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Abstract: The effect of the stereoregularity of poly(1-trimethylsilyl-1-propyne) [PTMSP] (cis-content
from 50 to 90%) on physical aging was investigated by measurement of the gas permeability. Films
from pure PTMSP as well as those with the addition of the antioxidant Irganox 1076 were exposed to
the air. The permeability of pure PTMSP films increases with an increase in cis-stereoregularity and
correlates with an increase in interchain distances (according to X-ray analysis). For pure PTMSP films,
the most significant aging (up to 50% of permeability drop) was observed for polymers with mixed
microstructure, and the slowest aging (10–30% of permeability drop) was observed for polymers
with cis-regular structure. For PTMSP films with added Irganox 1076, some decrease in permeability
with time is also observed. The addition of Irganox 1076 to PTMSP in mixed as well as cis-enriched
configurations visibly slows down aging. In the case of cis-regular PTMSP with a slow aging rate,
the introduction of an antioxidant does not provide any advantages. The high stability of cis-regular
PTMSP demonstrates the possibility of obtaining more stable membrane materials with the highest
equilibrium state of the polymer selective layer prepared by casting solution.

Keywords: poly(1-trimethylsilyl-1-propyne); high free volume polymer; membranes; gas perme-
ation; aging

1. Introduction

Si-containing poly(1-trimethylsilyl-1-propyne) [PTMSP] is one of the best-known
representatives of the class of polymers of disubstituted acetylenes [1,2]. PTMSP has an
extremely high free volume and microporous structure, which provide properties unusual
for convenient glassy polymers, namely, very high permeability, which increases with
increasing size of the penetrant molecule [3]. More interestingly, PTMSP demonstrates the
significant increase in separation selectivity of the n-butane/methane mixture, caused by a
strong decrease (by about 90%) in the methane permeability in the mixture compared to
the individual permeability [4–6].

Glassy polymers, including PTMSP, demonstrate physical aging, i.e., a decrease in
the polymer fractional free volume and a significant decrease in permeability over time.
Physical aging is due to the non-equilibrium state characteristic of glassy polymers at tem-
peratures below the glass transition temperature. The segmental mobility of macrochains
leads to a decrease in the non-equilibrium excess of the free volume fraction. PTMSP has
a very high free volume and, as a result, exhibits faster aging compared to other typical
glassy polymers [7–10].

Generally speaking, the rate of physical aging is affected by a number of factors, such
as free volume, temperature, polymer structure, and even polymer film thickness. The
dependence of the rate of the structural relaxation process on the chemical structure of
the polymer and related effects on the rigidity of the polymer chain and the fraction of
free volume was shown in [11–14]. For example, the effect of polymer regularity on the
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aging rate was studied for atactic, isotactic, and syndiotactic polystyrene [12,15]. It was
shown that the aging kinetics of polystyrene differ with different tacticities and revealed a
correlation between the aging rate and chain stiffness. The authors hypothesized that an
increase in chain stiffness slows down segmental mobility and reduces the rate of aging.

The specific structure of PTMSP is formed by a rigid polymer chain containing C=C
bonds and bulky substituents. The main chain of PTMSP contains alternating double bonds,
and units can be in the cis- and trans-configurations (Figure 1), and the ratio of cis-/trans-
units in the macromolecule depends on the polymerization catalytic system [16–19]. In
turn, the geometric structure of the macromolecule affects the supramolecular packing
and properties of PTMSP [19–21]. Khotimsky and co-workers [19] studied the relationship
between the molecular characteristics and morphology of PTMSP obtained on Nb and Ta
pentachlorides and the properties of the polymer. It was shown that the gas permeability
and solubility of PTMSP depend on the lengths of regular sequences of units with the same
geometry and the associated effect on the equilibrium rigidity of macrochains.

Moreover, PTMSP obtained on Nb and Ta pentachloride-based catalysts also exhibits
different physical aging. For one, PTMSP synthesized on the TaCl5 catalyst is subjected
to a more rapid drop in permeability coefficients than PTMSP synthesized on the NbCl5
catalyst [7,20,22]. The authors supposed that the observed differences in the rate of perme-
ability decline were related to the chain configuration, which is catalyst-dependent. An
analysis of the kinetics of the decrease in the fractional free volume over time in PTMSP
samples synthesized on two catalysts also showed that PTMSP synthesized on NbCl5 and
containing more cis-units had a longer relaxation time than PTMSP synthesized on TaCl5
and containing more trans-units.

In this paper, we studied the effect of the degree of stereoregularity on gas permeabil-
ity changes in time for PTMSP samples synthesized with traditional pentachloride-based
catalysts, yielding polymers with mixed configuration, as well as with novel pentabromide-
based catalysts, yielding cis-enriched polymers as high as cis-regular configuration. Fur-
thermore, one of the ways to increase the stability of the PTMSP polymer matrix is to
introduce additional bulk particles into the polymer matrix, which reduces the mobility
of polymer chains [23–26]. Bearing this in mind, we also studied the stability of the gas
transport properties in PTMSP films with varying degrees of stereoregularity with the
addition of the antioxidant Irganox 1076. This antioxidant has the bulk structure of a
hindered phenolic compound (Figure 2). Irganox 1076 has shown its high efficiency in
improving the thermo-oxidative stability of PTMSP [27]. At the same time, when placed
in a polymer matrix, bulky Irganox 1076 molecules can restrict macrochain densification
caused by relaxation phenomena.
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Figure 1. Models of the cis-unit (a) and trans-unit (b) of PTMSP. 
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2. Materials and Methods
2.1. Materials

Monomer 1-trimethylsilyl-1-propyne was obtained by reacting methylacetylene from
the methylacetylene-allene fraction with an alkyl magnesium halide, which was followed
by treating the reaction mixture with trimethylchlorosilane [28].

Monomer (99.8%) and the solvents cyclohexane (≥99.8%, Fisher Scientific, Waltham,
MA, USA) as well as toluene (99.97%, Fisher Scientific, Waltham, MA, USA) were distilled
three times over calcium hydride in a high-purity argon atmosphere before polymerization.
Catalysts NbCl5 (99.9%, Fluka Chemie AG, Buchs, Switzerland) and NbBr5 (99.9%, ABCR,
Karlsruhe, Germany ), cocatalysts Ph4Sn (>98.0%, TCI Ltd., Tokyo, Japan ), n-Bu4Sn (~98%,
Fluka Chemie AG, Buchs, Switzerland), and antioxidant Irganox 1076 (Octadecyl β—(3,5-
di- tert -butyl-4-hydroxy phenyl)- propionate) (Sigma-Aldrich Co., St. Louis, MI, USA)
were used as they are.

Ar with purity at least 99.9999%, O2, N2 with purity at least 99.9%, CH4 with purity at
least 99.5%, He and H2 with purity at least 99.9%, and CO2 with purity at least 98.0% were
purchased from Linde (Linde Gas Rus, Balashiha, Russia).

2.2. PTMSP Synthesis and Characterization

The PTMSP samples used in this study were cooked according to the procedure
described elsewhere [19].

The intrinsic viscosity values of the polymers were measured in CCl4 at 25 ◦C in air at
atmospheric pressure using an Ostwald–Ubbelohde viscometer.

The spectra of 13C NMR PTMSP solutions (in C6D12) were recorded on an Avance
spectrometer (Bruker BioSpin GmbH, Ettlingen, Germany) in the single-pulse mode with
a broadband proton decoupling during the FID signal and a reduced decoupling power
during the relaxation delay (duration 3 s), which made it possible to keep the signal
amplification by the Overhauser effect. The spectral capture width was 250 ppm. The
accumulation time of the free induction decay signal was 12–18 h. The spectra were
analyzed, including the decomposition of complex spectral lines, using the ACD/Labs
program (Advanced Chemistry Development, Inc., Toronto, ON, Canada, version 12.0 for
Microsoft Windows). The quantitative calculation of the ratio of cis- and trans-units from
the doublet signals of the 13C NMR spectra is given in our previous works, for example,
in [19].

2.3. Preparation of Polymer Films

The film membranes from pure PTMSP were prepared by casting polymer solution
(1.5% wt.) in cyclohexane onto cellophane. The film membranes from PTMSP with stabilizer
were prepared by the same procedure from a polymer solution in which Irganox 1076
(2% wt.) was added. After the evaporation of the solvent for 7 days in air at 20 ◦C, the
films were removed from the cellophane and evacuated under vacuum for 48 h. The
dry film membranes had thicknesses of 80–90 µm. Directly after evacuation, the films
were measured for gas permeability. Then, for a month between measurements, the film
membranes were stored in the air at room temperature.

2.4. Investigation of Films by X-ray Diffraction

The diffraction patterns of the polymer films were obtained on a Rigaku Rotaflex
RU-200 X-ray diffractometer (Rigaku Co., Ltd., Tokyo, Japan) with a rotating copper anode
(characteristic radiation wavelength 0.1542 nm). Flat films were fixed in 6 layers on an
aluminum frame. The exposure was carried out in the “transmission” geometry in the
angular range of 2.5–50 degrees in 2θ according to the Bragg–Brentano scheme. Then the
resulting diffraction patterns were processed using the Fityk program; after subtracting
the background line, they were presented as a sum of several Gaussian peaks. The angular
position of these peaks was recalculated into the interplanar distances using the Bragg
equation. The peak areas were used to calculate the specific intensities of the maxima (from
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the ratio of the total intensity of all observed peaks), and the sizes of their characteristic
coherent scattering regions (CSRs) were estimated from their integral widths using the
Scherrer equation.

2.5. Transport Properties Determination
2.5.1. Gas Permeability Measurement Method

The permeability of O2, N2, CO2, CH4, He, and H2 was determined by the differential
method with a gas chromatographic analysis using the Crystalux 4000M gas chromatograph.
He and Ar were used as gas carriers [29]. The pressure drop across the membrane was
1 atm, and the membrane cell temperature was 22–23 ◦C. The installation scheme is shown
in Figure 3.
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Figure 3. Schema of gas permeability set-up: 1 and 2—gas cylinders; 3—tee; 4, 5, 10, 11 and
17—valves; 6—membrane cell; 7, 9, 12, and 18—pressure sensors; 8 and 13—TCD, 14—gas chromato-
graph column; and 15 and 16—PC.

The gas permeability coefficient P was found according to the equation:

P =
l

∆p
·273 K

T·A · patm

76 cm Hg
·
(

∆V
∆t

)
(1)

where l is the film thickness, cm; ∆p is the pressure drop, cm Hg; T is the membrane cell
temperature, K; A is the membrane area, cm2; patm is the atmospheric pressure, cm Hg; is
the permeate flow rate, cm3/s.

The ideal selectivity was calculated as follows:

αAB =
PA
PB

(2)

where PA и PB are permeability coefficients for gases A и B.
The experimental percentage error of the method was 5–7%.

2.5.2. Gas Solubility Measurement Method

Gas sorption measurements were carried out using an original setup developed at the
Membrane Gas Separation Laboratory of the Institute of Chemistry, Russian Academy of
Sciences. The installation diagram is shown in Figure 4.
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In the experiment, a metal tube 8 with an inner diameter of 2 mm and a length of
90 mm was used as a gas cell. The amount of gas in the volume of the cell without the
studied polymer was determined to estimate the volume of the empty cell. To do this, the
gas cell was filled with the gas under study, and the amount of gas was detected using a
gas chromatograph Crystalux 4000M with a thermal conductivity detector 11(TCD). The
temperature detector was at 150 ◦C. Then the polymer film was cut into strips, which were
placed in a gas cell. The mass of the film in the cell was calculated from the difference
between the masses of the empty and filled tubes. After that, the time of saturation of
the sample with the studied gas was determined, which was accomplished by keeping
a constant amount of gas in the sorption space. To do this, a series of experiments were
carried out, after which desorption was carried out by the gas carrier into the TCD to
determine the total amount of gas. Further, having achieved the equilibrium value of
sorption in the entire volume of the studied material, a gas with a known partial pressure
was passed through the cell with the polymer. After complete saturation of the sample,
the amount of gas in the cell was detected using TCD, and then the test gas was desorbed
by evacuating the cell. The pressure was 0.1–6 atm. Based on the obtained data, sorption
isotherms were created, and the solubility coefficient was calculated from the slope of the
initial section of the isotherm (0.1–2 atm). The gas solubility coefficient was calculated with
the equation:

S = ∆c/∆p, (3)

where c is the gas concertation in the polymer, cm3(STP)/cm3, and p is the pressure, cm Hg.
The experimental percentage error of the method was up to 15%.

3. Results and Discussion
3.1. Polymer Properties

Based on our previous works [19,21], the polymerization conditions for synthesizing
PTMSP samples with targeted cis-/trans-ratio compositions were determined. The three
PTMSP samples selected for this work differ in cis-content: from a mixed configuration
(50% cis-units) in PTMSP (synthesized with a traditional NbCl5 catalyst) to cis-enriched
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(80% cis-units) and cis-regular (90% cis-units) configurations (PTMSP synthesized with
NbBr5-based catalysts). Synthesis conditions and characteristics of PTMSP samples are
given in Table 1.

Table 1. Synthesis conditions and characteristics of PTMSP.

Sample Catalytic
System 1 Yield, % [η], dL/g Cis-Content, %

PTMSP-50c NbCl5 90 0.7 50
PTMSP-80c NbBr5/Ph4Sn 70 2.7 80
PTMSP-90c NbBr5/n-Bu4Sn 80 3.0 90

1 Polymerization conditions: [Mon]0 = 1 mol/L, [Mon]/[Cat] = 50, [Cat] = [Cocat] = 1; solvents: toluene for
PTMSP-50c and cyclohexane for PTMSP-80c and PTMSP-90c; T = 25 ◦C and 24 h for PTMSP-50c; T = 80 ◦C and
72 h for PTMSP-80c and PTMSP-90c.

3.2. Effect of the PTMSP Microstructure on Gas Transport Properties

O2, N2, H2, He, CO2, and CH4 pure gas permeability as well as ideal selectivity
through the film membranes from pure PTMSP with different cis-contents were studied,
and the obtained results are shown in Tables 2 and 3.

Table 2. Pure gas permeability of film membranes from PTMSP with different cis-contents.

Sample
Permeability Coefficient, P, Barrer *

CO2 CH4 O2 N2 He H2

PTMSP-50c 43,500 19,000 10,900 6820 6100 20,700
PTMSP-80c 42,000 20,100 11,200 7630 7290 25,200
PTMSP-90c 50,900 26,700 14,600 9950 8230 29,000

* 1 Barrer = 1 × 10−10 [cm3 (STP) cm cm−2 s−1 cm Hg−1].

Table 3. Ideal selectivity of film membranes from PTMSP with different cis-contents.

Sample
Ideal Selectivity, α

CO2/CH4 CO2/N2 O2/N2 H2/CH4

PTMSP-50c 2.3 6.4 1.6 1.1
PTMSP-80c 2.1 5.5 1.5 1.3
PTMSP-90c 1.9 5.1 1.5 1.1

As can be seen from Table 2, an increase in the permeability coefficients with an
increase in the content of cis-units is observed for almost all gases. The greatest difference
is observed with an increase in cis-units from 80 to 90%. The permeability growth is
accompanied by an expected slight decrease in ideal selectivity for all gas pairs (Table 3).

Differences in gas permeability indicate differences in the overall level and struc-
ture of the free volume of PTMSP with different contents of cis-units. As is known, the
configurational composition of a polymer chain (the ratio of cis- and trans-configuration
units) largely determines the packing of macrochains in a polymer. Changes in the ratio of
cis-/trans-units, even small ones, lead to changes in the packing density of macrochains.
The packing density, in turn, determines not only the overall level of the free volume but
also the structure of the free volume, namely, the size of the interconnected free volume
elements through which the molecules of penetrant gases are transported. Wide-angle
X-ray diffraction was used to study the supramolecular organization of PTMSP films with
different cis-unit contents. The X-ray diffraction patterns are shown in Figure 5.
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Figure 5. X-ray diffraction patterns of PTMSP with different cis-contents.

All X-ray diffraction patterns of polymers show the main reflection with a half-width
∆1/2

◦~3.5◦–3.8◦ and additional diffuse maxima. The presence of additional reflections,
in addition to the most intense one, indicates an increased degree of ordering of PTMSP
compared to typical amorphous polymers. The presented patterns show differences for
PTMSP with different content of cis-units. Thus, for PTMSP with a cis-regular configuration
(90% of cis-units), the intensity of peaks with an angular position of ~20 and ~28 deg
becomes the most noticeable compared to PTMSP with a lower content of cis-units (50 and
80%). Moreover, in the cis-regular PTMSP, the X-ray diffraction pattern also clearly reflects
peaks with an angular position of ~36 and ~44 deg. These data serve as an indication of
the greater ordering of the structure when moving from a mixed geometry to a cis-rich
composition, with the most noticeable difference being observed when moving to PTMSP
with a 90% cis-content, i.e., a polymer with a high degree of cis-regularity. At the same
time, in the PTMSP series, with an increase in the cis-content of 50–80–90%, there is a slight
but systematic increase in the interchain distance corresponding to the main maximum,
from 8.83 Å to 9.01 Å (Table 4), which may indicate a decrease in the packing density of
PTMSP chains with an increase in cis-regularity.

Table 4. Wide-angle X-ray scattering data for PTMSP with different cis-contents.

Sample Cis-Content, % ∆1/2
◦ d, Å

PTMSP-50c 50 3.5 8.83 4.43 3.17 — —
PTMSP-80c 80 3.2 8.90 4.57 3.27 — —
PTMSP-90c 90 3.4 9.01 4.53 3.21 2.46 2.03

It can be assumed that the high degree of stereoregularity of PTMSP-90c allows the
macromolecule to adopt the most ordered and rigid helical conformation compared to the
PTMSP-50c and PTMSP-80c polymers with a lower degree of stereoregularity. The rigidity
of cis-regular PTMSP macromolecules with bulky substituents in a helical conformation
prevents close packing, which can be evidenced by an increase in interchain distances
with an increase in the degree of stereoregularity in the series PTMSP-50c—PTMSP-80c—
PTMSP-90c. At the same time, the regular configuration of PTMSP-90c macromolecules
apparently contributes to a more ordered arrangement of macromolecules compared to
less regular PTMSP samples, which is reflected in the diffraction scattering patterns of the
studied polymer samples with different degrees of stereoregularity.
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3.3. Effect of Aging on the Gas Transport Properties of PTMSP Films

The study of the influence of the PTMSP’s stereoregularity on the stability of its gas
transport characteristics over time was carried out for one month. The samples were
stored in the air. The relative changes in the coefficients of permeability P/P0 for PTMSP
film samples of different configurational compositions for the freshly prepared and aged
samples are shown in Figure 6. It can be seen that the cis-regular PTMSP-90c loses only
10 to 30% of the initial permeability values. The permeability decreases to a greater extent
for methane and nitrogen and to a lesser extent for highly permeable gases. The most
significant (about 50%) decrease in permeability coefficients after a month is observed for
the PTMSP-50c sample with mixed microstructure. We believe that the differences in the
aging rate of PTMSPs with different cis-contents are associated with differences in the
thermodynamic rigidity of PTMSP macrochains. The rigidity of the chain is determined
both by the quantitative ratio of units of the cis-/trans-configuration and by the lengths of
regular sequences of units of one configuration or another, i.e., macrochain regularity. In
the case of the PTMSP samples studied in this work, from mixed configuration composition
to cis-regular, it can be assumed that the noticeably slower aging rate of PTMSP-90c is
associated with the regular structure and rigidity of the macromolecules of this sample,
which limit segmental mobility and reduce the aging rate.
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Figure 6. Relative changes in the coefficients of permeability P/P0 of films from PTMSP with different
cis-contents during storage of samples in air for 1 month.

Diagrams in Figures 7–12 show comparisons of changes in the coefficients of perme-
ability and selectivity of gases for films from PTMSP of different microstructures, prepared
without and with the addition of the antioxidant Irganox 1076. Compared to all pure
PTMSP samples, the introduction of the antioxidant Irganox 1076 in the polymer matrix
reduces the permeability of all gases. This is due to the fact that sizeable antioxidant
molecules occupy part of the free space in the free volume elements, which leads to a
decrease in the free volume fraction of the polymer matrix.

Some decrease in permeability with time is observed for PTMSP films with an an-
tioxidant in a similar vein to pure PTMSP. However, the degree of change in permeability
for polymers with different configuration compositions is different. In the case of PTMSP
with a cis-content between 50% and 80%, the loss of permeability after a month for films
with the addition of Irganox 1076 is much lower than for films without an antioxidant
(Figures 7 and 9). Thus, for cis-enriched PTMSP-80c, the relative change in permeability
coefficients after 1 month was no more than 20%, while for films without antioxidants,
the decrease in gas flow was 40%. The films with Irganox 1076 exhibited improved ideal
selectivity, in particular for CO2/CH4 and O2/N2 gas pairs, compared to pure PTMSP films
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(Figures 8 and 10). It is important to note that the introduction of an antioxidant during the
preparation of films from PTMSP with 50% and 80% cis-units made it possible to maintain
the permeability of aged films above the permeability of aged pure PTMSP films: by 25%
for PTMSP-50c and 35% for PTMSP-80c, with an increase in the CO2/CH4 selectivity of
50% and 15% relative to pure polymer, respectively.
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Figure 7. The effect of Irganox 1076 on the gas permeability of PTMSP films with the content of
cis-units at 50%. The measurements were carried out for fresh films (PTMSP-50c film from pure
polymer and PTMSP-50cA film with Irganox 1076) and for aged films stored in air for 1 month
(PTMSP-50c_aged film from pure polymer and PTMSP-50cA_aged film with Irganox 1076).
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Figure 8. The effect of Irganox 1076 on the ideal selectivity of PTMSP films with the content of
cis-units at 50%. The measurements were carried out for fresh films (PTMSP-50c film from pure
polymer and PTMSP-50cA film with Irganox 1076) and for aged films stored in air for 1 month
(PTMSP-50c_aged film from pure polymer and PTMSP-50cA_aged film with Irganox 1076).

A different picture is observed for PTMSP with a cis-regular configuration. As can
be seen from the diagram in Figure 11, the addition of Irganox 1076 also reduces the level
of permeability compared to pure polymer by reducing the available free volume, as in
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the case with PTMSP with a less regular geometric structure (PTMSP-50c and PTMSP-80c).
However, the increased gas transport stability of pure films from this cis-regular polymer
leads to the fact that the permeability of films with Irganox 1076, even freshly prepared, is
lower than the level of an aged pure polymer film.
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Figure 9. The effect of Irganox 1076 on the gas permeability of PTMSP films with the content of
cis-units at 80%. The measurements were carried out for fresh films (PTMSP-80c film from pure
polymer and PTMSP-80cA film with Irganox 1076) and for aged films stored in air for 1 month
(PTMSP-80c_aged film from pure polymer and PTMSP-80cA_aged film with Irganox 1076).
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Figure 10. The effect of Irganox 1076 on the ideal selectivity of PTMSP films with the content of
cis-units at 80%. The measurements were carried out for fresh films (PTMSP-80c film from pure
polymer and PTMSP-80cA film with Irganox 1076) and for aged films stored in air for 1 month
(PTMSP-80c_aged film from pure polymer and PTMSP-80cA_aged film with Irganox 1076).
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Figure 11. The effect of Irganox 1076 on the gas permeability of PTMSP films with the content of
cis-units at 90%. The measurements were carried out for fresh films (PTMSP-90c film from pure
polymer and PTMSP-90cA film with Irganox 1076) and for aged films stored in air for 1 month
(PTMSP-90c_aged film from pure polymer and PTMSP-90cA_aged film with Irganox 1076).
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Figure 12. The effect of Irganox 1076 on the ideal selectivity of PTMSP films with the content of
cis-units at 90%. The measurements were carried out for fresh films (PTMSP-90c film from pure
polymer and PTMSP-90cA film with Irganox 1076) and for aged films stored in air for 1 month
(PTMSP-90c_aged film from pure polymer and PTMSP-90cA_aged film with Irganox 1076).

For aged PTMSP films without and with the addition of Irganox 1076, we experimen-
tally obtained the values of the solubility coefficients using sorption isotherms that were
linear in the range of 0.1–5 atm and then calculated the diffusion coefficients using the
P = D·S expression (Table 5). An analysis of the presented data shows that the introduction
of an antioxidant into the polymer matrix has different impacts on aged PTMSP samples
with various configurations. In the case of aged films from pure and stabilized PTMSP with
50 and 80% cis-units, the solubility coefficients are either the same (for PTMSP-80cA_aged)
or somewhat lower (for PTMSP-50cA_aged). However, the gas diffusion coefficients of
aged films with Irganox 1076 (PTMSP-50cA_aged and PTMSP-80cA_aged) exceed those
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for films from pure polymers (PTMSP-50c_aged and PTMSP-80c_aged). Such a ratio of
diffusion coefficients provides increased permeability coefficients in aged, stabilized films
relative to pure aged films. In addition, this indicates that the available free volume of
the aged polymer matrix of pure irregular PTMSP turns out to be lower with time than
for samples with Irganox 1076 [7,30]. Another situation is for cis-regular PTMSP with the
highest transport stability. The solubility coefficients of both pure and stabilized aged films
coincide within the experimental error, while the diffusion coefficients in pure PTMSP-
90c_aged are perceptibly higher compared to stabilized films (PTMSP-90cA_aged). Due
to this pure cis-regular, PTMSP-90c_aged demonstrates higher permeability coefficients
compared with films with Irganox 1076 (PTMSP-90cA_aged).

Table 5. Gas permeability, diffusion, and solubility coefficients for aged films from pure PTMSP
(PTMSP-50c_aged, PTMSP-80c_aged, and PTMSP-90c_aged) and Irganox 1076 (PTMSP-50cA_aged,
PTMSP-80cA_aged, and PTMSP-90cA_aged) stored in air for 1 month.

Gas P 1 D 2 S 3 P 1 D 2 S 3 P 1 D 2 S 3

PTMSP-50c_aged PTMSP-80c_aged PTMSP-90c_aged

CO2 19.7 1.6 127 25.0 2.6 97 43.0 4.6 92
CH4 8.9 1.9 47 12.7 4.2 30 18.1 4.7 39
O2 5.0 3.6 14 6.8 4.8 14 10.0 7.5 13
N2 3.1 2.9 11 4.6 4.0 12 7.2 6.3 11
He 3.2 - - 4.2 - - 8.0 - -
H2 11.2 - - 14.7 - - 27.1 - -

PTMSP-50cA_aged PTMSP-80cA_aged PTMSP-90cA_aged

CO2 26.0 2.8 93 36.8 4.2 95 34.0 3.5 98
CH4 11.5 3.3 35 16.4 4.0 31 14.2 3.4 42
O2 6.4 6.2 12 9.2 6.6 14 8.8 6.1 14
N2 3.8 3.7 8.7 5.8 13 12.7 5.4 4.5 11
He 5.8 - - 6.9 - - 6.2 - -
H2 18.7 - - 22.2 - - 21.5 - -

1 P·103 [Barrer]; 2 D·105 [cm2/s]; 3 S [cm3(STP)/cm3 cm Hg].

The obtained results show that the introduction of bulky Irganox 1076 molecules
is effective in reducing relaxation processes in polymers with an irregular structure, for
which noticeable aging was observed. In the case of cis-regular PTMSP, whose regular
structure provides it with a slow aging rate, the introduction of an antioxidant does not
give any advantages.

4. Conclusions

The permeability of films prepared from PTMSP with different cis-contents was stud-
ied over a period of 1 month to establish the effect of polymer stereo regularity on physical
aging. The decrease in gas permeability as well as the increase in ideal selectivity of all
PTMSP films aged in air for 1 month testify to physical aging. However, aging behavior
differs considerably depending on the cis-content in PTMSP. In the PTMSP series containing
cis-units from 50 to 90%, a correlation was established between an increase in stereoregular-
ity and a decrease in the aging rate. The cis-regular PTMSP showed a slight permeability
decrease after 1 month of storage, while the mixed configuration PTMSP was subjected
to the most substantial decrease in permeability. The slowest aging of cis-regular PTMSP
may be due to the regular structure and rigidity of cis-regular macromolecules, which limit
segmental mobility and reduce the rate of aging.

The addition of Irganox 1076 lowers gas permeability and slightly increases the ideal
selectivity. This can be attributed to a decrease in fractional free volume as a result of
bulky antioxidant molecules occupying free volume. The films with antioxidants also show
signs of physical aging, although the magnitude of relative changes in permeability for
polymers with different cis-contents varies. The addition of Irganox 1076 to PTMSP in
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mixed as well as cis-enriched configurations visibly slows down the aging, and the level
of gas permeability of the aged films with antioxidants is higher than the permeability of
the aged films from pure PTMSP. In the case of cis-regular PTMSP, which demonstrates
increased gas transport stability over time, the gas permeability of the fresh film with a
stabilizer is already lower than the level of permeability of an aged pure polymer film.
It has been shown that the introduction of the antioxidant Irganox 1076 into the PTMSP
polymer matrix does not significantly affect the gas solubility coefficients, regardless of the
configurational composition of the polymer.

The results reported in this paper show the effectiveness of the antioxidant Irganox
1076 as a gas transport stabilizer in the case of PTMSP with lower stereoregularity. In
the case of cis-regular PTMSP, the introduction of an antioxidant does not provide any
advantages. The highest stability of cis-regular PTMSP relative to polymers of a less regular
structure indicates the possibility of obtaining samples with the most equilibrium state of
the polymer selective layer in the process of obtaining membranes by casting solution.
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