurities from the fiber surface, the fibers were alkali treated with 10 wt.%
of NaOH solution for 2 h at 25 ◦C, which was beneficial for the fibers proved by Sullins
et al. and Pickering et al. [33,34]. Then they were repeatedly washed with freshwater to
remove NaOH until the pH of the washing water was 7. Then the fibers were dried in an
oven for 8 h at 80 ◦C. The fibers during this phase were called alkali–treated coconut petiole
fibers (ACPFs).

2.3. Sample Preparation

ACPFs were cut into 2 cm of length and dried for 6 h at 80 ◦C with PLA. The water
content of ACPFs after drying was 0.57%. An internal mixer (Poton 100, POTOP Experi-
mental Analysis Instrument Co., Ltd., Guangzhou, China) was used to mix the ACPFs with
PLA for 8 min at 180 ◦C with a rotor speed of 40 r/min. The rotor type was Roller, and the
chamber volume was 55 cm3. First, PLA was added to the chamber. After the matrix was
completely melted, the fibers were added. The fiber loadings changed from 0 to 50 wt.%
with a step of 10 wt.%. After cooling down, the obtained mixtures were molded into sheets
for tensile, flexural, and impact tests by a hot press (QLB–25D/Q, WUXI NO.1 Ltd., Wuxi,
China). The temperature was 190 ◦C and the pressure was 10 MPa. Dumbbell–shaped
specimens were prepared for tensile test and rectangular specimens were prepared for
flexure and impact tests. Five samples were measured for each test, and the average values
were recorded.

2.4. Characterization of Fibers
2.4.1. SEM and FT–IR Tests

The morphology of the cross–section and surface of CPFs and ACPFs was examined
by a scanning electron microscope (Quanta 200, FEI Ltd., Eindhoven, The Netherlands).
The surface was sprayed with gold for 3 min to improve its electrical conductivity.

The FT–IR was identified using the FT–IR spectrometer (RHEOLOGIC5000, CEAST
Ltd., Rome, Italy) from the range of 500 cm−1 to 4000 cm−1.

2.4.2. Diameter of CPFs and ACPFs

The diameter of the CPFs and ACPFs was determined by a stereomicroscope (Stemi2000–C,
ZEISS Ltd., Leipzig, Germany). Five samples were measured for each test, and the average
values of the fibers were recorded.

2.4.3. Density of CPFs and ACPFs

The pycnometer was used to test the density of fibers using the mass difference
technique. The reagent used for the density test was liquid acetone with a density of
0.7845 g/cm−3. First, the fibers were put into the pycnometer, and the masses of the
pycnometer before and after the placement were recorded as m1 and m2, respectively. A
certain mass of acetone (m3) was added to the pycnometer. The final mass m4 was recorded
and the density of the fibers could be calculated by the following equation:

ρfiber =

[
m2−m1

(m3−m2)(m4−m2)

]
∗ ρacetone (1)

2.4.4. Tensile Test and Microdroplet Debonding Experiment

The tensile test of the fibers was performed by a universal testing machine (Instron
5566, INSTRON Ltd., Norwood, MA, USA). The load applied on the fibers was 100 N, and
the speed of the crosshead was 0.5 mm/min. Five samples were measured for each test
and the average values were recorded.

The microdroplet debonding experiment was performed by the universal testing
machine. PLA was melted into droplets and wrapped around one end of the fiber. The
other end of the fiber passed through the fixture with holes. The fiber was able to pass
through the fixture while the PLA droplets were not [35]. In Figure 2, it was observed
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that when tension was applied at one end of the fiber, the fiber could be pulled out of the
droplets. The tensile rate was 0.5 mm/min. The interfacial shear strength (IFSS) σi was
calculated by the following equation:

σi =
Fi

πdla
(2)

where Fi was the maximum load, d was the diameter of the fiber and la was the embedded
length of the fiber. d and la were measured by a stereomicroscope (Stemi2000–C, ZEISS
Ltd., Leipzig, Germany). Five samples were measured for each test and the average values
were recorded.
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Figure 2. Schematic of microdroplet extraction.

2.4.5. Thermogravimetric Analysis

Testing of thermal stability is essential for plant fibers used as reinforcing fillers.
Thermogravimetric Analysis (TGA) was used to characterize and analyze the thermal
stability properties of coconut petiole fibers before and after alkali treatment. The fibers
were placed in a quartz crucible for thermogravimetric testing. The test was carried out
under nitrogen protection at a purge rate of 20 mL/min. The heating rate was set to
10 ◦C/min and the temperature range was 30–600 ◦C during the test.

2.5. Composites Characterization
2.5.1. SEM Test of Composites

The morphology of the impact–fractured sample surface was recorded using SEM
(Quanta 200, FEI Ltd., Eindhoven, The Netherlands). The section was sprayed with gold
for 3 min to improve its electrical conductivity.

2.5.2. Mechanical Properties of Composites

Tensile and flexural test. Tensile and flexural properties were conducted by a universal
testing machine (Instron 5566, INSTRON Ltd., Norwood, MA, USA) following ISO 527–2:1993
and ISO 14125:1998. Tensile test specimens were placed in grips and then tested. The load
applied to the specimens was 100 N, and the speed of the crosshead was 2 mm/min. Five
samples were measured for each test and the average values were recorded.

Impact test. Impact testing was performed by ISO 180:2000 with an impact testing ma-
chine (PIT501B–2, WANCE Ltd., Shenzhen, China). Notches were prepared on specimens
using a dedicated notching machine (GT–7016–A2, GOTECH Ltd., Hong Kong, China).
The Izod impact samples were tested with a hammer capacity of 0.5 J. Five samples were
measured for each test and the average values were recorded.
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3. Results and Discussion
3.1. SEM Analysis

The surface morphology of CPFs and ACPFs is reported in Figure 3. CPFs were
impregnated with a waxy external layer. This observation was typified in the investigation
carried out by Ye et al. [36]. After alkali treatment, the waxy external layer was removed
and the diameter of the fiber was smaller. The surface of ACPF was rougher with a large
number of holes in micron–sized due to the removal of impurities from the fibers after alkali
treatment, as illustrated in Figure 3b. This special porous structure was not found in known
plant fibers such as sisal and coir fibers [37]. The dense holes facilitated the penetration of
the resin into the fiber surface, thus improving the interfacial adhesion between the ACPFs
and the matrix [38,39].
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Figure 4 shows the sectional morphology of CPFs and ACPFs. The fibers were com-
posed of a series of microfiber bundles as reported in Figure 4a,b. This structure of CPFs and
ACPFs had similarities to that of sisal fibers in work completed by Lv et al. [32]. Compared
to the CPFs, the binding components on the surface of the ACPFs as well as the binding
components between the fiber bundles were removed and there was a slight collapse of
the fiber bundles. The cross–section of the ACPFs was rough, and many grooves appeared,
which was typified in the investigation carried out by Vijay et al. [40]. The longitudinal
section morphology of the fibers might offer further information about the structure of the
fibers. The microfibers presented an obvious spiral–pattern structure in Figure 4c,d. This
special helical structure might have a significant impact on the mechanical properties of the
fibers. When the fibers were pulled in tension, these microfibers might uncoil like springs
with bending and twisting, thus giving the fibers a certain degree of tensile toughness.

3.2. FT–IR Analysis

Figure 5 shows the FT–IR spectrum of CPFs and ACPFs. For CPFs, there were broad
peaks at 3410 cm−1 and 1050 cm−1, and prominent peaks at 1736, 1630, 1380, and 1250 cm−1.
According to Picard et al., the peak at 3410 cm−1 was characteristic of the stretching
vibrations of O–H [41]. In addition, the peak at 1050 cm−1 was assigned to the C–O–H
stretching in cellulose and hemicellulose. The peak at 1380 cm−1 represented the flexural
vibration of C–H attributed to hemicellulose and cellulose. Furthermore, the peak at
1736 cm−1 represented the C=O stretching modes in hemicellulose and cellulose. The peak
at 1736 cm−1 represented the conjugated C=O stretching vibrations in lignin. In addition,
the peak at 1250 cm−1 represented the C–O stretching vibrations in lignin. Cellulose,
hemicellulose, and lignin were confirmed to be present in CPFs by FT–IR analysis.
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Figure 5. FT–IR spectrum of CPFs and ACPFs.

The distribution of the peaks in the FT–IR spectrum of ACPFs was similar to that of
CPFs. However, the intensity of some peaks such as 1630 cm−1 and 1380 cm−1 decreased
after alkali treatment. Some peaks disappeared such as 1736 cm−1 and 1250 cm−1. This in-
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dicated that parts of the pectin, hemicellulose, and lignin were removed by alkali treatment
so that the pores on the surface of fibers were exposed, as shown in the SEM images above.

3.3. The Density and Diameter of CPFs and ACPFs Analysis

The diameter and density of the fibers affect their properties and applications. From
Table 1, it can be seen that the diameter of CPFs was 450 ± 48 µm and the diameter of
ACPFs was 350 ± 62 µm. The results showed that alkali treatment can remove impurities
from the fiber surface, which made the diameter of the fibers decrease. The density of
the CPFs was 0.80 g/cm−3 and the density of the ACPFs was 0.92 g/cm−3. The results
indicated that the fibers had a low density and can be used to make lightweight composites.

Table 1. Properties of CPFs and ACPFs.

Fiber Fiber Diameter
(µm)

Fiber Density
(g/cm−3)

Tensile Strength
(MPa)

Tensile Modulus
(MPa)

CPF 450 ± 48 0.80 228.70 ± 50.32 4103.25 ± 120.35
ACPF 350 ± 42 0.92 355.77 ± 25.69 5212.36 ± 100.75

3.4. Tensile Properties of CPFs and ACPFs

The tensile properties of CPFs and ACPFs are shown in Table 1. CPFs exhibited tensile
strength and tensile modulus of 228.70 MPa and 4103.25 MPa. As a result of the partial
removal of amorphous contents and the enrichment of cellulose, ACPFs exhibited superior
mechanical properties to CPFs. After alkali treatment, the tensile strength of the ACPFs
(355.77 MPa) was superior to the 240 MPa value reported by Arunavathi et al. of jute
fibers [42]. The tensile modulus of ACPFs was 5212.36 MPa, which was superior to the
3570.00 MPa value reported by Kithiia, Munyasi, and Mutuli of sisal fibers and 4010.00 MPa
value reported by Akintayo et al. [43,44].

3.5. Interfacial Shear Strength

The interfacial shear strength between fibers and PLA is depicted in Table 2. Droplet
test results showed that the interfacial shear strength of ACPFs reached 14.06 MPa, which
was 130.9% higher than that of raw fibers. This may be attributed to the effect of the
alkali treatment, which diminished the lignin and hemicellulose content leading to PLA
bonding well with the fibers [45,46]. Holes on the surfaces increased the mechanical
interlock points between the fibers and matrix, which greatly improved the interfacial
strength [47]. Good interfacial bonding in composites was conducive to the load transfer
between the components [48].

Table 2. Interfacial shear strength between the fibers and PLA.

Fiber Interfacial Shear Strength
(MPa)

CPF 6.09 ± 0.21
ACPF 14.06 ± 0.32

3.6. Thermogravimetric Analysis

When plant fibers are used in the preparation of composites, they usually undergo
several high–temperature processes during the forming process, so it is crucial to determine
the thermal degradation behavior of plant fibers [49]. Figure 6 shows the TG and DTG
curves of CPFs and ACPFs. It shows that at lower temperatures (50–150 ◦C), the fiber
quality decreased slightly due to the evaporation of water.
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At higher temperatures (200–400 ◦C), up to 70% or more of fiber mass may be lost
due to the decomposition of hemicellulose, cellulose, and lignin. As can be seen from
Figure 6a, there were multiple peaks due to surface impurities and some components not
being removed. The CPFs had a thermal decomposition peak at 267.8 ◦C, which was caused
by the decomposition of hemicellulose. Hemicellulose was the first chemical component to
decompose due to its amorphous structure in the fiber, and its decomposition temperature
was usually in the range of 200–300 ◦C [50].

After alkali treatment, it was found that the decomposition peak became less obvious
near 200–300 ◦C. Because some small molecule impurities such as hemicellulose were
dissolved by alkali treatment. Cellulose was formed by microfibrils, which were relatively
more stable compared to hemicellulose. It started to degrade when hemicellulose was com-
pletely decomposed. Lignin was the last component to decompose under high–temperature
conditions. Lignin provided rigid support for plant fibers and imparted higher thermal
stability to fibers. The decomposition temperature of cellulose and lignin in plant fibers
ranges from approximately 300 to 500 ◦C [51]. There was a maximum thermal decomposi-
tion peak between 300 and 400 ◦C for the fibers before and after the alkali treatment, where
the thermal decomposition of the cellulose and lignin fractions was observed. However, it
can be seen that after 2 h of alkali treatment, the maximum thermal decomposition rate
temperature was 341.9 ◦C, which was higher than the 331.4 ◦C value of CPFs. Since the
alkali treatment removed some molecules that were less thermally stable, this led to an
improvement in the thermal stability of the fibers.

3.7. SEM Analysis of Composites

SEM reflects a clear picture of the interfacial adhesion, fibers distribution, and failure
modes. For this purpose, SEM of PLA/ACPF composites with different fiber loadings of
10, 20, 30, 40, and 50 wt.% was carried out and the images are presented in Figure 7. It was
seen that the matrix packed the ACPFs closely, and there was good interfacial bonding
between them. Figure 7a shows that the fibers were not uniformly distributed in the matrix
when the fiber content was low. The cross–section was flat, and only a few fibers were
pulled out or broken. With the gradual increase of fiber loadings, as shown in Figure 7c–e,
the fibers were randomly and irregularly distributed in the matrix. There were more fibers
pulled out or broken. Some fibers parallel to the fracture surface were torn or pulled out
laterally. The cross–section became uneven. Figure 7e depicts a lower void content within
the composites. Some of the fibers were connected to each other. Additionally, Figure 7e
shows that when the fibers were pulled out, the surface was partially coated with PLA
matrix, indicating good interfacial adhesion between them. A stress transfer network was
formed within the composites, which facilitated the transfer of loads.
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3.8. Mechanical Properties of Composites

Strength, stiffness, and toughness are the most important performance for structural
composites. Figure 8 highlights the relationship between modulus and fiber loadings.
Fiber loadings from 10 wt.% to 50 wt.% demonstrated an up–trend in modulus. When the
fiber loadings were 50 wt.%, the tensile modulus and the flexural modulus of composites
reached 2793.90 MPa and 6959.70 MPa, which were over 50% upgrades relative to the value
of pure PLA. The tensile modulus was higher than the 1395.73 MPa value of hemp/PLA
composites reported by Wang et al. [52]. The flexural modulus was high than the 4400 MPa
value of kenaf mats/PLA composites reported by Manral and Bajpai [53]. The result could
be traced to good interfacial adhesion between the fibers and matrix. The ACPFs and the
matrix participated in bearing load together and resisted the deformation of composites
when the composites were applied by external stress.
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Figure 9a highlights the relationship between strength and fiber loadings. The flexural
strength changed little with composition. When the fiber loadings were 50 wt.%, the
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flexural strength of composites reached 111.73 MPa, which was close to that of pure PLA.
The flexural strength of composites was high than the 57.00 MPa value of date palm
fiber/PLA composites reported by Awad et al. [54]. Fiber loadings from 10 wt.% to 50 wt.%
demonstrated an up–trend in tensile strength. When the content increased to 50 wt.%, the
tensile strength of composites reached 63.54 MPa, which was higher than that of pure PLA.
The tensile strength was also higher than the 50.82 MPa value of nettle/PLA composites
and 46 MPa value of ramie/PLA composites reported by Bogard et al. [55]. At low fiber
loadings, the load–carrying capacity of the fibers was low. This tended to cause stress
concentration and reduce mechanical strength. As the fiber loadings increased, the number
of fibers larger than the critical length of the fiber increased, which will further bear the
role of external load and avoid the rapid growth of cracks, thus improving the mechanical
properties of the composites. As the fiber loadings increased, the fibers in the composite
can form a stress transfer network, and the stress transfer efficiency between fibers was
improved, thus improving the tensile strength of the composites.
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As shown in Figure 10, the elongation at break changed from 6.4% of the pure PLA
to 2.6% of the composites and did not change much with composition. When the fiber
loadings were low, the stress accumulated on the resin matrix and caused high elongation.
As the fiber loadings increased, effective stress transfer between the fibers and resin led to
less elongation.
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Figure 11 highlights the relationship between impact strength and fiber loadings. Fiber
loadings from 10 wt.% to 50 wt.% demonstrated an up–trend in impact strength. The impact
strength of PLA/ACPF composites with 50 wt.% fiber content reached 8.2 kJ/m2, more
than two folds of pure PLA. It was higher than the 1.7 kJ/m2 value for PLA/sisal fibers
and 2.25 kJ/m2 value for PLA/coir fibers reported by Duan et al. [37]. Because the bonding
of the fibers with the matrix was good. The fibers absorbed more energy when they were
pulled out. The SEM analysis showed that the fracture of the matrix was accompanied by
the tearing and fracture of the fibers, which also absorbed much energy [56–58]. With the
increase in fiber loadings, more fibers participated in the impact load.

Figure 11. The impact properties of PLA/ACPF composites with different fiber loadings.

4. Conclusions

This study presents the characterization of a new fiber named coconut petiole fiber. It
can be used as reinforcement in polymer composites. Coconut petiole fibers were extracted
and their unique helical and porous structure was characterized by scanning electron
microscopy after alkali treatment. The low density (0.92 g/cm3) and sufficient tensile
strength (355.77 MPa) of ACPFs enhanced the specific strength of polymer composites when
used as reinforcement. Micro–sized holes on ACPFs ensured better bonding characteristics
between the fibers and matrix. The tensile, flexural, and impact properties of the composites
were highly influenced by the fiber loadings. When the fiber loadings reached 50 wt.%, the
tensile modulus and the flexural modulus of composites were 2793.90 MPa and 6959.70 MPa,
which were over 50% higher than that of pure PLA. The impact strength was 8.2 kJ/m2,
more than two folds of pure PLA. Hence it was concluded that PLA/ACPFs composites
with 50 wt.% fiber loadings showed higher mechanical properties and could be used in
automotive and construction fields.
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