
Citation: Srithep, Y.; Pholharn, D.;

Worajittiphon, P.; Sriprateep, K.;

Veang-in, O.; Morris, J. Toughening

Polylactide Stereocomplex by

Injection Molding with

Thermoplastic Starch and Chain

Extender. Polymers 2023, 15, 2055.

https://doi.org/10.3390/

polym15092055

Academic Editors: Andrea Sorrentino

and Roberto Pantani

Received: 8 March 2023

Revised: 6 April 2023

Accepted: 23 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Toughening Polylactide Stereocomplex by Injection Molding
with Thermoplastic Starch and Chain Extender
Yottha Srithep 1,* , Dutchanee Pholharn 2, Patnarin Worajittiphon 3,4 , Keartisak Sriprateep 1,
Onpreeya Veang-in 1 and John Morris 5

1 Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of
Engineering, Mahasarakham University, Mahasarakham 44150, Thailand; keartisaks@hotmail.com (K.S.);
onpreeya.vea@msu.ac.th (O.V.-i.)

2 Department of Rubber and Polymer Technology, Faculty of Science and Technology, Rajabhat Mahasarakham
University, Mahasarakham 44000, Thailand; dutchanee.ph@rmu.ac.th

3 Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
patnarin156@yahoo.com

4 Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
5 School of Industrial Education and Technology, King Mongkut’s Institute of Technology Ladkrabang,

Bangkok 10520, Thailand; john.mo@kmitl.ac.th
* Correspondence: yottha.s@msu.ac.th

Abstract: The high cost, low heat resistance, and brittleness of poly(L-lactide) (PLLA) is a significant
drawback that inhibits its diffusion into many industrial applications. These weaknesses were solved
by forming a polylactide stereocomplex (ST) and blending it with thermoplastic starch (TPS). We
blended poly (L-lactide)(PLLA), up to 30% thermoplastic starch, and a chain extender (2%) in an
internal mixer, which was then hand-mixed with poly (D-lactide)(PDLA) and injection molded to form
specimens, in order to study mechanical, thermal, and crystallization behavior. Differential scanning
calorimetry (DSC) and wide-angle X-ray diffraction (XRD) demonstrated that the stereocomplex
structures were still formed despite the added TPS and showed melting points ~55 ◦C higher than neat
PLLA. Furthermore, stereocomplex crystallinity decreased with the increased TPS content. Dynamic
mechanical analysis revealed that ST improved PLLA heat resistance, and tensile testing suggested
that the TPS improved the elongation-at-break of ST. Moreover, the chain extender reduced the
degradation of ST/TPS blends and generally improved ST/TPS composites’ mechanical properties.

Keywords: polylactide stereocomplex; thermoplastic starch; chain extender

1. Introduction

Polylactide (PLA) demonstrates good mechanical, optical, and barrier properties and
degrades naturally [1]: it has two isomers, poly(L-lactide) (PLLA) and poly(D-lactide)
(PDLA). Blending the PLLA and PDLA enhanced thermal properties and the resistance
to hydrolysis, forming a polylactide stereocomplex (ST), which had a 220 ◦C melting tem-
perature, ~50 ◦C higher than either isomer [2,3]. For a variety of melt processing and
applications, additives that precisely alter the stereocomplex properties of polylactide are
still necessary. In addition, optical purity, polymer chain length, and structure (e.g., degree
of branching) affect the amount of stereocomplex formed [4]. However, compared to com-
modity polymers, PLA has a relatively high production cost and is brittle: developments
in PLA composites to overcome these properties have been reviewed by Li et al. [5] and
Zaaba and Ismail [6].

Increasing PLA toughness and ductility has been addressed by multiple techniques,
including plasticization, copolymerization, and melt blending with various tough poly-
mers [7]. Plasticization is a cost-effective process, but plasticizer migration must be con-
sidered. Physically mixing PLA with ductile and flexible polymers remains an intriguing
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option [8]. Improving PLA’s toughness and ductility by blending it with other polymers,
including polyethylene [9], polyethylene-octene copolymer [10], and synthetic rubbers, for
example nitrile butadiene rubber and ethylene propylene rubber, has been investigated [11].

Blending starch into PLA reduced material costs and increased degradation rates [12].
However, PLA with added starch composites became more brittle due to the coarse struc-
ture and reduced interfacial adhesion [13]. Moreover, since PLA is hydrophobic and starch
is hydrophilic, the two substances interact in quite distinct ways [14]. Plasticizing and
gelatinizing starch before mixing with PLA has improved material adhesion [13]. This gela-
tinized starch or thermoplastic starch (TPS) is deformable and able to be dispersed under a
flow, leading to a dispersed phase containing particles finer than the basic starch. Combin-
ing PLA and TPS can increase the flexibility and elongation at break, which can improve
the toughness significantly. This is a practical and affordable approach [8,13]. However,
TPS accelerated the thermal degradation of PLA due to hydrolysis. Further, PLA and TPS
are incompatible—there is little interfacial adhesion because PLA is hydrophobic, whereas
TPS is hydrophilic [15]. In recent years, numerous studies introduced different materials
to enhance the properties of TPS and PLLA blends. For example, Acioli-Moura et al. [16]
used methylenediphenyl diisocyanate, Xiong et al. [17] studied the use of hexamethylene
diisocyanate (HDI), and Li et al. [12] used chain extenders to improve the properties of
PLLA and TPS blends.

PLA melt strength properties have been improved by reactive blending with a chain
extender, a styrene-acrylic multifunctional oligomeric agent known as Joncryl® to form
long chain branching PLA structures [18]. Joncryl® has been commonly used as a chain
extender in the recycling of polycondensation thermoplastics via a melt processing chain
extension reaction [19,20]. Lendvai and Brenn [21] compared it with maleic anhydride and
blocked hexamethylend diisocyanate (bHDI) and confirmed that it was the most effective
of the three. A chain extender can restore the polylactide molecular weight during the melt
processing [22,23]. In addition, Zhang et al. discovered that the addition of Joncryl® greatly
enhanced the film tensile strength, yield strength, and especially the elongation, with a
250 percent elongation of 70/30 (TPS/PLA) film [24].

Biodegradable polymers must naturally degrade in the environment: PLA and its
blends degrade through multiple mechanisms, including hydrolysis, effect of light, mi-
crobes, and enzymes: the PLA degradation was reviewed by Zaaba and Jaafar [6].

However, there is no study blending polylactide stereocomplex with TPS and using a
chain extender to enhance blend properties. Therefore, we hypothesized that

(a) The polylactide stereocomplex (ST) would have better thermal stability than PLLA;
(b) Thermoplastic starch would create a tougher polylactide stereocomplex;
(c) The multifunctional epoxide group of a chain extender would reduce the stereocom-

plex degradation and enhance the properties of ST/TPS blends.

PLLA, PDLA, TPS, and a chain extender were melt-blended and injection molded.
Differential scanning calorimetry and XRD measured the fraction of the stereocomplex
formed in the blends. Heat resistant and mechanical properties were used to evaluate the
effects of adding the thermoplastic starch and a chain extender. Morphologies, revealed by
SEM images, confirmed the cause of the observed improvements.

2. Materials and Methods
2.1. Materials

The PLLA L175 (Mw = 210 kg/mol, Mw/Mn = 1.84, and GPC analysis based on
polystyrene standard) and PDLA D070 (Mw = 73 kg/mol, Mw/Mn = 1.52, and GPC analysis
based on the polystyrene standard) were purchased from Total Corbion PLA (Thailand) Ltd.,
Rayong, Thailand. The natural rice starch was obtained from the Thai Flour Industry Co.,
Ltd., Bangkok, Thailand. Glycerin (99.9% pure) as a TPS plasticizer was purchased from
Green Global Chemicals Public Company Limited, Bangkok, Thailand. The chain extender
(BASF (Thai) Limited, Bangkok, Thailand, Joncryl® ADR-4370) was an epoxy-functional
styrene acrylic copolymer or oligomeric coupling agent.
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2.2. Sample Preparation

To prepare TPS, natural rice starch, with 25% wt% glycerin, was mixed by hand and
allowed to stand (25 ± 2 ◦C, 24 h). The mixture was then fed to a mixer (HAAKE Polylab OS
system, Thermo Fisher Scientific, Waltham, MA, USA) and melt blended (60 rpm, 200 ◦C,
4 min). In this first stage, TPS was obtained.

PLLA and PDLA, in equal portions, were mixed with TPS (added at 15% and 30% wt%)
and the chain extender (2% wt%) by melt blending and injection molding. Blends with
stereocomplexes demonstrated significantly changed properties (already observed with
additional TPS [25]). Differential scanning calorimetry and XRD analyses measured stereo-
complex formation in the blends. In addition, static and dynamic mechanical properties
were measured, and SEM images were used to confirm morphological changes.

In a second blending, PLLA pellets were dried (vacuum oven, 80 ◦C, five h) and then
mixed with TPS (15 or 30 wt%). Additionally, a chain extender (2 wt%) was added to
reduce the degradation of the stereocomplex in the blends—see Table 1—and blended in
an internal mixer (HAAKE Polylab OS system, Thermo Fisher Scientific, Waltham, MA,
USA, 60 rpm, 200 ◦C, 4 min). After discharge, the molten mixture was granulated.

Table 1. Compositions of blended samples.

Sample PLLA (wt%) PDLA (wt%) TPS (wt%)

PLLA 100 0 0
TPS 0 0 100
ST 50 50 0
ST + 15%TPS 42.5 42.5 15
ST + 30%TPS 35 35 30
ST + 15%TPS + 2%CE 41.5 41.5 15
ST + 30%TPS + 2%CE 34 34 30

PLLA or PLLA/TPS/CE were hand-mixed with PDLA following the compositions
shown in Table 1. Blends were then injection molded (ING-58T, Chareon Tut Co., Ltd.,
Samutprakarn, Thailand) to form tensile testing bars (ASTM D638 Type I) and flexural
bars (ASTM D790, 125 mm × 12.7 mm × 3.2 mm). The nozzle temperature of the injection
molding machine was set at ~225 ◦C. Pure PLLA and TPS bars were prepared as references.

2.3. Material Characterization
2.3.1. Gel Permeation Chromatography

The weight-average molecular weights (Mw) for pure PLLA and PDLA were measured
by gel permeation chromatography. A total of ~7.5 mg samples were dissolved in 3 mL
of THF at room temperature and passed through a 0.2 mm PTFE membrane filter. Then,
100 mL specimens were injected into a Shimadzu RDI-10A chromatograph (Shimadzu
Corporation, Tokyo, Japan) with a reflective index (RI) detector, with 1.0 mL/min flow, and
calibrated with a polystyrene standard.

2.3.2. Differential Scanning Calorimetry (DSC)

Thermal properties were determined by differential scanning calorimetry (DSC 4000,
Perkin Elmer, Waltham, MA, USA). A total of 4–5 mg specimens in Al pans were heated
from 0 to 250 ◦C at 10 ◦C/min. Temperatures for glass transition, Tg, cold crystallization,
Tcc, homo-melting, Tm,hc, and stereocomplex melting, Tm,st, and associated enthalpies,
∆Hcc, ∆Hm,hc, and ∆Hm,st, were recorded. The degree of crystallinity, Xc, for both the
homo- and stereocomplex-crystals was calculated from [26,27]:

Xc (%) =
∆Hm,hc + ∆Hm,st − ∆Hcc

w × ∆H0
m(blend)

× 100% (1)
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where the melting enthalpies, ∆Hm,hc and ∆Hm,st, were measured for pure crystallites and
stereocomplex crystallites, ∆Hcc is the cold crystallization enthalpy, and w is the mass
fraction of the stereocomplex in the polymer blends. H0

m(blend) is the theoretical melting
enthalpy for perfect crystals, calculated from:

H0
m(blend)= H0

m,hc × fhc + H0
m,st × fst (2)

where H0
m,hc and H0

m,st are the enthalpies of homocrystallites (93.6 J/g) and stereocomplex
crystallites (142 J/g). ƒhc and ƒst are the fractions of homo- and stereocomplex crystallites:

fhc =
∆Hm,hc

∆Hm,hc + ∆Hm,st
(3)

fst =
∆Hm,st

∆Hm,hc + ∆Hm,st
(4)

The stereocomplex crystallinity, Xst, was calculated from:

Xst (%) = Xc × ƒst (5)

2.3.3. X-ray Diffraction Analysis

X-ray diffraction (XRD) measurements used a Bruker/D8 Advance (BrukerBioSpin
AG, Waltham, MA, USA) to investigate the crystal structure of the blended samples. XRD
samples were taken from injection-molded specimens and mounted on the XRD platform
for the analysis. Scans covered 2θ from 5◦ to 40◦ in the refraction mode at 2◦/min, using a
computer-controlled wide-angle mode goniometer. X-rays were generated in a sealed tube
Cu Kα source and passed through a thin Ni filter.

2.3.4. Scanning Electron Microscopy (SEM)

Images of fractured surfaces were captured with a scanning electron microscope (HI-
TACHI TM4000Plus, Hitachi, Ltd., Tokyo, Japan, 10 kV acceleration voltage). Tensile testing
bars were frozen in liquid nitrogen, fractured, and sputter-coated with a ~20 nm Au layer.

2.3.5. Thermogravimetric Analysis (TGA)

Thermal data was recorded isothermally at a constant temperature (320 ◦C, 60 min) or
non-isothermally with heating at a constant 10 ◦C/min rate up to 600 ◦C in a TGA 4000
system (Perkin-Elmer, Waltham, MA, USA). A total of ~10 mg of each sample (conditioned
at 25 ◦C, 50% relative humidity) was used. The mass loss was recorded and normalized
versus the initial mass.

2.3.6. Dynamic Mechanical Analysis (DMA)

Dynamic mechanical properties were measured with a TA Q800 DMA machine (TA
Instruments, New Castle, DE, USA) in three-point bending mode. Injection-molded parts
were cut into specimens (~17.6 mm × ~12.7 mm × ~3.2 mm), which were heated at
3 ◦C/min from 30 ◦C to 150 ◦C and mounted so that they were deflected by 0.01% of their
length at 1 Hz.

2.3.7. Heat Resistance Analysis

A qualitative test for heat resistance used straight flexural bars, first set in a frame,
heated at 100 ◦C for 30 min to observe a specimen deformation under its own weight.

Moreover, a dynamic mechanical analyzer (TA Instruments DMA Q800, New Castle,
DE, USA) operated with three-point bending clamps in the DMA controlled force mode
under a 0.45 MPa load. The deflection was recorded with a 2 ◦C/min heating rate from 30
to 100 ◦C.
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2.3.8. Tensile Testing

Tensile testing followed ASTM D638-10 in an NRI-TS501 universal testing apparatus
(Narin Instrument Co., Ltd., Bangkok, Thailand). Tensile testing on all specimens used an
initial 0.5 N load and a constant 10 mm/min crosshead speed. Means from five replicates
were measured.

2.3.9. Impact Testing

Following ASTM D256, notched Izod impact testing used injection-molded samples.
Rectangular specimens measuring roughly 63.5 mm × 12.7 mm × 3.2 mm were cut. Five
samples from each sample group were examined, and the mean results were reported.

3. Results
3.1. Injection Molding of Blends

When PLLA and PDLA were hand mixed and then injection molded at 180 ◦C, the
materials stuck within the injection molding machine, and fine solid particles were extruded
from the machine’s nozzle—see Figure 1a. This indicated that stereocomplex material,
which had a melting point higher than 200 ◦C (cf. 3.2 and 3.3), was formed as the injection
molding blended PLLA and PDLA. The particles had a high crystallization rate and
solidified immediately at the 180 ◦C molding temperature [3]. However, when the molding
temperature was 225 ◦C, tensile bars and flexural specimens could be produced. Figure 1b
shows bars of as-molded blends. The TPS sample was brownish and had a high shrinkage
rate, which could limit its utility [28]. The dark color was the result of slight thermal
degradation. On the other hand, the blend of TPS with the stereocomplex did not shrink
and was lighter in color. The color was observably lighter when the 2% chain extender (CE)
was blended into the composites. This was attributed to the effect of the epoxy groups in
the copolymer, which extended the chains, enhanced the molecular weight, and reduced
the degradation of stereocomplex/TPS blends. Najafi et al. reported that the chain extender
(Joncryl) significantly increased the PLA molecular weight [29].
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Figure 1. (a) Appearance of hand-mixed PLLA and PDLA, injection molded at 180 ◦C and
(b) injection-molded samples formed at 225 ◦C with varying amounts of TPS and 2% chain extender.

3.2. Thermal Properties

DSC measured crystallization and melting behaviors: the thermograms are shown
in Figure 2, and extracted parameters are in Table 2. Figure 2 shows that PLLA exhibited
three thermal steps: (1) glass transition, Tg ~60 ◦C, (2) cold crystallization (95–120 ◦C), and
(3) endothermic fusion (melting peak, Tm, maximum 155–175 ◦C). Cold crystallization was
observed because, during injection molding, PLLA crystallization was hampered by the
high cooling rate, so when PLLA was reheated during the DSC test, some mobility was
recovered, and it crystallized again [30].
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Table 2. Thermal characteristics of the blends.

Sample Tg (◦C)
Cold Crystallization Melting Homocrystal (hc) Melting Stereocomplex

Crystal (st) %Xc
a %Xst

b

Tcc (◦C) ∆Hcc (J/g) Tm,hc (◦C) ∆Hm,hc (J/g) Tm,st (◦C) ∆Hm,st (J/g)

PLLA 61.8 87.4 22.2 173.4 49.5 - - 29.0 -
ST 56.3 74.9 2.6 - - 224.1 71.6 48.2 48.2
ST + 15TPS 58.5 79.9 7.2 164.9 3.0 225.4 61.6 48.3 46.1
ST + 30TPS 61.4 84.5 7.0 165.8 7.3 228.0 48.9 51.8 45.1
ST + 15TPS + 2CE 59.1 85.8 9.7 167.1 6.0 228.9 51.2 40.8 36.5
ST + 30TPS + 2CE 58.0 86.0 16.9 165.8 7.4 214.9 42.9 35.4 30.2
TPS - - - 84.9 158.2 - -

a calculated from Equation (1). b calculated from Equation (5).

However, although the PLLA and PDLA blend (polylactide stereocomplex; ST) had a
similar glass transition, Tg ~60 ◦C, endothermic peaks, observed from 208 to 230 ◦C, were
assigned to the stereocomplex crystallite melting: since they appeared ~50 ◦C higher than
the PLLA peak, they confirmed a complete stereocomplex crystallite formation, i.e., no
homocrystallites formed. The Tm of pure ST was 224.1 ◦C, melting enthalpy 71.6 J/g, and
degree of crystallinity, Xst = 50.4%—see Table 2. However, the cold crystallization transition
of the stereocomplex almost disappeared, suggesting a higher crystallization rate for the
stereocomplex than the pure PLLA after injection molding [3].

Figure 2 also shows thermograms of injection-molded polylactide stereocomplex (ST)
blended with 15% and 30% TPS. The samples show two Tm peaks at 164–165 ◦C, assigned to
melting homocrystallites, ∆Tm,hc, and the melting of stereocomplex crystallites, ∆Tm,sc, at
214–228 ◦C. The homocrystallite melting enthalpies were much lower than stereocomplex
crystallite melting enthalpies, indicating the forming of mostly stereocomplex crystals.
Since the TPS was mostly amorphous, the ST-TPS blends decreased the stereocomplex
melting enthalpy. Therefore, the higher TPS content led to a lower degree of crystallinity.

Moreover, the effect of 2% CE on the thermal properties of ST/TPS blends is also shown
in Figure 2 and Table 2. After introducing the chain extender, the increased molecular
weight of the stereocomplex restricted chain mobility. The lower crystalline content was
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expected, as some of the PLA chains appeared in grafted structures, with multiple chains
attached to a single chain extender molecule. For ST + 30TPS blends without a chain
extender, the crystallinity of stereocomplex crystallites, Xst, was estimated at 45%, but
adding the chain extender decreased Xst to ~30%.

3.3. XRD Analysis

The crystal structure was determined from XRD spectra at room temperature. Figure 3
shows that pure PLLA was essentially amorphous: a broad halo was observed, 2θ ≈ 16◦,
with a small peak at ~16.2◦ indicating a small amount of crystalline PLA [30]. The high
cooling rate during injection molding partially prevented PLLA from crystallizing.
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~23.5◦) assigned to stereocomplex crystal planes [3]: these positions matched reported val-
ues [1,31]. This phenomenon also demonstrated that adding PDLA significantly increased
their crystallization rate [32]. Stereocomplexes with added TPS showed the same peaks,
but their intensity decreased with the increasing TPS content. According to Li et al. [33], the
addition of TPS decreased the PLA melting enthalpy gradually. Further, when the chain
extender was added, all peaks gradually became smaller. As the chain extender was added
to ST/TPS composites, the increased PLA molecular weight also slowed crystallization
and led to a lower final crystallinity. As multiple PLA chains were grafted to a single chain
extender molecule, the crystalline content decreased as expected [12]. This confirmed a
similar degree of crystallinity to that observed in DSC thermograms.

3.4. Thermal Stability

PLA and TPS were very sensitive to high temperatures. Thermogravimetric analysis
(TGA) curves were used to investigate thermal stability and decomposition. The remaining
weight of the injection-molded samples measured non-isothermally is shown in Figure 4.
TGA results confirmed that adding TPS lead to increased degradation. The onset degrada-
tion temperatures of the ST/TPS composites decreased with the addition of TPS. TPS had
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an approximately 10% char yield above 400 ◦C. We conducted the isothermal measurements
at constant 325 ◦C holding temperatures to explore the thermal degradation behavior and
stability in more detail.
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Figure 4. Nonisothermal measurement of the percentage of remaining weight of PLLA, TPS,
ST/TPS/CE at a constant 10 ◦C/min heating rate.

Isothermal measurements used a constant holding temperature of 320 ◦C. Figure 5
shows the remaining fractional mass versus time. Table 3 lists the temperatures derived
from the TGA thermograms corresponding to 30% mass loss. The blend of PLLA/PDLA
(ST) had a slightly higher thermal stability and lower mass loss. Accordingly, the PLLA
thermal degradation resistance was enhanced by the stereocomplex structure. The 30%
(T30%) weight loss was reached at 32.9 min for PLLA, but it took 35.2 min for ST. The
interaction between PLLA and PDLA chains may arise from their 103 or 31 helical confor-
mations in the crystallized state. In these helical states, the interaction between the left
and right-handed helices of PLLA and PDLA in their blended film must be stronger than
that between chains with the same helical direction in pure PLLA and PDLA, resulting in
decreased chain mobility and enhanced thermal stability of the stereocomplex film. Similar
behavior in isothermal degradation tests of PLLA and the stereocomplex were reported
previously [3,34].

Figure 5 also shows the TPS thermal stability. The TPS mass loss was notable, but it was
expected, since naturally sourced components burn at lower temperatures than synthetic
ones, such as PLA. For ST/TPS blends, the mass loss lay between that for ST and TPS and
was more pronounced when the amount of TPS was higher. The T30% of ST + 15%TPS
was ~6.7 min, whereas it was ~2.6 min for ST + 30%TPS. Petinakis et al. found that small
molecules, including CO, CO2, H2O, CH4, C2H4, and CH2O, were produced as starch
decomposed, and they concluded that these molecules triggered the PLA chain scission [7].
Shi et al. reported that with the increased TPS content, the thermal decomposition of TPS
also increased, whereas the decomposition temperature of PLA/TPS decreased [35].
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Table 3. Thermal loss points for ST, TPS, and ST/TPS blends.

Sample T30% (min)

PLLA 32.9
ST 35.2
ST + 15TPS 6.7
ST + 30TPS 2.6
ST + 15TPS + 2CE 22.7
ST + 30TPS + 2CE 19.9
TPS 0.7

When the 2% chain extender was added to the ST/TPS blend, thermal stability dramat-
ically increased. The time at 30% mass loss, T30%, rose from 2.6 min for a sample without
the chain extender (ST/30TPS) to 19.9 min with the chain extender (ST/30TPS/CE); thus, it
reduced degradation in the ST/TPS blend.

3.5. Morphology

Figure 6 shows stereocomplex blend (ST/TPS/CE) SEM images. For the pure stere-
ocomplex and TPS, the observed smooth fracture surfaces in Figure 6a,b were typical
of brittle fractures caused by freezing. In contrast, the stereocomplex plus TPS blends
(ST + 15%TPS (Figure 6c) and ST + 30%TPS (Figure 6d) had distinct phases, confirming
previous reports [12]. A coarse dispersion was observed with particle sizes ranging from
1–2 µm. We checked whether the epoxy-based chain extender interacted with the hy-
droxyl groups on the TPS macromolecules and thus played a role at the blend interface.
Moreover, adding the 2% chain extender showed slightly increased compatibility, so the
dispersed phase became slightly less extensive (see Figure 6e—ST + 15%TPS + 2%CE and
6f—ST + 30%TPS + 2%CE). Similar effects were observed with PLLA/TPS blended with a
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chain extender, which mostly reacted with PLLA chain ends and did not create any graft
copolymer of PLLA with TPS [12].
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3.6. Mechanical Properties

Representative stress–strain curves of ST blended with the starch and chain exten-
der are shown in Figure 7. Tensile modulus, tensile strength, and strain-at-break were
measured—see Table 4. PLLA had a higher molecular weight than PDLA: the weight aver-
age Mw of PLLA was ~210 kg/mol, whereas it was lower for PDLA at ~73 kg/mol. Figure 6
and Table 4 show that PLLA had the highest tensile strength (54.9 MPa) and modulus. On
the other hand, the tensile strength of injection-molded PLLA blended with the PDLA
blend (stereocomplex) was 22.9 MPa. The reduction in tensile strength, and strain-at-break
of PLLA, when blended with 50% PDLA, was attributed to the lower PDLA molecular
weight. Moreover, Tsuji and Ikada [36] reported a significant difference in film shrinkage
between the PLLA/PDLA blend (stereocomplex) and nonblended film. The blended film
showed a diameter shrinkage of 15%, while the nonblended film shrank only 3%, which
was attributed to the higher density of the microcrystallites in stereocomplex compared to
spherulites in nonblended samples. In this study, this shrinkage in stereocomplex samples
caused a warp in injection-molded samples and reduced the tensile properties compared to
neat PLLA.

The stereocomplex tensile strength and strain-at-break increased when blending with
TPS, i.e., with TPS in the stereocomplex, the films were tougher. Przybytek et al. [25]
also noted that the thermoplastic starch embedded in the matrix increased flexibility and
reduced strength. The increased strength of the stereocomplex when blending with TPS was
attributed to the lower amount of PDLA, which had a lower molecular weight. Moreover,
TPS reduced the shrinkage and warp due to stereocomplex crystallites. The tensile strength
of the stereocomplex increased from 22.9 MPa to 41.2 MPa after blending with 30% TPS.

Furthermore, adding the chain extender improved the tensile properties of ST/TPS
blends. In general, PLA with an added chain extender was found to have a higher molec-
ular weight and better mechanical properties [22]: chain extenders react and rejoin the
broken chains of both hydroxyl (-OH) and carboxyl groups (-COOH) of PLA during melt
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processing, leading to an improvement in tensile properties. For ST + 15%TPS, the ultimate
tensile strength was 32.6 MPa, but with the chain extender, it increased to 38.2 MPa.

Table 4 also shows the impact strength of the seven ST blends and TPS. As observed,
the mixture containing a greater proportion of TPS displayed a greater impact strength.
Similar results were reported in the earlier study by Przybytek et al., who showed that
mixing TPS and PLA led to a small increase in the impact strength [25]. Additionally, the
blend of chain extenders (CE) and ST/TPS increased the impact strength. Zhang et al.
discovered that the chain extender (Joncryl®) enhanced the mechanical characteristics of
PLA/TPS blends [24]. The increased mechanical properties in ST/TPS blends with chain
extenders (CE) were attributed to the decrease in ST degradation and improvement in the
interfacial adhesion between ST and TPS.

Polymers 2023, 15, x  12 of 17 
 

 

Table 4 also shows the impact strength of the seven ST blends and TPS. As observed, 
the mixture containing a greater proportion of TPS displayed a greater impact strength. 
Similar results were reported in the earlier study by Przybytek et al., who showed that 
mixing TPS and PLA led to a small increase in the impact strength [25]. Additionally, the 
blend of chain extenders (CE) and ST/TPS increased the impact strength. Zhang et al. dis-
covered that the chain extender (Joncryl®) enhanced the mechanical characteristics of 
PLA/TPS blends [24]. The increased mechanical properties in ST/TPS blends with chain 
extenders (CE) were attributed to the decrease in ST degradation and improvement in the 
interfacial adhesion between ST and TPS. 

 
Figure 7. Stress vs. strain for stereocomplex and TPS blends: “+2CE” labels samples with 2wt% chain 
extender added. 

Table 4. Mechanical properties of ST/TPS blends. 

Sample Ultimate Tensile 
Strength (MPa) 

Tensile Modulus 
(MPa) 

Strain at Break 
(%) 

Impact Strength 
(kJ/m2) 

PLLA 54.9 ± 3.2 2734 ± 217 6.0 ± 0.3 1.4 ± 0.08 
ST 22.9 ± 1.7 2866 ± 234 1.5 ± 0.2 0.9 ± 0.05 
ST + 15TPS 32.6 ± 2.6 1993 ± 147 8.2 ± 0.5 2.1 ± 0.1 
ST + 30TPS 41.2 ± 3.4 1751 ± 132 17.5 ± 2.4 4.2 ± 0.2 
ST + 15TPS + 2CE 38.2 ± 2.5 22340 ± 202 10.5 ± 0.8 3.2 ± 0.2 
ST + 30TPS + 2CE 41.7 ± 2.5 1939 ± 157 36.7 ± 2.7 8.1 ± 0.4 
TPS 6.7 ± 0.3 738 ± 54 50.8 ± 4.2 NB 1 
1 NB, not broken. 

3.7. DMA Analysis 
Figure 8 displays storage moduli vs. temperature curves. With the increasing tem-

perature, PLLA first exhibited a glassy state, then a glass transition and cold crystalliza-
tion. In the glassy state, −30 to 60 °C, PLLA exhibited the highest storage modulus, which 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Strain (%)

St
re

ss
 (M

Pa
)

PLLAPLLA

ST+30TPSST+30TPS

TPSTPS

ST+15TPSST+15TPS

ST+30TPS+2CEST+30TPS+2CE

STST

ST+15TPS+2CEST+15TPS+2CE

TPS

Figure 7. Stress vs. strain for stereocomplex and TPS blends: “+2CE” labels samples with 2wt% chain
extender added.

Table 4. Mechanical properties of ST/TPS blends.

Sample Ultimate Tensile
Strength (MPa)

Tensile Modulus
(MPa)

Strain at Break
(%)

Impact Strength
(kJ/m2)

PLLA 54.9 ± 3.2 2734 ± 217 6.0 ± 0.3 1.4 ± 0.08
ST 22.9 ± 1.7 2866 ± 234 1.5 ± 0.2 0.9 ± 0.05
ST + 15TPS 32.6 ± 2.6 1993 ± 147 8.2 ± 0.5 2.1 ± 0.1
ST + 30TPS 41.2 ± 3.4 1751 ± 132 17.5 ± 2.4 4.2 ± 0.2
ST + 15TPS + 2CE 38.2 ± 2.5 22,340 ± 202 10.5 ± 0.8 3.2 ± 0.2
ST + 30TPS + 2CE 41.7 ± 2.5 1939 ± 157 36.7 ± 2.7 8.1 ± 0.4
TPS 6.7 ± 0.3 738 ± 54 50.8 ± 4.2 NB 1

1 NB, not broken.
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3.7. DMA Analysis

Figure 8 displays storage moduli vs. temperature curves. With the increasing temper-
ature, PLLA first exhibited a glassy state, then a glass transition and cold crystallization. In
the glassy state, −30 to 60 ◦C, PLLA exhibited the highest storage modulus, which later
decreased between 60 and 80 ◦C, in the glass transition, to a more flexible state [30]. Then,
between 90 and 110 ◦C, the modulus started to increase due to the cold crystallization of
the PLLA (cf. Figure 2): this increase in crystallinity increased the PLLA rigidity.
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Whereas the stereocomplex had a slightly decreased storage modulus, matching
the tensile properties. However, the subsequent drop in the storage modulus in PLLA
disappeared with the stereocomplex formation. This suggested that PDLA allowed crystal-
lization during injection molding. Srithep et al. reported that PDLA strongly affected the
PLLA crystallization [32].

Figure 8 also shows the storage moduli of TPS and ST/TPS blends. TPS had the lowest
storage modulus, did not show any phase transitions in the measured temperature range,
and gradually decreased the modulus with temperature. For the ST/TPS blends, the storage
modulus did not differ significantly at room temperature, but more TPS led to a decrease in
the storage modulus during the glass transition region—60–80 ◦C, which indicated a higher
cold crystallization enthalpy (cf. Table 2). Moreover, as shown in Figure 7, the addition of a
chain extender led to similar trends to those without it, although it slightly increased the
storage moduli of the ST/TPS blends.

Figure 9 shows the tan δ curves. The area below the tan peak shows the materials’
damping capacity to absorb and disperse energy. As can be observed in Figure 9, the
highly crystalline ST had less energy absorbing and damping ability than the amorphous
specimens. The increased crystallinity increased the rigidity of the specimens. Additionally,
the ST specimen area beneath the tan δ peak grew as the TPS content increased, indicating
that TPS was less effective at absorbing energy than ST. In the ST/TPS composites, adding
2% chain extender generated a similar change in the region behind the tan δ peak. The peak
of the tan δ curves in Figure 9 also indicates the glass transition temperature of the blends.
One can also observe that the glass transition temperature from the DMA experiment of
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the blended samples was similar, around 72 ◦C, which was higher than that from the DSC
experiment because the DSC heating rate was faster, at 10 ◦C/min.
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3.8. Heat Resistance

Injection-molded samples were set up as shown in Figure 10a and placed in an oven
at 80 ◦C to observe the heat resistance and deformation. Figure 10b shows that only pure
PLLA (the first specimen), which had the lowest degree of crystallinity, obviously deformed
at 80 ◦C. However, no stereocomplex or blend with TPS deformed in this test. This indicates
that the combination of PLLA and PDLA led to better heat resistance, as the stereocomplex
formation caused a higher degree of crystallinity. Other ST/TPS/CE samples also showed
very little or no deformation, suggesting a better heat-resistant behavior.
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Moreover, Figure 11 depicts the deflection of the PLLA, TPS, ST blended with TPS,
and chain extender under a 0.45 MPa load as the temperature increased. It is evident that
the PLLA deflected rapidly at around 60 ◦C, which corresponds to the glass transition tem-
perature of PLLA (c.f. Table 2). This result is reasonable because the deflection temperature
of a polymer with low crystallinity is close to its Tg [37]. On the other hand, TPS deflected
progressively as the temperature increased. From Figure 8, at 80 ◦C, the TPS modulus was
higher than PLLA. Therefore, as Figure 10 shows, TPS did not clearly deform like PLLA
at 80 ◦C. For the blend of ST and TPS, the higher amount of TPS demonstrated a higher
deflection but the addition of chain extender did not cause a significant difference in the
heat resistance.
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4. Conclusions

Samples made from the polylactide stereocomplex blended with the thermoplastic
starch (TPS) and chain extender were prepared by injection molding. Despite adding up
to 30% TPS, the PLA stereo composites formed a stable stereo composite structure, and
the melting point was 55 ◦C higher than that of pure PLLA. Wide angle X-ray diffraction
demonstrated that the crystallinity of the stereocomplex decreased with increasing TPS
content and further decreased when a chain extender was added. With the increased TPS
content, the tensile stress increased, and the strain-at-break increased. With the addition of
the 2% chain extender in the ST + 30%TPS sample, the elongation at the break increased
steadily, reaching 36%. The thermal stability of the stereocomplex and TPS blends was
improved through chain elongation reactions, thus improving the mechanical properties of
the composites.
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