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Abstract: Magnetorheological elastomers (MREs) are a type of smart material that can change their
mechanical properties in response to external magnetic fields. These unique properties make them
ideal for various applications, including vibration control, noise reduction, and shock absorption.
This paper presents an approach for modeling the impact behavior of MREs. The proposed model
uses a combination of exponential functions arranged in a multi-layer Preisach model to capture
the nonlinear behavior of MREs under impact loads. The model is trained using particle swarm
optimization (PSO) and validated using experimental data from drop impact tests conducted on MRE
samples under various magnetic field strengths. The results demonstrate that the proposed model
can accurately predict the impact behavior of MREs, making it a useful tool for designing MRE-based
devices that require precise control of their impact response. The model’s response closely matches
the experimental data with a maximum prediction error of 10% or less. Furthermore, the interpolated
model’s response is in agreement with the experimental data with a maximum percentage error of
less than 8.5%.

Keywords: magnetorheological; elastomers; hysteresis behavior; impact loading; preisach model;
particle swarm optimization; exponential function

1. Introduction

MREs are smart materials that are composed of a polymer matrix filled with magnetic
particles, usually iron or iron oxide, which can respond to an external magnetic field. The
magnetic particles are typically dispersed within the elastomer matrix in a random manner,
forming a network of interconnected chains [1]. When an external magnetic field is applied
to the MRE, the magnetic particles within the polymer matrix align themselves with the
direction of the field causing the elastomer to stiffen and become more rigid. Conversely,
when the magnetic field is removed, the particles return to their random orientation and
the elastomer returns to its original soft and flexible state [2,3]. The stiffness of MRE can be
controlled by adjusting the strength and orientation of the magnetic field.

MREs have the potential for a range of applications in various industries. Some
key examples include vibration control [4] and damping systems [5,6] where MREs can
reduce vibrations and enhance the stability of structures and machinery. MREs can also be
utilized in the development of soft robotics [7] and prosthetics with tunable stiffness [8],
offering improved flexibility and control. Additionally, MREs have the potential for seismic
protection [9], as they can enhance the seismic resistance of structures by providing adaptive
damping to reduce the impact of seismic waves. In the aerospace and defense industries,
MREs can be integrated into aircraft and spacecraft design to improve vibration control
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and damping [10], leading to better performance and stability. Furthermore, MREs may be
applied to medical device design [11], such as stents and catheters, to offer greater control
and flexibility. As research in this field progresses, the applications of MREs continue to
expand, showcasing their potential for diverse applications in different industries [12].

MREs change their mechanical properties in response to an applied magnetic field.
Due to their unique behavior, accurate modeling of MREs is crucial for their effective
application in various industries. Accurate modeling of MREs allows for the prediction
of their behavior under different magnetic field strengths which is essential in designing
MRE-based devices and systems. It also enables the optimization of MREs for specific
applications by predicting the mechanical properties, such as stiffness and damping, and the
response times of MREs to changes in the magnetic field. Furthermore, accurate modeling
of MREs can lead to the development of more advanced MRE-based systems that require a
more precise understanding of the behavior of MREs to ensure optimal performance.

There are two methods for modeling the behavior of MREs, namely parametric and
non-parametric models [13]. Parametric models refer to models that are based on a set of
predefined parameters or assumptions about the behavior of the material. These models
typically involve the use of mathematical equations and require knowledge of the material’s
properties and characteristics, such as its stiffness and damping. On the other hand, non-
parametric models do not rely on pre-defined assumptions or parameters but instead use
data-driven approaches to develop models based on observed behavior. These models can
include machine learning algorithms, such as artificial neural networks, or support vector
machines that learn from data to predict the behavior of the material.

Both parametric and non-parametric models have been used in MRE research. Para-
metric models, such as micromechanical models or continuum mechanics models, have
been developed to describe the behavior of MREs based on the physical properties of the
material. Non-parametric models, such as artificial neural networks [14], or fuzzy logic
systems [15], have been used to predict the behavior of MREs based on experimental data.
Overall, both approaches have their strengths and weaknesses, and the choice of which
model to use depends on the specific application and available data. Parametric models can
provide a more fundamental understanding of the material behavior, but they may require
more knowledge of the material properties. Non-parametric models can be more flexible
and adaptable but may require more experimental data to develop accurate models [16,17].

In this paper, an impact behavior model for MREs that takes into account the hysteresis
characteristics of MREs is proposed. To model the hysteresis characteristics, the multilayer
exponential-based Preisach model is proposed. Exponential functions are commonly used
in modeling hysteresis as they can capture the nonlinear behavior of the material. The
multilayer exponential function allows for a more complex model that can better capture
the behavior of MREs. To optimize the parameters of the model, an optimization tool,
namely PSO, is used. PSO is a nature-inspired optimization algorithm that simulates the
social behavior of swarms in nature, such as flocks of birds or schools of fish. The algorithm
is designed to find the optimal solution to a given optimization problem by iteratively
adjusting a group of particles or agents in a search space.

2. Design and Fabrication of MRE-Based Double Acting Actuator

In traditional MREs, the actuator works mainly in compression mode [18]. However, in
this study, a double-acting MRE actuator (Appendix A) that can work in both compression
and extension modes was developed and fabricated. The schematic diagram and the
prototype of the MRE actuator are shown in Figure 1a,b, respectively. MRE actuators
consist of a piston and cylinder containing MRE material, a coil or electromagnet, and
a power source. When a mechanical vibration causes the piston to move relative to the
cylinder, a magnetic field is generated by the coil or electromagnet which causes the
magnetic particles in the MRE to align themselves in the direction of the field. This changes
the stiffness and damping properties of the MRE, providing a damping force that opposes
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the motion of the piston. The damping force can be adjusted by varying the strength and
direction of the magnetic field, which is controlled by the controller.
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Figure 1. Schematic Diagram of a Double Acting MRE. The schematic diagram (a) and the prototype
(b) of the MRE actuator.

The fabrication process of MRE typically involves several steps. First, an elastomer
matrix is selected to meet specific application requirements. Next, magnetic particles are
selected and their size is determined. Then, the magnetic particles are prepared by mixing
them with the elastomer. The mixture is cured by pouring it into a mold. Finally, the MRE
is magnetized by exposing it to a strong magnetic field which magnetizes the particles and
induces the desired mechanical properties [19,20]. The coils are made of copper wire coated
with a layer of enamel insulation with a diameter of 0.7 mm; the number of coil turns is 250.
The parameters and the composition for MRE fabrication are shown in Table 1.

Table 1. Composition of the MRE Sample [21].

Materials Percentage

RTV Silicone Rubber 30%

Carbonyl Iron Powder 60%

Additive (Ferrite) 7%

Hardener (Isocyanates) 3%

3. Experimental Study on the Force-Displacement Characteristics of MREs for
Impact Response

Upon fabricating the proposed MRE, a series of drop impact tests were conducted
to evaluate the effectiveness of the MRE under impact loads by analyzing their force-
displacement characteristics. The drop impact test is performed to assess the ability of a
material to resist impact loading. The test involves several steps. First, the specifications
for the test, such as the height of the drop, the weight of the impactor, and other relevant
factors, are determined. Next, the test specimen, or product, is prepared to ensure that it
is in a suitable condition for testing. Then the impactor is secured to the drop apparatus,
carefully aligned, and oriented. The impactor is raised to the predetermined height and
released, allowing it to free-fall and strike the test specimen. The impact is observed and
to ensure accurate and reliable results, the test is typically repeated several times. Finally,
the results can be analyzed. Figure 2 depicts the drop test machine that was utilized in
the experiment.
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Figure 2. Drop Impact Test Machine used in this Study.

The tests were carried out by subjecting the material to a sudden external force to
observe its behavior. The Instron Drop Impact Machine and CEAST Software were utilized
to set the experiment variables, including the impact energy, impact velocity, falling height,
total mass, and applied current. The parameters set to the Instron Drop Impact Machine
during the experiment are shown in Table 2. Figure 2 shows the experimental setup that was
conducted in the Automotive Lab at Universiti Pertahanan Nasional Malaysia (UPNM).

Table 2. Parameters of The Drop Impact Test.

Parameters Input Values

Impact Energy 13.8 J

Impact Velocity 2.24 m/s

Falling Height 256 mm

Total Mass 5.5 kg

Current 0–2 A

Contact area 13.87 cm2

The experiments were conducted to investigate the behavior of the MRE under dif-
ferent current inputs to the coils. In order to achieve this, varying current values were
applied to the coils at 0, 0.5, 1, 1.5, and 2 Amperes. To ensure the accuracy and consistency
of the data collected, each experiment was repeated multiple times at each current level.
This approach helps to reduce the effects of random errors and improves the reliability
of the experimental results. Figure 3 presents the experimental results displaying the
force-displacement relationship with respect to the different current inputs. The figure
clearly illustrates the changes in stiffness and damping properties of the MRE with varying
current inputs. Upon analyzing each force-displacement curve, it was found that the upper
slope of the curve represents the response of the MRE undergoing compression, while the
lower slope represents the response of the MRE undergoing retraction.
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4. Modeling the Hysteresis Characteristics of MREs Using a Multilayer
Exponential-Based Preisach Model Optimized with PSO

This section describes the algorithm for a multilayer exponential-based Preisach model
that was developed using experimental data on the force-displacement characteristics of
MREs under impact loading conditions for input currents injected to the coils at 0, 0.5,
1, 1.5, and 2 Amperes. Additionally, the interpolation method used to obtain the force
produced by the MREs for input currents between the specified values is explained. Finally,
an optimization tool called Particle Swarm Optimization (PSO) is also discussed.

4.1. Multilayer Exponential-Based Preisach Model

The Preisach model is a mathematical tool used to describe hysteresis, which is a
phenomenon in which the output of a system depends not only on the current input but
also on its history [22,23]. The model consists of a set of hysterons, which are basic units
that represent the behavior of the system. Each hysteron is associated with a particular
input/output history and has a unique switching threshold. The model describes the
behavior of the system by representing it as a distribution of hysterons, each of which
contributes to the overall response of the system [24]. The Preisach model consists of
many relay hysterons connected in parallel, given weights, and summed. This can be
visualized by a block diagram as shown in Figure 4. Each of these relays has different α
and β thresholds and is scaled by µ. By increasing the number of N, the true hysteresis
curve can be better approximated [25].
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An exponential function is a mathematical function in the form of f (x) = ex. Exponen-
tial functions are used to model phenomena that grow or decay at a constant percentage
rate over time, such as population growth, radioactive decay, or compound interest. They
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have a characteristic curve that starts rapidly and then increases or decreases slowly. First,
second and n-th hysterons are defined as follows:

µ1Rα1β1 = a1eb1x

µ2Rα2β2 = a2eb2x

. . .

µN RαN βN = aNebN x

The general relationship between input-output of the Preisach model is written as follows:

f (x) = a1eb1x + a2eb2x + · · ·+ aNebN x

Referring to Figure 3, there are five hysteresis loops representing the force-displacement
characteristics of MREs under impact loading for different amounts of current injected into
the coils. The currents include 0, 0.5, 1, 1.5, and 2 Amperes. Each loop has two Preisach
model setups representing the upper and lower slopes.

In this proposed model, some controlled parameters are optimized using PSO to
accurately represent the hysteresis response of MREs under impact loadings. They are: a1,
a2, . . . , aN ; b1, b2, . . . , bN ; c1, c2, . . . , cN ; d1, d2, . . . , dN ; . . . ; s1, s2, . . . , sN ; t1, t2, . . . , tN .

f (x)up
0 = a1eb1x + a2eb2x + · · ·+ aNebN x

f (x)lo
0 = c1ed1x + c2ed2x + · · ·+ cNedN x

f (x)up
0.5 = e1e f1x + e2e f2x + · · ·+ eNe fN x

f (x)lo
0.5 = g1eh1x + g2eh2x + · · ·+ gNehN x

f (x)up
1 = i1ej1x + i2ej2x + · · ·+ iNejN x

f (x)lo
1 = k1el1x + k2el2x + · · ·+ kNelN x

f (x)up
1.5 = m1en1x + m2en2x + · · ·+ mNemN x

f (x)lo
1.5 = o1ep1x + o2ep2x + · · ·+ oNepN x

f (x)up
2 = q1er1x + q2er2x + · · ·+ qNerN x

f (x)lo
2 = s1et1x + s2et2x + · · ·+ sNetN x

As previously mentioned, the proposed model was developed based on experimental
data obtained from the force-displacement measurements for input currents of 0, 0.5, 1,
1.5, and 2 Amperes. To calculate the force generated by the MREs for input currents
between 0 A and 0.5 A, an interpolation approach was used based on the known or
specified displacement. The interpolation algorithm is detailed in Figure 5, which uses the
experimental data for 0 Ampere and 0.5 Ampere as an example. Similar algorithms are
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used to calculate the force generated by MREs for input currents between 0.5 A and 1 A,
between 1 A and 1.5 A, and between 1.5 A and 2 A. The algorithm for calculating force
produced by MREs is as follows:

F(x)up
i = F(x)up

0 +
(

F(x)up
0.5 − F(x)up

0

)
i

F(x)lo
i = F(x)lo

0 +
(

F(x)lo
0.5 − F(x)lo

0

)
i

where
i: Current injected to the MREs coils (between 0 A to 0.5 A)
F(x)up

i : Force produced by MRE at current i during compression
F(x)lo

i : Force produced by MRE at current i during retraction
F(x)up

0 : Force at upper slope of 0 A
F(x)lo

0 : Force at lower slope of 0 A
F(x)up

0.5: Force at upper slope of 0.5 A
F(x)lo

0 : Force at lower slope of 0.5 A
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4.2. Optimization of Multilayers Sigmoidal Functions Using PSO

PSO is a metaheuristic optimization algorithm that is inspired by the social behavior
of bird flocking or fish schooling [26]. In PSO, a set of particles are initialized randomly in
the search space and move towards the optimal solution by updating their positions based
on their own previous positions and the positions of the best-performing particles in the
swarm. The basic theory of PSO can be summarized in the following steps [27]:

1. Initialization: A population of particles is generated randomly in the search space.
Each particle represents a potential solution to the optimization problem.

2. Evaluation: The fitness of each particle is evaluated based on the objective function to
be optimized.

3. Update of the particle’s best position: Each particle keeps track of the best position it
has visited so far, denoted as Pbest. If the fitness of the current position is better than
its Pbest, the particle updates its Pbest.

4. Update of the swarm’s best position: The best position among all the Pbest positions of
the particles is denoted as Gbest. If the fitness of the current Gbest position is better than
its previous value, the swarm updates its Gbest.

5. Update of the particle’s velocity and position: Each particle updates its velocity and
position based on its current velocity, its distance from its Pbest, and its distance from
the Gbest. The velocity and position updates are given by the following equations:
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Velocity update:

Vi
(t+1) = w·Vi

(t) + c1·r1·
(

Pi
best − Xi

(t)

)
+ c2·r2·

(
Gbest − Xi

(t)

)
Position update:

Xi
(t+1) = Xi

(t) + Vi
(t+1)

where Vi
(t) and Xi

(t) are the velocity and position of particle i at time t, w is the inertia weight,
c1 and c2 are the acceleration coefficients, and r1 and r2 are random numbers between 0
and 1.

6. Termination: The algorithm terminates when a stopping criterion is met, such as
reaching a maximum number of iterations or a satisfactory fitness level.

7. By iterating through these steps, the particles in the swarm collectively move toward
the optimal solution of the optimization problem.

In this study, the parameters of the multilayer exponential-based Preisach model that
will be tuned using PSO are a1, a2, . . . , aN ; b1, b2, . . . , bN ; c1, c2, . . . , cN ; d1, d2, . . . , dN ; . . . ;
s1, s2, . . . , sN ; t1, t2, . . . , tN . In PSO, there are several optimization parameters that need to
be set to ensure the algorithm performs optimally. The choice of parameter values for PSO
can depend on the specific problem being solved and the characteristics of the search space.
A common approach is to use a parameter tuning method, such as grid search or random
search, to find the optimal parameter values. These parameters include:

• Swarm size: 40
• Maximum number of iterations: 100
• Inertia weight: 0.9
• Acceleration coefficients (c1 and c2): 1.42

5. Results and Discussions

This section presents a comparison between the simulated responses of the proposed
MRE model and the corresponding experimental data. The maximum error of the predicted
force will also be analyzed and discussed. Finally, the accuracy of the model will be tested and
validated using input currents ranging from 0 to 0.5 A, 0.5 to 1 A, 1 to 1.5 A, and 1.5 to 2 A.
Effects of varying the swarm size and the number of iterations on the PSO are also analyzed.

5.1. Comparison between the Simulated Response of Multilayer Exponential-Based Preisach Model
with the Experimental Data

Figure 6 compares the simulated model response to experimental data where no
current was injected into the coils. The model’s response closely matches the experimental
data, indicating a high degree of accuracy in the simulation. However, a maximum error of
5% occurred in area A, which may be attributed to limitations in the experimental setup or
inaccuracies in the simulation model. Further investigation and refinement of the model
could potentially reduce this error and improve the overall accuracy of the simulation.

In Figure 7, the simulated model response is compared to experimental data for an
input current of 0.5 A injected into the coils. The simulation results exhibit a high degree
of accuracy and closely match the experimental data, but the maximum error occurs in
area B with a percentage error of approximately 10%. This discrepancy could be due to
limitations in the experimental setup, variations in the material properties, or uncertainties
in the simulation model. Despite this limitation, the close agreement between the simulated
and experimental data validates the model’s capability to predict the system’s behavior
accurately under different input conditions.
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Figure 8 compares the simulated model response to experimental data for an input
current of 1 A injected into the coils. The simulation results exhibit a high degree of
accuracy and closely match the experimental data, but the maximum error is observed
in area C with a percentage error of approximately 4.8%. Again, this discrepancy may
be due to experimental limitations, material property variations, or uncertainties in the
simulation model. However, the close agreement between the simulated and experimental
data provides confidence in the model’s ability to accurately predict the system’s behavior.
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1 Ampere.

Figure 9 compares the simulated model response to experimental data for the input
current of 1.5 A injected into the coils. The simulation results closely match the experimental
data, demonstrating the model’s high degree of accuracy in predicting the system’s response
under this input condition. However, it is worth noting that the maximum error occurs in
area D, with a percentage error of approximately 4.7%. The close agreement between the
simulated and experimental data validates the model’s capability to accurately predict the
system’s behavior.
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1.5 Ampere.

Lastly, in Figure 10, the simulated model response is compared to experimental data
for an input current of 2 A injected into the coils. The simulation results closely match
the experimental data, indicating that the model accurately predicts the system’s response
under this input condition. However, the maximum error is observed in area E with a
percentage error of approximately 8.1%. Nevertheless, the close agreement between the
simulated and experimental data validates the model’s capability to predict the system’s
behavior accurately. The maximum error of the predicted force of the proposed model is
summarized in Table 3.
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Table 3. The Maximum Percentage of Error in All Five Cases.

Current Experimental Data Simulation Data Percentage of Error (%)

0 A 3374.804 3206.756 4.98
0.5 A 5171.588 4642.620 10.23
1.0 A 6008.422 5718.536 4.83
1.5 A 7093.411 6762.593 4.66
2.0 A 5572.439 5123.559 8.1

5.2. Validation of the Interpolated Model

Previously, it was mentioned that the force-displacement characteristics of MREs under
impact loading for input currents ranging from 0–0.5, 0.5–1, 1–1.5, and 1.5–2 Amperes
were predicted using an interpolation algorithm. This algorithm is commonly used to
estimate data points within a range of values based on known data points. To validate the
accuracy of this interpolation algorithm, experimental works were conducted using drop
impact tests. These tests were carried out with the input currents injected into MRE coils
of 0.3, 0.7, 1.3, and 1.7 Amperes, and the resulting force-displacement data were recorded.
The experimental data obtained from the drop impact tests were then compared to the
corresponding model response with the same input current as shown in Figure 11. It can
be seen from the figure that the interpolation algorithm is valid. The model responses
closely follow the experimental results with an acceptable error. The maximum error of
the predicted force of the proposed model in the interpolation regions is summarized in
Table 4.

Table 4. The Maximum Percentage of Error for the Interpolated Model.

Current Experimental Data Simulation Data Percentage Error (%)

0.3 A 4321.450 3954.718 8.486
0.7 A 5263.420 5072.986 3.618
1.3 A 6746.820 6518.139 3.389
1.7 A 4982.910 4707.04 5.536
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5.3. Effects of Varying Swarm Size and the Number of Iterations

The number of iterations is an important parameter in PSO, as it determines the length
of time the particles are allowed to search for the optimal solution. In general, increasing
the number of iterations in PSO can improve the algorithm’s ability to find the global
optimum, as it allows the particles more time to explore the search space and converge
on the best solution. However, at a certain point, additional iterations may not lead to
any further improvement in the solution, as the particles may have already converged to a
local optimum. On the other hand, decreasing the number of iterations can lead to faster
execution times, but at the cost of potentially missing out on better solutions. Therefore, it
is important to strike a balance between the number of iterations and the desired level of
performance index and execution time. Referring to Figure 12, the number of iterations
selected was 100 since it has a fast convergence rate and is able to achieve a performance
index as good as the performance index for 120 iterations.
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The swarm size refers to the number of particles in the population and it determines
the diversity and convergence rate of the swarm. Increasing the swarm size can lead to
better global exploration, as there are more particles searching the solution space. However,



Polymers 2023, 15, 2145 13 of 15

it can also increase the computational cost and reduce the convergence rate, as there are
more particles to communicate and update. On the other hand, reducing the swarm size
can improve the convergence rate, as there are fewer particles to communicate and update.
However, it may also decrease the diversity of the swarm, which can lead to premature
convergence and suboptimal solutions. Referring to Figure 13, the swarm size selected in
this study was 40 as it shows a fast convergence rate and achieved a performance index as
good as a swarm size of 100.
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6. Conclusions

This paper presents a comprehensive study on the hysteresis behavior modeling of
magnetorheological elastomers under impact loadings. The study proposes a multilayered
exponential-based Preisach model that is enhanced with particle swarm optimization to
provide a reliable and accurate framework for capturing the complex hysteresis behavior
of the material. The developed model demonstrates excellent performance in capturing
the dynamic response of magnetorheological elastomers under various impact-loading
scenarios. The results show that the model’s response closely matches the experimental
data, with a maximum prediction error of 10% or less. The interpolated model’s response
also shows good agreement with the experimental data, with a maximum percentage error
of less than 8.5%. The study also examines the effects of varying the number of iterations
and the number of particles on the performance of PSO. Overall, the findings suggest that
the proposed model provides a promising approach for accurately predicting the hysteresis
behavior of magnetorheological elastomers under impact loadings.
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