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Abstract: Understanding how to develop highly efficient and robust adsorbents for the removal
of organic dyes in wastewater is crucial in the face of the rapid development of industrialization.
Herein, d-Ti3C2Tx nanosheets (MXene) were combined with sodium alginate (SA), followed by
electrospinning and successive Ca2+-mediated crosslinking, giving rise to a series of SA/MXene
nanofiber membranes (NMs). The effects of the MXene content of the NMs on the adsorption
performance for methylene blue (MB) were investigated systemically. Under the optimum MXene
content of 0.74 wt.%, SA/MXene NMs possessed an MB adsorption capacity of 440 mg/g, which is
much higher than SA/MXene beads with the same MXene content, pristine MXene, or electrospinning
SA NMs. Furthermore, the optimum SA/MXene NMs showed excellent reusability. After the
adsorbent was reused ten times, both the MB adsorption capacity and removal rate could remain at
95% of the levels found in the fresh samples, which indicates that the electrospinning technique has
great potential for developing biomass-based adsorbents with high efficiency.

Keywords: sodium alginate; MXene; electrospinning; methylene blue; adsorption

1. Introduction

The pollution of water bodies by dyes has attracted increasing attention due to the
continuous expansion of the relative application areas, including the textile, paper, printing,
pulp mill, food, and plastics industries, etc. [1–4]. Methylene blue (MB) is a typical cationic
dye with an aromatic heterocycle and has been the most commonly used for dyeing cotton,
wool, and silk [5,6]. Although MB is not considered to be highly toxic, acute exposure to
MB would cause eye burns in humans and animals, and if ingested, nausea, vomiting,
diarrhea, and quadriplegia [7]. Indeed, MB has been studied as one of the typical model
compounds for removing organic contaminants and colored bodies from aqueous solutions,
due to its strong adsorbability onto solids, nonbiodegradability, and widespread use in
the industry [8,9]. With the rapid development of industrialization, the discharge of dye-
containing wastewater is leading to increased environmental concerns. In this context, it is
desirable to find efficient methodologies for the removal of dyes from wastewater prior to
its disposal in the natural environment.

So far, several methodologies have been developed for the treatment of dye-containing
wastewater, including membrane separation [10], biodegradation [11], flocculation [12],
chemical oxidation [13], photocatalytic degradation [14], and adsorption [15]. Of the above
processes, adsorption has been deemed as one of the most promising methods due to its
environment friendliness, such as low cost/energy consumption, high selectivity/efficiency,
and simplicity of operation [16]. Recently, a variety of adsorbents associated with two-
dimensional (2D) materials, for example, graphene [17], molybdenum disulfide [18], and
MXene [19], have shown great potential in the adsorption of dyes. These 2D materials
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possess high specific surface areas and numerous/tunable terminal groups, which are, the-
oretically, conducive to the adsorption of foreign species [20,21]. MXenes, a group of novel
2D materials composed of transition metal carbides and/or nitrides, have some unique
properties, including highly active layered structures with hydrophilic terminal groups (-F,
-OH, and -O- groups, etc.) and excellent dispersity in aqueous solution originating from
the abovementioned hydrophilic groups [22–24], which make such materials particularly
suitable for the treatment of wastewater.

It should be noted that, although some adsorbents based on MXenes showed good
performance for the removal of MB in wastewater [25,26], the fast deterioration of adsorp-
tion capacity originating from self-aggregation/self-restacking, because of the strong van
der Waals force interaction between adjacent nanosheets, together with the difficulty of
solid–liquid separation in the aqueous solution due to good hydrophilicity, have seriously
hindered the application of pristine MXenes in the treatment of wastewater [27,28]. To
overcome the above drawbacks, several studies have explored the incorporation of foreign
species with MXenes to elevate physicochemical stability and reusability during the ad-
sorption processes [29–32]. Ti3C2 MXene nanosheets have been functionalized by magnetic
Fe3O4 nanoparticles and the resultant MXene@Fe3O4 composites tackle the separation
problem via magnetic collection in the adsorption of MB, although the adsorption capacity
is relatively low [33]. In contrast, the incorporation of some organic polymers, for example,
polyacrylamide [34] and polydopamine [35], with MXenes leads to significantly increased
adsorption capacity, separation efficiency, and treating throughput during the adsorption of
MB. In this context, organic polymers with suitable structure/functional moieties seem well
positioned to address the challenges of developing efficient MXene-containing adsorbents
with excellent physicochemical stability and reusability.

More recently, owing to their biodegradability, non-toxicity, and affordability, biomass-
based polymers have been reported to have been incorporated with MXenes for the treat-
ment of wastewater [36,37]. Sodium alginate (SA), being a natural linear polysaccharide
copolymer derived from seaweed, has shown a good performance in adsorbing MB, due
to the fact that its electronegative nature leads to an electrostatic interaction with the elec-
tropositive MB [38,39]. Furthermore, the abundant -OH and -COOH groups presented in
SA make this natural polymer easily crosslinkable via the ion-exchange with various multi-
valent cations, leading to good physicochemical stability of the ultimate materials [40–42].
MXene/SA beads [28] and MXene/poly-ethylenimine/SA aerogels [43] have been fabri-
cated via Ca2+-mediated crosslinking processes for the removal of MB and Cr (VI) species,
respectively. It should be noted that, although multivalent cation-mediated crosslinking
endows the composite adsorbents with physicochemical stability, MXene nanosheets could
be buried and/or poorly dispersed in the SA networks, which would lower the adsorption
performance of the composite adsorbents.

In a continuation of our efforts to explore the applications of biomass-based mate-
rials in wastewater treatment [44], herein a series of SA/MXene nanofiber membranes
(NMs) were prepared via electrospinning and successive Ca2+-mediated crosslinking pro-
cesses, which has been demonstrated to be an efficient technique for fabricating continuous
nanoscale fibers with diameters in the range of tens of nanometers to
sub-micrometers [45–48]. The resultant SA/MXene NMs exhibited a superior MB adsorp-
tion capacity to that of SA/MXene beads, pristine MXene, or electrospinning SA NMs,
because the three-dimensional fibrous nanostructure makes it easy for the MB to access the
adsorption sites of the SA/MXene composite NMs. To the best of our knowledge, despite
the fact that there have been a few prior studies on fabricating electrospinning polymer-
based NMs for the adsorption of MB [49–51], this is the first example associated with the
fabrication of electrospinning SA/MXene NMs and the relevant adsorption application for
the treatment of dye-containing wastewater.
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2. Materials and Methods
2.1. Materials

Ti3AlC2 powder (400 mesh) was purchased from 11 Technology Co., Ltd. (Changchun,
China). Sodium alginate (SA, 20 mPa·s, CP), chitosan (CS, 100–200 mPa·s, CP), calcium
chloride dihydrate (CaCl2·2H2O, 99%, AR), hydrochloric acid (HCl, 37%, AR), methylene
blue (MB, C16H18ClN3S, AR), and methyl orange (MO, C14H14N3NaO3S, AR) were pur-
chased from Sinopharm chemical reagent Co., Ltd. (Shanghai, China). Lithium fluoride
(LiF, 99%, AR) was purchased from Rhawn (Shanghai, China). Polyvinyl alcohol (PVA-1788)
was purchased from Macklin (Shanghai, China). Deionized water was homemade. All
reagents are used directly without further purification.

2.2. Preparation of d-Ti3C2Tx (MXene)

MXene was synthesized according to the method reported previously [52]. Briefly,
3.00 g of LiF was added to 60.0 mL of HCl (9.0 M) in a PTFE bottle. After stirring for
0.5 h in an ice bath, 3.00 g of Ti3AlC2 was slowly added and the resultant mixture was
stirred at 35 C for 24 h. The obtained multilayer Ti3C2Tx was washed with deionized
water and centrifuged at 3500 rpm for 5 min. The above process was repeated until the
pH value of the supernate was close to 7.0. Deionized water was added to the obtained
multilayer Ti3C2Tx and the mixture was sonicated for 1 h under nitrogen protection. Finally,
a delaminated Ti3C2Tx (d-Ti3C2Tx, MXene) colloidal solution (ca. 1.5 mg/mL) was obtained
by centrifuging the sonicated mixture at 3500 rpm for 60 min to eliminate the sediment.

2.3. Preparation of Electrospinnable SA/MXene Solution

A homogeneous and electrospinnable SA/MXene solution was obtained by blending
aqueous SA solution (2 wt.%), PVA solution (10 wt.%), and the above MXene solution
(ca. 1.5 mg/mL). More specifically, the SA solution was prepared by dissolving 2.00 g
of SA in 98.00 g of deionized water at room temperature under continuous stirring; the
PVA solution, as a spinning auxiliary, was prepared by adding 10.00 g of PVA to 90.00 g of
deionized water under continuous stirring at room temperature for 1 h and, subsequently,
at 90 ◦C for 6 h. Finally, the electrospinnable solution was obtained by mixing SA, PVA,
and the desired amount of MXene solution under stirring at room temperature for 12 h,
wherein the volume ratio of the PVA solution to the SA solution was 7:3.

2.4. Fabrication of SA/MXene NMs

As illustrated in Scheme 1, the individual electrospinnable SA/MXene solution with
various MXene contents was loaded into a 10 mL syringe capped with a 23 gauge stainless
steel needle. The solution was fed through the needle at a rate of 0.1 mm/min, the working
distance between the needle tip and the collector was set to 10 cm, and the working
voltage was 16 Kv (Ucalery, Yongkang Leye Co., LTD, Beijing, China). Electrospinning
was performed at room temperature and 60% relative humidity. The resultant NMs were
immersed in 50.0 mL of CaCl2 solution (1.0 M) for 12 h at room temperature, followed
by washing with plenty of deionized water several times; the resultant solid was then
submerged in plenty of deionized water without agitation for 5 h at room temperature to
remove residual PVA. The soaked SA/MXene NMs were dried under vacuum at 60 C and
then sealed for the subsequent adsorption experiments. The designations of the SA/MXene
NMs were made according to the content of MXene in the sample. For example, the sample
denoted SA/MX-0.74 NMs had an MXene content of 0.74 wt.%. For comparison purposes,
SA NMs without MXene were prepared according to the above processes. In addition, SA
beads and SA/MXene beads with 0.74 wt.% of MXene were prepared by dropping the
corresponding solutions into CaCl2 solution (1.0 M) directly, and were denoted as SA-Bs
and SA/MX-Bs, respectively.



Polymers 2023, 15, 2110 4 of 19Polymers 2023, 15, x FOR PEER REVIEW 4 of 20 
 

 

 

Scheme 1. Schematic illustration for the fabrication of SA/MXene NMs. 

2.5. Adsorption Measurements 

The adsorption abilities of the samples towards MB were systematically investigated 

using a water bath shaker (150 rpm). Firstly, MB was dissolved in deionized water to ob-

tain 1000 mg/L stock solution. The effects of operational factors, such as contact time (0–

48 h), pH value of solution (2.0–11.0), initial MB concentration (50–220 mg/L), adsorbent 

dosage (1–5 mg), and adsorption temperature (298–323 K) were evaluated to examine the 

adsorption properties of the samples. The pH value of the MB solution was adjusted by 

0.1 M HCl or 0.1 M NaOH. After the adsorption experiments, the MB concentration of the 

solutions (diluted five times) was measured using UV-vis at room temperature. The ad-

sorption capacity (Qe) and removal efficiency (R) were evaluated by using the following 

expression: 

Qt = 
C0 − Ct

m
 × V, (1) 

Qe = 
C0 − Cm

m
 × V, (2) 

R = 
C0 − Ce

C0
 × 100%, (3) 

where C0 and Ce are the initial and equilibrium concentrations of MB (mg/L), respectively; 

V and m are the volume of the MB solution (L) and the weight of the adsorbent dosage 

(mg), respectively; Qt and Ct are the adsorption capacity (mg/g) and the concentration of 

MB (mg/L) at time t, respectively; and Qe and R are the equilibrium adsorption capacity 

(mg/g) and the removal rate of MB, respectively. 

2.6. Desorption and Regeneration 

After the adsorption experiment, the sample of SA/MXene NMs was separated 

simply with tweezers, rinsed several times with deionized water to remove the MB on the 

surface of the sample, and immersed in 5.0 mL of 5% acidic ethanol for 6 h. After being 

rinsed with deionized water, the samples were subjected to the above elution process 

again to guarantee the complete removal of the MB. Finally, the sample was washed with 

plenty of deionized water and dried under vacuum for subsequent use. During reuse, the 

sample was treated according to the aforementioned procedure after each adsorption.  

Scheme 1. Schematic illustration for the fabrication of SA/MXene NMs.

2.5. Adsorption Measurements

The adsorption abilities of the samples towards MB were systematically investigated
using a water bath shaker (150 rpm). Firstly, MB was dissolved in deionized water to
obtain 1000 mg/L stock solution. The effects of operational factors, such as contact time
(0–48 h), pH value of solution (2.0–11.0), initial MB concentration (50–220 mg/L), adsorbent
dosage (1–5 mg), and adsorption temperature (298–323 K) were evaluated to examine
the adsorption properties of the samples. The pH value of the MB solution was adjusted
by 0.1 M HCl or 0.1 M NaOH. After the adsorption experiments, the MB concentration
of the solutions (diluted five times) was measured using UV-vis at room temperature.
The adsorption capacity (Qe) and removal efficiency (R) were evaluated by using the
following expression:

Qt =
C0 − Ct

m
× V, (1)

Qe =
C0 − Cm

m
× V, (2)

R =
C0 − Ce

C0
× 100%, (3)

where C0 and Ce are the initial and equilibrium concentrations of MB (mg/L), respectively;
V and m are the volume of the MB solution (L) and the weight of the adsorbent dosage
(mg), respectively; Qt and Ct are the adsorption capacity (mg/g) and the concentration of
MB (mg/L) at time t, respectively; and Qe and R are the equilibrium adsorption capacity
(mg/g) and the removal rate of MB, respectively.

2.6. Desorption and Regeneration

After the adsorption experiment, the sample of SA/MXene NMs was separated simply
with tweezers, rinsed several times with deionized water to remove the MB on the surface
of the sample, and immersed in 5.0 mL of 5% acidic ethanol for 6 h. After being rinsed
with deionized water, the samples were subjected to the above elution process again to
guarantee the complete removal of the MB. Finally, the sample was washed with plenty of
deionized water and dried under vacuum for subsequent use. During reuse, the sample
was treated according to the aforementioned procedure after each adsorption.

2.7. Characterization

Scanning electron microscopy (SEM) images were observed on a ZEISS Sigma 300
microscope, operated at 3 kV, 20 C. Prior to the SEM observations, all the samples were
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coated with a thin layer of gold using the Oxford Quorum SC7620 plasma sputtering
apparatus. Transmission electron microscopy (TEM) images were observed on a JEOL
JEM-2100 microscopy, operated at 200 kV, 20 C. Fourier transformation infrared (FTIR)
spectra were obtained on an AV ATAR 370 Thermo Nicolet spectrophotometer from 600
to 4000 cm−1 using KBr pellets. The X-ray diffraction (XRD) patterns were recorded on a
Rigaku Ultima IV diffractometer using CuKα radiation (λ = 0.154 nm), operated at 40 kV
and 40 mA with scan angle from 2θ = 5–80◦ at a scan rate of 10◦ min−1. Ultraviolet-visible
light (UV-vis) spectra were recorded on a Shimadzu UV-2450 spectrophotometer by using a
quartz cuvette with an optical path length of 1 cm at room temperature. Thermogravimetric
(TGA) curves were obtained on a NETZSCH STA 2500 simultaneous thermal analyzer
under nitrogen atmosphere from 25 to 800 C with a heating rate of 10 C min−1. The Zeta
potentials (ζ) were measured by using a MALVERN ZETASIZER NANO ZS90 instrument
at 25 C, the individual potential was measured for three times for accuracy.

3. Results
3.1. Adsorption Performance of Various Adsorbents

Since both d-Ti3C2Tx [26] and Ca2+-crosslinked SA [38] have showed good perfor-
mance in adsorbing MB, the effects of MXene content in SA/MXene NMs on adsorption
performance were investigated first. As shown in Figure 1a, when the MXene content
increased from 0 to 1.11 wt.%, the adsorption capacity gradually increased and reached
maxima of 440 mg/g at an MXene content of 0.74 wt.%, and then dropped to 373 mg/g
at an MXene content of 1.11 wt.%. Surprisingly, the samples of SA/MX-1.11 NMs and
SA/MX-1.84 NMs showed rather low adsorption capacities for MB, which were even lower
than that of the pristine SA NMs (see Figure 1b). The reason for the inferior adsorption
capacities observed for the two samples remains unclear. It is possible that both d-Ti3C2Tx
and SA are electronegative [53,54], which leads to a non-synergistic effect in the range of
certain content levels of MXene. It should be noted that when the content was higher than
1.84 wt.%, the adsorption capacities of the samples exceeded those of the pristine SA NMs
(see Figure 1a). Moreover, the effective adsorption capacities of MXene in SA/MX-2.20 NMs
and SA/MX-3.61 NMs, calculated by subtracting the adsorption capacity of the pristine SA
NMs, were as high as 2045 and 1551 mg/g, respectively, which were much higher than the
adsorption capacity of MXene powder (100 mg/g, see Figure 1b). These results suggest
that the self-restacking level of MXene is relatively low in the samples of SA/MX NMs,
even with the high MXene content presented here.
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Figure 1. (a) MB adsorption performance of SA/MXene NMs with different MXene content. (b) MB
adsorption performance of various adsorbents. (C0 = 50 mg/L, V = 30 mL, T = 298 K, pH = 7.0,
dosage = 3 mg, t = 24 h).

As expected, owing to the self-restacking, the MXene powder showed a relatively
low adsorption capacity of 100 mg/g for MB (Figure 1b), in line with the results reported
previously [26]. The sample of SA-Bs possessed a similar adsorption capacity to that of
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the MXene powder (119 mg/g). It should be noted that the addition of a little MXene
powder led to a dramatic increase in the adsorption capacity. The sample of SA/MX-Bs
with 0.74 wt.% d-Ti3C2Tx showed an adsorption capacity as high as 267 mg/g, four times
higher than that of the reported d-Ti3C2Tx/SA beads with 40 wt.% d-Ti3C2Tx [28], which
implies that, as for the d-Ti3C2Tx/SA composites, a low content of MXene is conducive to
the obtainment of high adsorption capacity for MB. In the case of the samples prepared
via electrospinning processes, the SA NMs and SA/MX-0.74 NMs possessed much higher
adsorption capacities than their spherical counterparts, regardless of whether or not they
had MXene content, due to the fact that the three-dimensional fibrous nanostructures
originating from the electrospinning made it easy for the MB to access the adsorption sites
(vide infra, the photographs of the above adsorbents are shown in Figure S1). Nevertheless,
combining the adsorption capacity for MB with the utilization efficiency of MXene, the
sample of SA/MX-0.74 NMs with 0.74 wt.% d-Ti3C2Tx was chosen for further research.

3.2. Characterization of SA/MX-0.74 NMs

Owing to the high flexibility of the NM materials presented here, their physicochemi-
cal properties could not be measured using a nitrogen adsorption–desorption technique;
therefore, SEM observations were invoked to analyze the evolution of their morphology
as the MXene was incorporated. The pristine SA NMs showed a similar morphology to
the results reported previously [45,48], which comprised large fibers (189 nm) with a few
interconnections at the junctions of the fibers (Figure 2a). As shown in Figure 2b, the sample
of SA/MX-0.74 NMs with 0.74 wt.% MXene possessed a sponge-like morphology with
a thickness of ca. 2 µm (see Figure S2). Careful inspection of the SEM image with high
magnification (Figure 2c) indicated that the sponge-like structure consisted of numerous
fibers with a smaller diameter of ca. 58 nm (Figure 2c) and more interconnections at the
junctions of the fibers as compared with the pristine SA NMs. The XPS spectrum of the
SA/MX-0.74 NMs (Figure S3) showed Ti 2p splitting peaks, indicating that it is the existence
of MXene that changes the morphology of SA/MX-0.74 NMs. In contrast, the SA/MX-Bs
showed a dense structure featuring some irregular micrometer-scale potholes on the surface
(Figure 2d,e). TEM observations indicated that the MXene nanosheets (Figure 2f inset) were
well-dispersed in the fibers of SA/MX-0.74 NMs (Figure 2f). Combining SEM with TEM
observations, it is logical to conclude that the superior adsorption capacity of SA/MX-0.74
NMs, as compared with that of their spherical counterparts the SA/MX-Bs, originates from
the unique sponge-like fibrous structure, which affords numerous adsorption sites and
allows large MB molecules to penetrate the framework easily.

Figure 3A displays the FT-IR spectra of the pristine SA, SA NMs, MXene, and SA/MX-
0.74 NMs. Both the pristine SA and SA NMs showed vibration bands at 2927–2929, 1415–
1417, 1305–1308, 1125–1126, 1091–1095, and 1301 cm−1, which can be assigned, respectively,
to the C-H stretching vibrational modes of pyranose rings, O-C-O symmetric stretching
vibrational modes of carboxylate moieties, C-H deforming vibrational modes of H-C-C
and H-C-O moieties in pyranose rings, C-O stretching vibrational modes of hemiacetal
moieties in pyranose rings, C-C and C-O stretching vibrational modes of pyranose rings,
and C-O stretching vibrational modes of glycosidic bonds [38,55]. After electrospinning
and successive Ca2+-crosslinked processes, the O-C-O asymmetric stretching vibrational
modes of carboxylate moieties at 1615 cm−1 shifted to 1599 cm−1 and the O-H stretch-
ing vibrational modes of hydrogen bonded hydroxyls centered at 3442 cm−1 broadened,
weakened, and shifted to 3354 cm−1 (Figure 3A-a vs. A-b). The former indicated that the
crosslinking mediated by Ca2+ ions had been accomplished. The latter implied that the
hydrogen bond interaction among the hydroxyls of pyranose rings had become stronger,
possibly due to the confinement effect originating from the Ca2+-mediated crosslinking
of the linear polysaccharide structure [56]. The pristine MXene of d-Ti3C2Tx showed O-H
stretching vibrational modes of the hydroxyls at 3449 cm−1, C-O stretching vibrational
modes at 1071 cm−1, and C=O stretching vibrational modes at 1624 cm−1, similar to the
reported results [37,57]. Owing to their relatively low MXene content, the SA/MX-0.74
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NMs showed an almost identical spectrum to that of the SA NMs, except that the O-H
stretching vibrational modes of hydrogen bonded hydroxyls centered at 3354 cm−1 shifted
to 3316 cm−1. In this context, there existed a strong interaction among the O-containing
functional groups of MXene and SA. Indeed, SEM observations had suggested the existence
of a strong interaction between the MXene and SA, in which the addition of a little MXene
led to smaller fibers with more interconnections at the junctions of these fibers.
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The XRD patterns of the pristine SA, SA NMs, MXene, and SA/MX-0.74 NMs are
shown in Figure 3B. The pristine SA exhibited two unambiguous diffraction peaks at
13.8◦and 21.6◦, assigned, respectively, to the (110) plane from the polyguluronate units and
the (200) plane from the polymannonate units, and a broad diffraction peak centered at
39◦, resulting from the amorphous halo (Figure 3B-a) [58,59]. After electrospinning and
successive Ca2+-crosslinked processes, the semi-crystalline structure in the pristine SA
disappeared and the resultant SA NMs showed a broad diffraction peak centered at 21◦,
which was due to the fact that the confinement effect resulted from the Ca2+-mediated
crosslinking destroyed the hydrogen bonding interaction among the linear polysaccharide
chains [28]. MXene showed a diffraction peak at 5.8◦, which is the characteristic (002)
plane of delaminated multilayer Ti3C2Tx [60]. The sample of SA/MX-0.74 NMs doped
with MXene exhibited a similar XRD pattern to the SA NMs, aside from the diffraction
peak of MXene. Carefully inspecting the patterns of the samples of MXene, SA NMs, and
SA/MX-0.74 NMs revealed that, after MXene was combined with SA, the characteristic
(002) plane of MXene shifted from 5.8◦ to 7.2◦ (Figure 3B inset) and the diffraction peak
assigned to amorphous SA became broader (see Figure 3C). Both the decreased interlayer
distance of MXene and the broader amorphous diffraction peak of SA indicated that a
strong interaction existed between MXene and SA, consistent with the SEM and FT-IR
analyses. TGA-DTG curves of the SA NMs and SA/MX-0.74 NMs are shown in Figure 3D.
The sample of SA/MX-0.74 NMs showed almost identical weight losses with those of the
SA NMs. More specifically, the first weight loss, centered at 65 C, was apparently caused
by desorption of physisorbed and chemisorbed water; the second weight loss, centered at
260 C, could be due to the decomposition of pyranose rings; the third weight loss, centered
at ca. 700 C, originated from the thermal decomposition of carbon residues [61].
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4. Adsorption Studies
The Effects of Operational Factors

Since the pH values in the MB adsorption processes would influence the surface
charge and properties of both the adsorbent and adsorbate, the effects of the pH value of
the aqueous MB solution on the adsorption capacity of SA/MX-0.74 NMs were investigated
first and the results are shown in Figure 4a. Under the situation of relatively low pH values,
the sample of SA/MX-0.74 NMs showed inferior adsorption capacities. In these cases,
most of the MB existed in molecular form, as the pKa value of MB is equal to 3.8 [62], and
was reluctant to adsorb on the moieties of the protonated carboxyls and hydroxyls in the
SA/MX-0.74 NMs [63,64]. When the pH value was increased to 5.0, the SA/MX-0.74 NMs
showed a moderate adsorption capacity, which should be a compromise result between
the ionized carboxyls and the competitive adsorption of protons with MB cations [28,63].
Under neutral condition, the highest adsorption capacity was observed for the sample of
SA/MX-0.74 NMs, because the carboxyls of SA were ionized completely, the surface of
MXene became electronegative [28], and the competitive adsorption of protons decreased
dramatically. Similar to previously reported results [65], the alkaline situation went against
the adsorption of MB on the SA/MX-0.74 NMs, which may be due to the Na+ cations
presented here [66]. The evolution of the zeta potentials of the SA/MX-0.74 NMs as the pH
value increased (see Figure S4) further confirmed the above tendency. The SA/MX-0.74
NMs showed zeta potentials close to zero at relatively low pH values and the zeta potential
became lower as the pH value increased. Nevertheless, the above observations suggest that
neutral condition is suitable for SA/MX-0.74 NMs during the adsorption of MB.

As shown in Figure 4b, when the dosage of SA/MX-0.74 NMs was increased from
1 mg to 5 mg, the adsorption capacity for MB decreased gradually, while the corresponding
removal rate increased to ca. 88% at a dosage of 3 mg and then remained unchanged,
provided that the dosage exceeded 3 mg. The higher dosage, the greater the number of
adsorption sites; therefore, the removal rate initially increased with the increase in the
adsorbent dosage. It should be noted that, similarly to previously reported results [65],
the SA/MX-0.74 NMs revealed an MB adsorption-limiting concentration of ~6.5 ppm
within the dosage presented here. In this context, unchanged removal rates were observed
provided that the dosage exceeded 3 mg. Considering the balance between the adsorption
capacity and the removal rate, the dosage of 3 mg appears to be suitable for SA/MX-0.74
NMs. Time-dependent adsorption capacity and UV-vis spectra in the adsorption of MB
over the SA/MX-0.74 NMs are shown in Figure 4c, d, respectively. The adsorption capacity
of the SA/MX-0.74 NMs increased dramatically in the first 5 h, increased slowly in the
range 5–24 h, and remained almost unchanged after 24 h. The above adsorption behavior
was consistent with that previously reported in MXene/SA beads [28].

As shown in Figure 4e, the adsorption capacity increased with the increase of initial
MB concentration, whereas the corresponding removal rate decreased gradually. More
specifically, at concentrations lower than 90 mg/mL, the removal rates were higher than 85%
and the MB concentrations after the adsorption processes were close to the MB adsorption-
limiting concentration of ~6.5 ppm for the adsorbent presented here, which means that the
available adsorption sites were sufficient to reach adsorption equilibrium [61,67]. When the
initial MB concentration was higher than 70 mg/mL, the limitation of adsorption sites led
to a significantly decreased removal rate although the adsorption capacity increased [61,67].
Finally, the effects of adsorption temperature were investigated and the results are shown
in Figure 4f. The adsorption capacity of SA/MX-0.74 NMs decreased with the increase in
temperature from 298 to 323 K, which indicated that the adsorption processes of MB over
the SA/MX-0.74 NMs were exothermic in nature. The unusual relationship between ad-
sorption temperature and adsorption capacity observed for the SA/MX-0.74 NMs possibly
originated from the enhanced interaction of MXene and SA framework at high temperature,
which would reduce the available adsorption sites [61].
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Figure 4. The effects of operational factors on MB adsorption capacity of SA/MX-0.74 NMs.
(a) pH value: cond. pH = 2.0–11.0, C0 = 50 mg/L, V = 30 mL, T = 298 K, t = 24 h, dosage = 3 mg;
(b) absorbent dosage: cond. dosage = 1–5 mg, C0 = 50 mg/L, V = 30 mL, T = 298 K, t = 24 h,
pH = 7.0; (c) adsorption time: cond. t = 0–48 h, C0 = 50 mg/L, V = 30 mL, T = 298 K, pH = 7.0,
dosage = 3 mg; (d) time-dependent UV-vis spectra in the adsorption of MB over SA/MX-0.74 NMs;
(e) initial concentration of MB: cond. C0 = 50–220 mg/L, V = 30 mL, T = 298 K, t = 24 h, pH = 7.0,
dosage = 3 mg; (f) adsorption temperature: cond. T = 298–323 K, V = 30 mL, C0 = 50 mg/L, t = 24 h,
pH = 7.0, dosage = 3 mg.

5. Adsorption Mechanism
5.1. Adsorption Kinetics

The analyses of adsorption kinetics can also permit the inspection of corresponding
adsorption mechanisms, which is of great significance in wastewater treatment. In order
to verify the adsorption mechanism of SA/MX-0.74 NMs, pseudo-first-order and pseudo-
second-order kinetics were invoked to analyze and simulate the adsorption behavior of
SA/MX-0.74 NMs, as shown in Equations (4) and (5), respectively [68].

Pseudo-first-order model:

log(Qe − Qt)= logQe − K1t/2.303, (4)
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Pseudo-second-order model:

t
Qt

=
1

K2Q2
e
+

t
Qe

, (5)

where Qe (mg/g) and Qt (mg/g) are the equilibrium adsorption capacity and the adsorption
capacity at time t, respectively; and K1 (h−1) and K2 (g/mg h) are the rate constants of
pseudo-first-order and pseudo-second-order adsorption, respectively.

Linear plots between time t and log(Qe − Qt)/t/Qe are shown in Figure 5a,b and the
corresponding rate constants and correlation coefficients (R2) are listed in Table 1. Clearly,
the pseudo-second-order model showed a higher correlation coefficient (R2) than that of the
pseudo-first-order model and Qe deduced by the pseudo-second-order model was in good
agreement with the experimental value (440 mg/g). These observations indicated that the
MB adsorption processes over the SA/MX-0.74 NMs followed the pseudo-second-order
kinetic model and were mainly affected by the chemical adsorption mechanism including
ion exchange and/or shared electrons [69].
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Table 1. Parameters of kinetic models for MB adsorption over SA/MX-0.74 NMs.

Qe Exp
(mg/g)

Pseudo-First-Order Model Pseudo-Second-Order
Model

K1
(h−1) Qe (mg/g) R2 K2

(g/mg h)
Qe

(mg/g) R2

440 0.199 231 0.961 1.595 × 10−3 441 0.998

5.2. Adsorption Isotherm

The adsorption isotherm models of Langmuir and Freundlich were invoked to gain
more insights into the relationship between initial MB concentrations and the adsorption
effects. The Langmuir isotherm model assumes monolayer adsorption, wherein the ad-
sorbent surface has the same active site and adsorption energy and there is no interaction
between adsorbate molecules [70]. In contrast, the Freundlich isotherm model is used
to illustrate multilayer adsorption occurring at heterogeneous interfaces [71]. The above
isotherm models can be expressed as the following equations:

Freundlich isotherm:
logQe= logKF +

1
n

logQe, (6)

Langmuir isotherm:
Ce

Qe
=

1
KLQm

+
Ce

Qm
, (7)

where Qm (mg/g) is the maximum adsorption capacity; KF [(mg/g)/(mg/L)1/n] and n are
the Freundlich constant related to the adsorption capacity and adsorption intensity, respec-
tively; and KL (L/mg) is the Langmuir constant related to the maximum removal of energy.

Figure 5c–e displays the Langmuir and Freundlich isotherm models for MB adsorption
over the SA/MX-0.74 NMs at 298 K and the corresponding fitted equilibrium data and
constants with regression coefficients (R2) are presented in Table 2. It can be seen from
Figure 5c, d that the adsorption processes obeyed the Langmuir model very well: the
maximum adsorption capacity of the SA/MX-0.74 NMs for MB reaches 1371 mg/g, as the
regression coefficient (R2) was higher than 0.99 (see Table 2). In contrast, the Freundlich
model with a regression coefficient (R2) of 0.926 did not match the adsorption processes
presented here well (see Figure 5e and Table 2). Indeed, the Langmuir model featuring
monolayer adsorption was in accord with the chemical adsorption mechanism of the
SA/MX-0.74 NMs, as indicated by the analyses of adsorption kinetics.

Table 2. Parameters of isotherm models for MB adsorption over SA/MX-0.74 NMs.

Langmuir Isotherm Model Freundlich Isotherm Model

KL
(L/mg)

Qm
(mg/g) R2 KF

[(mg/g)/(mg/L)1/n] 1/n R2

0.083 1371 0.995 333.236 0.295 0.926

5.3. Intraparticle Diffusion

In order to further study the control steps of the adsorption rate, the Weber–Morris
kinetic model was used to analyze the intraparticle diffusion mechanism, which can be
expressed as the following equation [72]:

Qt= Kwt1/2+C, (8)

where Kw (mg/g h1/2) is the intraparticle diffusion rate constant (Weber–Morris rate
constant); and C (mg/g) is the intercept that responds to the boundary layer thickness.

Figure 5f displays the linear-fitted plot based on the Weber–Morris kinetic model
for MB adsorption over the SA/MX-0.74 NMs and the deduced parameters are listed in
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Table 3. Similarly to the results reported for SA-based adsorbents [28,61], three main steps
occurred in the adsorption processes presented here. Firstly, a rapid adsorption featuring
a high Kw value was observed (Part I, see Table 3), due to the fact that a high number of
unoccupied adsorption sites existed on the adsorbent; secondly, as the adsorption sites
were occupied, the adsorption rate slowed down and a moderate Kw value was observed
(Part II, see Table 3); and finally, the adsorption sites were almost completely occupied and
the adsorption reached equilibrium state (Part III, see Table 3). It should be noted that the
Kw values at Part I and II observed for the SA/MX-0.74 NMs were much higher than those
of SA-based adsorbents [28,61], which suggests that the adsorbent presented here possesses
a higher adsorption rate due to the unique electrospinning-derived three-dimensional
fibrous nanostructure.

Table 3. Parameters of intraparticle diffusion model for MB adsorption over SA/MX-0.74 NMs.

Kw (mg/g h1/2) C (mg/g) R2

Part I 209.89 −84.25 0.976
Part II 34.35 295.63 0.989
Part III 3.31 402.57 0.899

5.4. Adsorption Thermodynamics

In order to explore the spontaneity and feasibility of the adsorption processes, ther-
modynamic parameters, such as standard enthalpy (∆H0), standard entropy (∆S0), and
standard Gibbs free energy (∆G0), were calculated [73] by using the following equations:

Kc =
Qe
Ce

, (9)

∆G0= −RTlnKc, (10)

lnKc =
∆S0

R
− ∆H0

RT
, (11)

where Kc, Qe, and Ce are the equilibrium constant, the equilibrium adsorption capacity of
SA/MX-0.74 NMs (mg/g), and the equilibrium concentration of MB (mg/L), respectively;
R is the gas constant (8.314 J/mol K); and and T is the adsorption temperature. The linear
plot between lnKc and 1/T × 103 is shown in Figure 6a and the calculated thermodynamic
parameters are listed in Table 4.
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Figure 6. (a) Thermodynamic fitting curves of MB adsorption over SA/MX-0.74 NMs (T = 298, 308,
and 318 K); (b) The reusability of SA/MX-0.74 NMs. (A) the photographs of fresh SA/MX-0.74 NMs;
(B) MB-loading SA/MX-0.74 NMs after ten cycles; (C) the regenerated SA/MX-0.74 NMs after
ten cycles.
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Table 4. Thermodynamic parameters for MB adsorption over SA/MX-0.74 NMs.

T (K) ∆G0 (kJ/mol) ∆H0 (kJ/mol) ∆S0 (J/mol K)

298 −10.596
−50.715 −134.629308 −9.250

318 −7.904

The negative values of ∆G0 at all the measured temperatures revealed the spontaneity
of the MB adsorption processes presented here. Moreover, the value of ∆G0 increased with
the increase in temperature, which implies that the higher temperature, the slower adsorp-
tion rate. This result was consistent with the fact that the adsorption processes presented
here are exothermic, as confirmed by negative value of ∆H0 (−50.715 kJ/mol). The nega-
tive value of ∆S0 indicated that the randomness at the solid–solution interface decreased
during the adsorption processes, possibly resulting from a more regular arrangement of
MB molecules on the absorbents in comparison with the situation in aqueous solution.

5.5. Reusability of SA/MX-0.74 NMs

The reusability performance of adsorbents plays a crucial role in practical wastewater
treatment. Following the optimum operational factors (T = 298 K, V = 30 mL, C0 = 50 mg/L,
t = 24 h, pH = 7.0, dosage = 3 mg), the SA/MX-0.74 NMs were separated simply with
tweezers, treated as described in Section 2.6, and then subjected to the subsequent ad-
sorption. As can be seen from Figure 6b, after being reused ten times, the adsorption
capacity and removal rate of the SA/MX-0.74 NMs decreased from 440 to 418 mg/g and
from 88% to 84%, respectively. It should be noted that, even after being reused ten times,
the SA/MX-0.74 NMs showed an MB adsorption capacity as high as 418 mg/g, which is
higher than most of the NM materials reported previously (see Table 5). The fact that both
the adsorption capacity and removal rate of the spent adsorbent that had been reused ten
times could maintain 95% of the rates of the fresh adsorbent revealed that the sample of
SA/MX-0.74 NMs was a rather robust adsorbent in treating MB-containing wastewater.
Indeed, the regenerated SA/MX-0.74 NMs after ten cycles still retained almost identical
morphology to that of the fresh one (see Figure 6b, inset).

Table 5. The equilibrium adsorption capacities of various nanofiber membranes for MB adsorption.

Adsorbents Adsorption Capacity (mg/g) References

PDA@DCA-COOH 61 [49]
Oxidized ECNFs 97 [74]

p(NIPAM-co-β-CD)/p(NIPAM-co-MAA) 132 [50]
CNFs 138 [51]

PVDF/PDA-30 173 [75]
CNFs@CNPs 222 [76]
PVA/Starch 381 [77]

PVA/PAA@PDA-15 446 [78]
Functionalized PES NFM 609 [79]

SA/MX-0.74 NMs 440 This study

5.6. Extended Experiments

As stated above, the sample of SA/MX-0.74 NMs, being a unique adsorbent with an
electrospinning-derived three-dimensional fibrous nanostructure, demonstrated a high
MB adsorption capacity and excellent reusability performance and the adsorption ability
was associated with the electronegative surface of the MXene/SA composite fibers. In
order to verify this electrostatic interaction, the SA/MX-0.74 NMs were subjected to the
adsorption of anionic MO and the results are shown in Figure 7a. Clearly, except for
physical adsorption, the SA/MX-0.74 NMs had no efficiency for adsorbing anionic MO
molecules; indeed, this may be due to repulsive electrostatic interaction. Furthermore, to
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demonstrate the versatility of the electrospinning technique for fabricating highly efficient
biomass adsorbents, an additional CS-containing sample, denoted as SA/CS/MX-0.74 NMs,
was prepared by successively feeding SA/PVA/MXene and CS/PVA/MXene solution into
the electrospinning apparatus. The amine moieties that exist in CS have been reported to
have a high affinity with sulfonate moieties in anionic MO [80]. As shown in Figure 6b, the
SA/CS/MX-0.74 NMs demonstrated a good adsorption performance for adsorbing anionic
MO (325 mg/g, removal rate 65%) or cationic MB (380 mg/g, removal rate 76%). These
results mean that, by designing sophisticated electrospinning processes, it is possible to
fabricate amphoteric adsorbents with both electropositivity and electronegativity.
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Figure 7. (a) UV-vis spectra of MO and MB before and after the adsorption over SA/MX-0.74
NMs; (b) UV-vis spectra of MO and MB before and after the adsorption over SA/CS/MX-0.74 NMs;
(T = 298 K, V = 30 mL, C0 = 50 mg/L, t = 24 h, pH = 7.0, dosage = 3 mg).

6. Conclusions

In summary, a series of novel SA/MXene (d-Ti3C2Tx) composite nanofiber membranes
were fabricated via electrospinning and successive Ca2+-mediated crosslinking processes.
It was found that the content of MXene in the composite nanofiber membranes played a
crucial role in the adsorption performance for adsorbing methylene blue. The adsorption
performance of SA/MX-0.74 NMs with an MXene content of 0.74 wt.% showed an experi-
mental adsorption capacity as high as 440 mg/g, and the maximum adsorption capacity
was calculated as 1371 mg/g by a Langmuir isotherm model. Moreover, the adsorbent
possessed excellent reusability and could be reused ten times without a significant loss of
adsorption activity, as indicated by the fact that both the adsorption capacity and removal
rate of the spent adsorbent could remain at 95% of those of the fresh one. It should be
noted that amphoteric adsorbents with both electropositivity and electronegativity could
be conveniently fabricated by designing sophisticated electrospinning processes, which
demonstrates great potential for electrospinning techniques in fabricating highly efficient
adsorbents associated with wastewater treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15092110/s1, Figure S1, photographs of (a) MXene powder; (b)
SA Bs; (c) SA/MX-0.74 Bs; (d) SA NMs, and (e) SA/MX-0.74 NMs; Figure S2, SEM sectional image of
SA/MX-0.74 NMs; Figure S3, XPS spectrum of SA/MX-0.74 NMs (Ti 2p); Figure S4, zeta potentials
of SA/MX-0.74 NMs under different pH values. Video S1, the water contact angle measurement of
SA/MX-0.74 NMs.
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