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Abstract: Flexible pressure sensors with high sensitivity have great potential applications in wearable
electronics. However, it is still a great challenge to prepare sense electrodes with high flexibility, high
sensitivity, and high electrochemical performance. Here, we propose a novel and simple method
for carbonizing cotton fibers as excellent electrically conductive materials. Moreover, carbonized
cotton fiber (CCF) and polydimethylsiloxane (PDMS) were assembled into a flexible sense electrode.
The CCF/PDMS electrode shows a high sensitivity of 10.8 kPa−1, a wide response frequency from
0.2–2.0 Hz, and durability over 900 cycles. The combined CCF/PDMS sensors can monitor human
movement and pulse vibration, showing the enormous potential for use in wearable device technology.
Additionally, the CCF/PDMS can be used as electrodes with a specific capacitance of 332.5 mF cm−2

at a current density of 5 mA cm−2, thanks to their high electrical conductivity and hydrophilicity,
demonstrating the promising prospect of flexible supercapacitors.

Keywords: carbonized cotton fiber; PDMS; sensor; electrodes

1. Introduction

Flexible, sensitive, and low-cost pressure sensors have attracted considerable interest
for their great potential applications in wearable electronics and intelligent systems [1,2].
Flexible pressure sensors, as a significant subfield of wearable electronics [3], present sub-
stantive potential applications in smart human-machine interaction [4], human structural
health detection [5], and sports performance monitoring [6]. Recently, many reported
studies have focused on four types of representative pressure sensors, which are based
on transistor [7–9], piezoelectric [10–12], capacitive [13–15], and piezoresistive [16–18]
mechanisms. Among these various sensing types, piezoresistive pressure sensors have
attracted increasing attention for their excellent signal-collection capability, straightforward
architecture, and manufacturing procedure [19–22]. Remarkably, it has been shown that
patterning the surface of the sensing layer with microstructures is a successful method
for obtaining a high sensitivity and a low detection limit when making piezoresistive
sensors [8,23–26]. Polydimethylsiloxane (PDMS), with its hyperelastic characteristics, may
be advantageous for usage in various contexts, such as lab-on-a-chip and micro- and nano-
electromechanical systems (MEMS/NEMS) [27,28]. For instance, a capacitive pressure
sensor based on microstructured PDMS sheets had sensitivity in the same pressure range
that was around 30 times greater than the unstructured one [8]. Despite the fact that pure
PDMS has a high deformation capacity, fillers or reinforcements are frequently added
to produce composite materials that typically have a higher stiffness modulus, fracture
toughness, fatigue resistance, tensile strength, and abrasion resistance [29,30].

Although conventional pressure-sensing platforms based on metal-wires and semicon-
ductors have attracted extensive investigation, their rigidity, fragility, low resolution, and
low sensing range limit their applications to wearable pressure sensors [31,32]. In addition,
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various flexible and wearable pressure sensors that are based on nanomaterials have been
successfully developed. Due to their superior electrical and mechanical qualities, nanoma-
terials, such as metal nanoparticles, gold nanowire [33,34], and low-dimensional carbons
(e.g., carbon nanotubes (CNTs) [35,36], carbon black [37], and graphene [38,39]), have been
extensively used in the production of pressure sensors. Nonetheless, the fabrication process
of these sensors is generally costly and complicated and may involve unknown biotoxicity
of nanomaterials, which limits their applications in monitoring human motions. Therefore,
a replacement with biocompatible, biodegradable, eco-friendly, and low-cost properties is
urgently needed.

As the most abundant biopolymer on earth, cellulose is ubiquitous in our daily lives
as a biodegradable and biocompatible template for the synthesis of materials with tailored
functionality [40]. The amount of cellulose in cotton fiber, which may reach 95%, is the
greatest of all lignocellulosic resources. Biomass is now being used to make carbon-based
products since it is affordable, simple to get, sustainable, and ecologically beneficial [41].
Porous carbon from biomass, such as bacterial cellulose, raw cotton, and lignin, has shown
a variety of potential applications in solar energy conversion and storage, super-capacitors,
electromagnetic interference shielding, batteries, and water treatment due to their high
porosity, flexibility, hydrophobicity, and electrical conductivity [42]. Cotton fiber has been
widely used in the textile industry due to its fiber length advantage. Compared to wood
cellulose, cotton has a highly crystalline cellulose component [43]. Despite their superior
mechanical and electrical properties, carbon materials from wood cellulose have not yet
been utilized in designing flexible sensors.

Herein, a straightforward and inexpensive method for creating an extremely sensitive
pressure sensor based on cellulose is described, using carbonized cotton fiber (CCF) as the
conductive filler and polydimethylsiloxane (PDMS) as the polymer matrix. The results
demonstrate that the CCF/PDMS composite shows outstanding mechanical properties and
electrochemical characteristics, which may be useful in the development of compressible
supercapacitors and pressure sensors. This work offers an effective and straightforward
method for creating a compressible and conductive CCF/PDMS composite, demonstrating
the enormous potential for industrialization and mass production.

2. Experimental
2.1. Materials

The cotton fiber was kindly provided by Xinjiang Hongruida Fiber Co., Ltd. (Bazhou,
China). Toluene and PDMS (Slygard 184, Dow Corning, Midland, MI, USA) were purchased
from Beijing LanYi Chem Co., Ltd. (Beijing, China) and utilized directly.

2.2. Preparation of CCF/PDMS Pressure Sensor

Figure 1a illustrates the fabrication process of CCF/PDMS pressure sensors. Deionized
water was used to rinse the cotton fiber to get rid of any solid impurities. The cotton textiles
were preserved for later use in a dry place after being properly dried in a tube furnace with
an environment of inert gas nitrogen (gas flow, 200 sccm purity, 99.999%). The cotton fiber
was heated to 900 ◦C at a rate of 5 ◦C min−1, maintained at that temperature for 120 min,
and then cooled to room temperature within 180 min. After that, the large amounts of
carbonized cotton fiber were crushed and sieved, and the powder (CCF) passed through
200 mesh was gathered and employed as a conductive filler. A simple vacuum infusion
procedure was used to create the CCF composite materials. Initially, the PDMS solution
was created by thoroughly combining 2 g of the main agent (Sylgard 184, Dow Corning)
and 0.2 g of the curing agent. The mixture was then diluted with 6 mL of toluene. The
liquid was then violently stirred for 30 min while 1 g of carbonized cotton fiber was added,
creating a homogeneous suspension. The suspension was then put into a PTFE container
and left in a vacuum chamber at room temperature for 2 h to remove the bubbles and
solvent. The sample was then cured for 3 h at 125 ◦C to create the CCF/PDMS composites.
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Figure 1. (a) Schematic of the fabrication of CCF/PDMS; (b) The chemical structure of cellulose;
(c,d) FESEM images of cotton fiber and CCF; (e) An FESEM image showing the cross-sectional
morphology of the CCF/PDMS; (f) Photograph showing the CCF/PDMS; (g) Raman spectra of
cotton fiber and CCF.

2.3. Characterization

The morphologies and structures of materials were characterized by a field emission
SEM (FE-SEM, FEI Quanta 650). A digital camera was used to take all of the given optical
images (Canon IXUS 70). Using a 532 nm laser at room temperature, a laser Raman
spectrometer (HPRIBA Evolution) examined the Raman spectra. The FTIR spectra of
carbonized cotton fiber were obtained using a PerkinElmer infrared spectrometer (Spectrum
100 with) the method of potassium bromide pellet. An elemental analyzer (CE−440,
PerkinElmer, Waltham, MA, USA) was used to measure the content of elements in CF and
CCF. The resistance of the CCF/PDMS composite was evaluated at room temperature using
a digital multimeter. The electrical conductivity of the CCF and CCF/PDMS composites
was measured at room temperature with a two-probe method using an insulation resistance
meter and a digital multimeter, respectively.

2.4. Electrochemical Measurements

The electrochemical workstation (CHI 660D, Chenhua, Shanghai, China) and micro-
force tester (UTM6503, SUNS CATALOG) were used to examine the pressure-sensing
capabilities of the CCF/PDMS composite, which had a sample of 10 × 10 × 2 mm. The
electrochemical workstation was used to record the electric current under 1.0 V on the
composite. The relative change of resistance (RCR) was computed using the following
formula: ∆R/R0 = (Rp − R0)/R0, where R0 and Rp represent resistance without and with
applied stress, respectively.

The electrochemical performances of CCF/PDMS composites were measured using
a CHI 660D work station (Shanghai Chenhua Instruments Co., Shanghai, China) in a
three-electrode configuration. The working electrode was made by sandwiching a patch
of CCF/PDMS between two pieces of stainless-steel net without the use of any polymer
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binders or additives. The reference and counter electrodes were a saturated calomel elec-
trode (SCE) and a Pt mesh, respectively. At room temperature, electrochemical experiments
were conducted in a 1 M Na2SO4 aqueous solution. Cyclic voltammetry (CV) and gal-
vanostatic charge/discharge (GCD) experiments were performed in the 0 to 1.0 V potential
range. The electrochemical impedance spectroscopy (EIS) curves were measured at the
open circuit potential with a frequency range of 100 kHz to 10 mHz and an amplitude of
5 mV. Moreover, the relevant specific capacitances were determined using Equations (1)
and (2).

CGCD =
I ∆t

m ∆v
(1)

where CGCD (F/g) is the specific capacitance estimated from GCD curves, I (A) denotes
instantaneous current, ∆t (s) denotes the discharge tie, m (g) denotes the mass on the SSF,
and ∆v (V) denotes the potential window in the curve.

CCV =

∫
I (V)dV

m v ∆V
(2)

where CCV (F/g) is the specific capacitance computed from CV curves,
∫

I (V)dV is the
current integrated inside the potential window at a certain scan rate, m (g) is the mass on
the SSF, v (mV/s) is the scan rate, and ∆V (V) is the potential window in the curve.

3. Results and Discussion

The cotton fiber is mainly composed of cellulose. The chemical structure of cellulose
is illustrated in Figure 1b. Cellulose is composed of β-D-glucopyranose units linked by
1, 4-glycosidic bonds [44]. The FESEM images of cotton fiber and carbonized cotton fiber
are displayed in Figure 1c,d. As can be seen, the cotton fiber with a corrugated surface is
composed of highly aligned and intimately bound fibers. The regular strip structure and
alignment in the cotton fiber are well-arrayed with a size of 10–20 µm. After carbonization,
Figure 1d exhibits the randomly oriented and loosely bound fibers in the CCF. It can be
seen in Figure 1e that the conducive fillers (CCF) tightly fill in the non-conductive (PDMS)
portions of the composite. Figure 1g depicts the Raman spectra of carbonized cotton
fiber. It has been widely assumed that the Raman shift around 1360 cm−1 corresponds
to the D peak, which represents defects or heteroatom doping, and that the band near
1580 cm−1 corresponds to the G peak, which represents the crystalline sp2 carbon. These
two bands appear on the CCF. This confirms the formation of graphite-like carbon that can
endow the CCF with good electrical conductivity. The ID/IG ratio is inversely related to the
graphitization and conductivity of carbon materials [45]. According to the result of Gauss
fitting of the Raman spectrum, the intensity ratio of ID/IG is 1.07, indicating that CCF has
greater electrical conductivity.

The changes in carbonization-treated cotton fiber before and after treatment were
analyzed by AIR-FTIR (Figure 2a,b). The characteristic peaks of cotton fiber at 3432 cm−1

and 1033 cm−1 were linked to the O-H stretching vibration and the C-O-C bond of cellulose,
respectively [46]. The C-H stretching and bending of -CH2 groups were represented by
the peaks at 2900 cm−1 and 1430 cm−1, respectively [47]. Moreover, the peak at 1630 cm−1

was attributed to the H-O-H stretching vibration of absorbed water in the carbohydrate.
Compared with cotton fiber with CCF, the FTIR signals corresponding to the functional
groups essentially vanished following carbonization. This is due to the fact that cotton
fibers are composed of millions of cellulose molecules, and in the process of carbonization at
high temperatures, cellulose undergoes dehydration, decarboxylation, and decarbonylation
reactions, releasing H2O, CO2, CO, and other small molecules and transforming into
carbon with a distorted graphite structure [48]. Figure 2c shows the XPS spectrum of cotton
fiber and CCF. These peaks at around 285 eV and 531 eV are assigned to C 1s and O 1s,
respectively. High-resolution XPS of C1s of cotton fibers and CCF and their deconvolution
are shown in Figure 2d,e. The three characteristic peaks are located at 284.3 eV, 285.2 eV,
and 288.3 eV, respectively, corresponding to C-C, C-O, and C=O bonds. It can be seen
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that the content of C-O and C=O in the CCF is significantly reduced, which is mainly due
to the dehydration, decarboxylation, and decarbonylation reactions of cellulose during
pyrolysis [48]. The elemental composition analysis of cotton fiber and CCF is shown in
Table 1. After carbonization, the C content increases from 60.62% to 87.09%, and the O
content decreases from 35.27% to 11.33%, which is consistent with the analysis results of
the infrared spectrum. This indicates that there is a small amount of hydrogen and oxygen
after the carbonization of cotton fiber. However, the CCF has good conductivity, indicating
that the conductivity will not be weakened due to the absence of hydrogen and oxygen
elements. Figure 2f shows the XRD spectra of cotton fiber and CCF. The XRD spectra of
cotton fiber show three diffraction peaks at 14.5◦, 16.7◦, and 22.8◦ corresponding to the
(1–10), (110), and (200) crystalline surfaces of cellulose, representing a typical cellulose I
crystalline structure [49]. After carbonization, the characteristic peaks of cotton fiber almost
disappear, and broad peaks of graphitic carbon appear around 23◦ and 44◦, which proves
that cotton fiber transforms into a graphitic carbon structure after carbonization [50].
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Figure 2. (a) FTIR spectra of cotton fiber and CCF; (b) the amplified spectrum of CCF; (c) XPS spectra
of cotton fiber and CCF; (d,e) high-resolution XPS spectra of C 1 s of cotton fiber and CCF; (f) XRD
spectra of cotton fiber and CCF.

Table 1. Elemental analysis of CF and CCF.

Sample C (%) H (%) O (%) N (%)

CF 60.62 3.53 35.27 0.58
CCF 87.09 1.21 11.33 0.37

Changes (%) 43.67 −65.72 −67.88 −36.21

As shown in Table 2, the conductivity of CCF is 12.21 S m−1, which is lower than that
of graphene [51] and carbon nanotubes [52]. However, the preparation process of CCF
is simple and low-cost, which is conducive to industrial production. The conductivity of
the assembled CCF/PDMS composite film decreased to 0.43 S m−1. The conductivity of
CCF/PDMS composite film mainly comes from conductive CCF. As shown in Figure 3,
with the increase of carbonized cotton pulp fiber, the ∆R/R0 of CCF/PDMS composite
film gradually increases. At the initial stage, the ∆R/R0 of the CCF/PDMS composite
increases rapidly. When it increases to 35%, the ∆R/R0 growth of CCF/PDMS composite
resistance has leveled off. As the CCF continues to increase, the content of PDMS decreases
accordingly. As a result, the adhesion of PDMS becomes weak, which gradually reduces
the flexibility of the CCF/PDMS composite film. Hence, 35% CCF is selected as the main
research object of the following experiment.
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Table 2. Electrical conductivities of CCF and CCF/PDMS composites.

Electrical Conductivity CF Graphene CNT CCF PDMS CCF/PDMS

Average (S m−1) 0 6.6 × 104 [51] 5.15 S cm−1 [52] 12.21 1.25 × 10−11 0.43
Standard Deviation (S m−1) 0 / / 2.03 1.10 × 10−12 0.12
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The response of the CCF/PDMS sensor to multiple compression-relaxation cycles
was recorded and presented in Figure 4. The current-voltage (I–V) characteristic of the
CCF/PDMS sensor was tested at a pressure of 0–50 kPa using a sweeping voltage from
−3 to 3 V. As shown in Figure 4a, all CCF/PDMS I-V curves exhibit a linear response to
continuous stress, indicating an ohmic behavior and constant resistance. The slope of the
I-V curves increases proportionally with pressure, suggesting that resistance decreases with
pressure. Figure 4b depicts the response of the relative change of resistance (RCR) to stress,
which illustrates the pressure sensitivity of the CCF/PDMS sensor. It can be seen that the
RCR response increases rapidly within the range of pressures less than 4.5 kPa. When the
pressure applied to the composite is greater than 4.5 kPa, the increasing trend of the relative
change value of resistance slows down. According to the sensitivity calculation formula,
the sensitivity of CCF/PDMS composites in the range of 0–4.5 kPa pressure is 10.8 kPa−1.
This is higher than the previously reported which is higher than the previously reported
carbon aerogel flexible sensor (0.26 kPa−1) [48], the carbonated fiber/PDMS flexible sensor
(8.4 kPa−1) [53], and the carbon nanotube sensor (4.3 kPa−1) [19]. This is due to the unique
surface profile of CCF particles, and when subjected to stress loads, the profile between
conductive particles in the conductive network on the deformation of the elastic substrate
favors the connection between conductive particles. In addition, the elastic substrate may
simply move on the surface of the CCF without breaking or changing the distance between
them, so that there is a chance for the connections between the two linked conductive
fibers to be retained. Meanwhile, the preparation cost of CCF/PDMS composites is much
lower than that of carbon nanomaterials, which has expanded the application of renewable
cellulose resources. In Figure 4c, there is a strong correlation between the strength of the
responding signal and the pressure input, which is a useful characteristic for pressure
load detection. In Figure 4d, the response of the CCF/PDMS composite during multiple
cycles of compression and relaxation is contrasted. The response behavior of the sensor
is consistent between 0.2–2 Hz, indicating a quick and reliable response. In addition, it
can be seen that the amplitude of RCR at high frequency is much larger than that at low
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frequency, which is due to the fact that at high frequency, a greater amount of stress is
placed on the sensor with fixed strain than at low frequency. Figure 4 depicts the response
of the CCF/PDMS sensor to multiple compression-relaxation cycles. As seen in Figure 4e,
there is little drift and hysteresis between the loading compression wave and the RCR
response of the sensor. Repeatable behavior is significantly important for the application of
sensors. Under a pressure of 10 kPa, the robustness of the CCF/PDMS pressure sensor was
tested (Figure 4f). After nearly 900 cycles, the intensity of the response of the CCF/PDMS
composite remained strong despite repeated compression, suggesting good resilience of
the CCF/PDMS composite to pressure input.
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Figure 4. (a) Current-voltage curves of CCF/PDMS composite under different pressures; (b) Pressure
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Due to its great chemical stability and adjustable mechanical characteristics, PDMS,
a silicon-based elastomer with a repeating unit of SiO(CH3)2, is one of the most often
utilized polymers for flexible devices. By vacuum infusing PDMS into the CCF scaffold,
CCF/PDMS composites were created, taking advantage of the high porosity of CCF. The
CCF/PDMS composite keeps the same dimensions without any apparent voids after curing,
proving that the carbon fiber linkages withstood the infusion process. The CCF/PDMS
composite displays outstanding bendability, as seen in Figure 5a. The conducting routes
and contact resistance between the close-by conducive fillers have an impact on the change
in resistance for a piezoresistive sensor.
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The tunneling principle should be followed, and the contact resistance and conducive
route between the nearly filled particles should determine how the resistance changes.
According to the theory, the tunneling resistance in the CCF/PDMS composite can be
expressed as [54]:

Rtunnel =
V
aJ

=
2
3

h2s
ae2
√

2mϕ
exp
(

4π

h
√

2mϕ s
)

(3)

where s is the distance between CLs in the insulating material, h is Planck’s constant, e is
the quantum of electricity, m is the mass of an electron, J is the tunneling current density, a
is the cross-sectional area of the tunnel, V is the potential difference between the conductive
particle, and ϕ is the height of the potential barrier. According to Equation (3), when
pressure was applied on the CCF/PDMS sensor (Figure 5c), the distance between the
CCF decreased (a decrease of s in the formula), leading to the decrease of the Rtunnel. The
insulator PDMS may be readily distorted in the first stage with the pressure applied since
it is an elastic matrix. Meanwhile, the conductive fibers suddenly contact each other, which
causes a rapid drop in resistance and high sensitivity of the CCF/PDMS composite in the
initial stage. This is consistent with the result in Figure 5b. However, with the increase in
pressure, the deformation of the CCF/PDMS composite gradually increases. PDMS will
resist deforming, and the decrease in distance between the CCF will be limited. Therefore,
the pressure sensitivity is restricted in the high stress phase with a high RCR response.

A cotton fiber-based sensor possesses good flexibility, high sensitivity, and a wide
range of strain gauges, so it was used to explore potential applications for human activities.
In this study, a wearable device made of CCF/PDMS composites was used to assess pulse
rate and strength. As revealed in Figure 6a, a flake-like CCF/PDMS sensor prototype was
attached to the temples to track the human motion of blinking the eyes. It can be observed
that the sensor responded well to the motions of the eyes. Repeated pulse rate signals may
be seen while the eyes blink. This shows the exceptional ability to detect even the most
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subtle changes in the human body. We attached a CCF/PDMS sensor to an index finger
and tested its reaction to finger bending (Figure 6b). When the extended finger was bent to
a specific angle, the relative resistance changes of the strain sensor increased by a given
amount and then stabilized. The resistance decreases during the straightening of the finger,
thus forming a stepped signal. Similar measurements were conducted on an elbow joint
with continual bending, and the strain sensor also showed good performance (Figure 6c).
It can be seen that the sensor switched rapidly at loading and unloading, where the current
value remained nearly the same under the same motion. This demonstrated the ability of
the CCF/PDMS sensor to maintain and monitor large deformations of the human body.
The relative curves are different and distinguishable by comparing the shape and intensity
change of the plot. As shown in Figure 6d, weights of different masses (5 g, 10 g, 20 g, and
50 g) were placed on the surface of the strain sensor to detect the change in pulse rate. The
response to the force on the CCF/PDMS sensor may be used to recognize the weight of
weights. It is seen that the weight of weights can be recognized by the RCR response to
the force used for loading them. The response signal grows in proportion to the weight of
the weights. In addition, muscular action was recorded when speaking. A volunteer was
asked to read different words, such as “Hi, Hello and Cellulose”. For each syllable, the
CCF/PDMS strain sensor displayed a distinct signal pattern. This accurate and sensitive
capability of the CCF/PDMS strain sensor has major applications in smart skin electronics,
personalized health detection, and human-machine interaction.

Polymers 2023, 15, x FOR PEER REVIEW 9 of 13 
 

 

finger and tested its reaction to finger bending (Figure 6b). When the extended finger was 
bent to a specific angle, the relative resistance changes of the strain sensor increased by a 
given amount and then stabilized. The resistance decreases during the straightening of 
the finger, thus forming a stepped signal. Similar measurements were conducted on an 
elbow joint with continual bending, and the strain sensor also showed good performance 
(Figure 6c). It can be seen that the sensor switched rapidly at loading and unloading, 
where the current value remained nearly the same under the same motion. This demon-
strated the ability of the CCF/PDMS sensor to maintain and monitor large deformations 
of the human body. The relative curves are different and distinguishable by comparing 
the shape and intensity change of the plot. As shown in Figure 6d, weights of different 
masses (5 g, 10 g, 20 g, and 50 g) were placed on the surface of the strain sensor to detect 
the change in pulse rate. The response to the force on the CCF/PDMS sensor may be used 
to recognize the weight of weights. It is seen that the weight of weights can be recognized 
by the RCR response to the force used for loading them. The response signal grows in 
proportion to the weight of the weights. In addition, muscular action was recorded when 
speaking. A volunteer was asked to read different words, such as “Hi, Hello and Cellu-
lose”. For each syllable, the CCF/PDMS strain sensor displayed a distinct signal pattern. 
This accurate and sensitive capability of the CCF/PDMS strain sensor has major applica-
tions in smart skin electronics, personalized health detection, and human-machine inter-
action. 

 
Figure 6. The CCF/PDMS sensor was used to monitor human activities: (a) Eye blinking; (b) Finger 
bending; (c) bending-release movement of the elbow; (d) Measurement of power for loading differ-
ent weights (5 g, 10 g, 20 g, and 50 g); (e,f) Measurement of different sound stimuli. 

CCF/PDMS as Electrodes for Supercapacitors 
The GCD, CV, and EIS measurements were performed in a three-electrode arrange-

ment to investigate the electrochemical performance of CCF/PDMS. As revealed in Figure 
7a, the GCD curves of the CCF/PDMS maintain an approximately rectangular form, and 
an internal resistance (IR) drop was detected, which is due to the internal resistance of the 
CCF/PDMS. The CV curves basically remain unchanged at various scan rates from 5 to 
100 mV s−1, indicating that the electrode can maintain good charging and discharging be-
havior. Figure 7b shows the GCD curves of CCF/PDMS at different current densities. It 
can be seen that all curves show triangular and linear shapes, implying typical capacitance 
characteristics of CCF/PDMS. Moreover, according to Equation (1), when the current den-
sity is 1, 2, 3, 5, 7, and 10 mA cm−2, the specific capacitance of CCF/PDMS is 559.9, 468.8, 

Figure 6. The CCF/PDMS sensor was used to monitor human activities: (a) Eye blinking; (b) Finger
bending; (c) bending-release movement of the elbow; (d) Measurement of power for loading different
weights (5 g, 10 g, 20 g, and 50 g); (e,f) Measurement of different sound stimuli.

CCF/PDMS as Electrodes for Supercapacitors

The GCD, CV, and EIS measurements were performed in a three-electrode arrangement
to investigate the electrochemical performance of CCF/PDMS. As revealed in Figure 7a,
the GCD curves of the CCF/PDMS maintain an approximately rectangular form, and
an internal resistance (IR) drop was detected, which is due to the internal resistance
of the CCF/PDMS. The CV curves basically remain unchanged at various scan rates
from 5 to 100 mV s−1, indicating that the electrode can maintain good charging and
discharging behavior. Figure 7b shows the GCD curves of CCF/PDMS at different current
densities. It can be seen that all curves show triangular and linear shapes, implying
typical capacitance characteristics of CCF/PDMS. Moreover, according to Equation (1),
when the current density is 1, 2, 3, 5, 7, and 10 mA cm−2, the specific capacitance of
CCF/PDMS is 559.9, 468.8, 398.4, 332.5, 283.5, and 223 mF cm−2, respectively (Figure 7c).
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The mass specific capacitance of CCF/PDMS is 89.3 F g−1 at a current density of 1 mA cm−2.
In order to study the application of CCF/PDMS composites in flexible electrodes, the
electrochemical performance of CCF/PDMS under different strains was tested. As shown
in Figure 7d, the CV curves under different strains present approximately rectangular
shapes at a scan rate of 25 mV s−1, demonstrating that CCF/PDMS composites can maintain
the capacitance behavior of EDLC under different strains. Figure 7e shows the GCD curves
of CCF/PDMS composites at a current density of 3 mA cm−2. The initial capacitance
retention of the CCF/PDMS composites at different strains (0%, 45%, and 90%) was about
98.3%, 97.6%, and 96.5%. With the increase in strain, the internal resistance of CCF/PDMS
decreases accordingly. To further investigate the electrochemical transfer mechanism of
the CCF/PDMS, the EIS of the CCF/PDMS was conducted from 0.1 to 100 kHz under
various stresses (Figure 7f). A straight line and a conventional semicircle appear in all of the
Nyquist plots. Fitting the impedance data with the equivalent circuit was used to examine
the measured impedance spectra. The equivalent series resistance (ESR) fell from 15.3 to
11.4, signifying improved charge-transfer capacity at the electrode/electrolyte interfaces
and lower ion diffusion resistance. This is due to increased conductivity and a significantly
shorter ion diffusion route at higher stresses.
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under different strains; (f) EIS spectra of CCF/PDMS under different strains.

4. Conclusions

In conclusion, a facile and simple approach is proposed to fabricate the flexible,
conductive, and pressure-sensitive composite material with carbonized cotton fiber and
polydimethylsiloxane (CCF/PDMS). A simple carbonization procedure was devised to
effectively remove oxygen and hydrogen from cotton fiber. The obtained conductivity
of CCF is 12.21 S m−1, and the conductivity of the CCF/PDMS composite is 0.43 S m−1,
with a CCF concentration of 35%. The CCF/PDMS composite shows a high sensitivity
of 10.8 kPa−1, a wide response frequency from 0.2–2.0 Hz, and durability over 900 cycles.
The assembled sensor might be used to detect human activities such as facial expression,
muscle movement, and force requirements. Furthermore, the CCF/PDMS can be used as
electrodes with a specific capacitance of 332.5 mF cm−2 at a current density of 5 mA cm−2.
It is worth noting that the device fabrication process is simple and advantageous for large-
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scale production with low-cost cotton fiber as a raw material. The CCF/PDMS composites
are believed to have promising potential applications in sensors and supercapacitors.
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