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Abstract: Functionally graded CNT (carbon nanotube)-reinforced composites (FG-CNTRCs) are
intensively studied because the mechanical behaviors of conventional composites can be dramatically
improved. Only a small amount of CNTs are appropriately distributed through the thickness.
However, the studies on conical shell panels have been poorly reported when compared with beams,
plates and cylindrical shells, even though more parameters are associated with the mechanical
behaviors of conical shell panels. In this context, this study intends to profoundly investigate
the free vibration of FG-CNTRC conical shell panels by developing an effective and reliable 2-D
(two-dimensional) numerical method. The displacement field is expressed using the first-order
shear deformation shell theory, and it is approximated by the 2-D planar natural element method
(NEM). The conical shell surface is transformed into the 2-D planar NEM grid, and the approach for
MITC3+shell element is employed to suppress the shear locking. The developed numerical method
is validated through the benchmark experiments, and the free vibration responses of FG-CNTRC
conical shell panels are investigated with respect to all the associated parameters. It is found from the
numerical results that the free vibration of FG-CNTRC conical shell panels is significantly influenced
by the volume fraction and distribution pattern of CNTs, the geometry parameters of the conical
shell, and the boundary condition.

Keywords: FG-CNTRCs; conical shell panels; free vibration responses; 2-D natural element method
(NEM); MITC3+shell element; parametric investigation

1. Introduction

Carbon nanotube (CNT) has attracted great attention as a promising material for
the 21st century thanks to its excellent physical and chemical properties, such as its high
mass-strength ratio. Since its introduction, it has been widely adopted as a next-generation
pillar for polymer composites because the addition of a small amount of CNTs dramati-
cally increases the stiffness of CNT-reinforced composites called CNTRC [1,2]. For use as
mechanical and structural members, CNTRCs are usually developed in the forms of beams,
plates and shells. Later, the thickness-wise distribution pattern of CNTs was purposefully
assumed [1,3] according to the concept of functionally graded materials (FGMs) [4]. In
FGMs, the thickness-wise volume fractions of base materials vary continuously and may
be optimally tailored so as to maximize the target function [5]. The CNTRCs with function-
ally graded CNT distributions through the thickness are called FG-CNTRCs, and several
representative ones, such as FG-U, FG-V, FG-O, FG-X and FG-Λ, were introduced. The
purpose of these FG-CNTRCs was to allow one to choose one among them which is most
suitable for the target performance, and it requires a profound investigation of the me-
chanical characteristics of each FG-CNTRC. In this context, extensive research efforts have
focused on the investigation of mechanical responses such as static bending, free vibration
and buckling. The research works on CNTRCs and FG-CNTRCs would be referred to
the references [6–8].
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The studies on FG-CNTRCs have been made analytically using the shear deformation-
based theories or numerically using the finite element method. However, these studies
have been mostly concerned with beams, plates and cylindrical shells, so that studies on
conical shells have been rarely reported. When compared with beam, plate and cylindrical
shell, the mechanical behaviors of the conical shell are influenced by more parameters such
as semi-vertex angle and sub-tended angle as well as radius, thickness, width and length.
According to the literature survey, Nguyen Dinh and Nguyen [9] numerically investigated
the dynamic response of FG-CNTRC truncated conical shells resting on elastic foundations
using the Galerkin method and the fourth-order Runge–Kutta method. Kiani et al. [10]
analyzed the natural frequencies of FG-CNTRC conical shell panels using the first-order
shear deformation shell theory (FSDT) and Donnell’s theory. Sofiyev et al. [11] presented an
effective analytical solution for the stability problem of FG-CNTRC conical shells exposed
to external lateral and hydrostatic pressure. Chan et al. [12] numerically investigated the
nonlinear buckling and post-buckling responses of FG-CNTRC truncated conical shells
subject to axial load. Ansari et al. [13] investigated the nonlinear vibration response of
FG-CNTRC conical shells using the higher-order shear deformation theory (HSDT) and
von-Karman geometric nonlinearity. Qin et al. [14] presented a unified Fourier series
solution to solve the free vibration of FG-CNTRC conical shells using FSDT in conjunction
with the modified Fourier series and Ritz method. Talebitooti et al. [15] investigated the
frequency behavior of the joined conical–conical panels with functionally graded CNT
reinforcement using FSDT and Hamilton’s principle. Fu et al. [16] presented an accurate
analytical method for investigating the dynamic instability of a laminated FG-CNTRC
conical shell surrounded by an elastic foundation. Xiang et al. [17] presented the free
vibration analysis of FG-CNTRC conical shell panels using the element-free kernel particle
Ritz method to investigate the free vibration characteristics. Hou et al. [18] numerically
investigated the free vibration of FG-CNTRC conical shells with an intermediate ring for
various boundary conditions. Rezaiee-Pajand et al. [19] predicted the natural frequencies
of functionally graded conical shell structures using FSDT and the generalized differential
quadrature method (GDQM).

Meanwhile, the MITC (Mixed-interpolated Tensorial Components) approach has
been widely adopted for the numerical studies of shell structures to alleviate the locking
phenomenon. Lee et al. [20] proposed an effective new 3-node triangle shell finite element
called the MITC3+element to reduce shear locking in the shell element. Lyly et al. [21]
introduced a new quadrilateral element using isoparametric bilinear basis functions for both
rotation and deflection components in order to further stabilize the MITC4 element. Rejaiee-
Pajand et al. [22] presented an efficient six-node triangular element by employing the MITC
approach to numerically analyze nonlinear static and free vibration of uniform distributed
CNTRC structures under in-plane loading. Tran et a. [23] adopted the MITC approach
to an edge-based smoothed finite element method (ES-FEM) to numerically investigate
static bending and free vibration of functionally graded porous variable-thickness plates.
Chau-Dinh [24] presented an enhanced 3-node triangle flat shell element in which new
cell-based smoothed bending strains are derived, and the shear locking is suppressed by
employing the MITC approach.

It can be realized from the literature survey that the free vibration response of FG-
CNTRC conical shell panels has not been sufficiently investigated, particularly the paramet-
ric investigation with respect to the major parameters. In this situation, the main goal of this
study is to profoundly investigate the free vibration responses of FG-CNTRC conical shell
panels by developing a 2-D locking-free reliable and effective numerical method. The nu-
merical method is developed by integrating the 2-D planar natural element method (NEM)
and the MITC approach. NEM is a lastly introduced mesh-free method characterized by
high smooth Laplace interpolation functions [25–27]. The first-order shear deformation
shell theory is used to express the displacement field, and the geometry transformation is
introduced between the physical conical shell surface and the computational 2-D planar
NEM grid. The approach for MITC3+shell finite element [20] is employed to suppress the
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troublesome shear locking for the bending-dominated thin structures [28]. The developed
NEM-based numerical method is verified through the benchmark experiments, and the
free vibration responses of FG-CNTRC conical shell panels are investigated with respect to
the CNT-associated parameters, the conical shell parameters, the sandwich core thickness,
and the boundary conditions.

This paper is organized as follows. Following the introduction, the FG-CNTRC conical
shell panel and its displacement, strain and stress fields are addressed in Section 2. The
natural element approximation of free vibration of FG-CNTRC conical shell panels is
explained in Section 3. The numerical results of benchmark and parametric experiments
are presented and discussed in Section 4, and the final conclusion is given in Section.

2. Modeling of FG-CNTRC Conical Shell Panel

Figure 1a represents a circular conical shell panel reinforced with single-walled carbon
nanotubes (SWCNTs). A coordinate system (x, θ, z) is positioned on the mid-surface of
the panel, and the geometric configuration of the conical shell panel is characterized by
semi-vertex angle α, sub-tended angle θ0, length `, small radius R0 and thickness h. The
radius R(x) of conical shell panel at any point along its length is determined by

R(x) = R0 + xsin α (1)

CNTs are aligned along the x−axis with a specific functionally graded distribution
pattern through the thickness. Four representative distribution patterns of CNTs are
represented in Figure 1b, where CNTs are uniformly distributed in FG-U while CNTs are
rich at the mid-surface in FG-O, rich at the outer shell in FG-X and rich at the inner shell in
FG-Λ, respectively. The volume fractions of CNTs and underlying matrix are denoted by
VCNT(z) and Vm(z) which are in the relation given by

VCNT(z) + Vm(z) = 1 (2)

where the CNT volume fractions VCNT(z) corresponding to the four representative CNT
distribution patterns are expressed as

VCNT(z) =


V∗CNT , FG−U
2(1− 2|z|/h)V∗CNT , FG−O
2(2|z|/h)V∗CNT , FG− X
(1− 2z/h)V∗CNT , FG−Λ

(3)

with
V∗CNT =

wCNT

wCNT + (ρCNT/ρm)− (ρCNT/ρm)wCNT
(4)

Here, wCNT is the mass fraction of CNTs occupied within a unit volume of a conical shell
panel, and ρCNT and ρm denote the CNT density and the matrix density.

As a dual-phase composite material, FG-CNTRC structures are usually modeled
as an orthotropic material, and their effective elastic properties are evaluated using the
homogenization methods such as the liner rule of mixtures by introducing the direction-
wise CNT efficiency parameters ηj(j = 1, 2, 3). The effective elastic and shear moduli of the
FG-CNTRC conical shell panel are calculated according to [3]:

E11 = η1VCNTECNT
11 + VmEm (5)

η2

E22
=

VCNT

ECNT
22

+
Vm

Em (6)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm (7)
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It is assumed that G13 = G12 and G23 = 1.2G12. Meanwhile, the effective density ρ and the
effective Poisson’s ratio ν12 through the thickness are assumed as

ρ = VCNTρCNT + Vmρm (8)

ν12 = VCNTνCNT
12 + Vmνm

12 (9)
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Figure 1. FG-CNTRC conical shell panel: (a) the geometry dimensions, (b) functionally graded 
distribution patterns of CNTs. 
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with ( )Tyx ,,w,v,u ϑϑ000=d  being the vector of displacement components at the 
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Figure 1. FG-CNTRC conical shell panel: (a) the geometry dimensions, (b) functionally graded
distribution patterns of CNTs.

By adopting the first-order shear deformation shell theory, the displacement field
u = {u, v, w}T is expressed as

u
v
w


(x,θ,z)

=


u0
v0
w0


(x,θ)

+ z·


ϑx
ϑy
0


(x,θ)

(10)

with d =
(
u0, v0, w0, ϑx, ϑy

)T being the vector of displacement components at the mid-
surface of the shell panel. Then, the strain–displacement relations based on the coordinate
system (x, θ, z) give

εxx
εθθ

2εxθ

 = ε =


∂u0
∂x

1
R

∂v0
∂θ + u0sinα

R + w0cosα
R

1
R

∂u0
∂θ + ∂v0

∂x −
v0sinα

R

+ z·


∂ϑx
∂x

1
R

∂ϑy
∂θ + ϑxsinα

R
1
R

∂ϑx
∂θ +

∂ϑy
∂x −

ϑysinα
R

 = Hd (11)

{
γθz
γxz

}
= γ =

{
ϑy +

1
R

∂w0
∂θ −

v0
R cosα

ϑx +
∂w0
∂x

}
= Hsd (12)

Here, H and Hs are (3× 5) and (2× 5) gradient-like matrices defined by

H =

Hx 0 0 z·Hx 0
RS Hθ RC z·RS z·Hθ

Hθ (Hx − RS) 0 z·Hθ z·(Hx − RS)

 (13)

Hs =

[
0 −RC Hθ 0 1
0 0 Hx 1 0

]
(14)
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with Hx = ∂/∂x, Hθ = ∂/R∂θ, RS = sinα/R and RC = cosα/R. Then, the constitutive
equations are expressed as

σxx
σθθ

σxθ

 = σ =

Q11 Q12 0
Q12 Q22 0

0 0 Q66


εxx
εθθ

2εxθ

 = DHd (15)

{
τθz

τxz

}
= τ =

[
Q44 0

0 Q55

]{
γθz
γxz

}
= DsHsd (16)

with Q11 = E11/∆, Q22 = E22/∆, Q12 = ν21E11/∆, Q66 = G12, Q44 = G23, Q55 = G13
and ∆ = 1− ν12ν21.

3. Analysis of Free-Vibration Using 2-D NEM

For the free vibration approximation of the FG-CNTRC conical shell panel by 2-D
NEM, the mid-surface v is discretized into a finite number of nodes and Delaunay triangles,
as shown in Figure 2. A coordinate (x, s) is adopted to identify the position on the mid-
surface using the relation of s = Rθ, and Laplace interpolation functions ψJ(x, s) [25,26] are
assigned to each node J. Letting the total number of nodes be N, the NEM approximation
uh(x, s, z) is expressed as

uh

vh

wh


(x,s,z)

=
N

∑
J=1


u0
v0
w0


J

ψJ(x, s) +
N

∑
J=1

z·


ϑx
ϑy
0


J

ψJ(x, s) (17)

with dJ =
(
u0, v0, w0, ϑx, ϑy

)T
J being the nodal vector of displacement components at

node J.
Referring to the references [25,26], the definition of the Laplace interpolation function

and its computation on the conical surface is complex and painstaking. To overcome this
difficulty, the physical NEM grid =C = [0, `]× [−sL, sR] with M triangles on the conical
surface is mapped to the computational NEM grid =R = [0, `] × [−θ0/2, θ0/2] on the
rectangular plane according to the inverse of the geometry transformation TC defined by

TC : (ζ1, ζ2) ∈ =R → (x, s) ∈ =C (18)

where
x = ζ1, s = (R0 + ζ1sin α) ζ2 (19)

Then, Laplace interpolation functions ψJ(x, s) are mapped to ϕJ(ζ1, ζ2), and one can obtain
the inverse Jacobi matrix J−1 given by

J−1 =

[
∂ζ1/∂x ∂ζ1/∂s
∂ζ2/∂x ∂ζ2/∂s

]
=

1
R(ζ1)

[
R(ζ1) 0
−ζ2·sin α 1

]
(20)

for the above geometry transformation. Moreover, the partial derivatives Hx and Hθ in
Equations (13) and (14) are switched to

∂

∂s
= Hθ =

∂ζ1

∂s
∂

∂ζ1
+

∂ζ2

∂s
∂

∂ζ2
=

1
R(ζ1)

∂

∂ζ2
= H2 (21)

∂

∂x
= Hx =

∂ζ1

∂x
∂

∂ζ1
+

∂ζ2

∂x
∂

∂ζ2
=

∂

∂ζ1
− ζ2sin α

R(ζ1)
· ∂

∂ζ2
= H1 − ζ2sin α·H2 (22)

according to the chain rule.
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Figure 2. Laplace interpolation functions ϕJ(ζ1, ζ2) defined on the rectangular plane and their
transformation to ψJ(x, s) on the conical shell surface.

By substituting Equations (21) and (22) into Equations (13) and (14), one can obtain Ĥ
and Ĥs in terms of H1 and H2

T−1
C : H, Hs → Ĥ, Ĥs (23)

according to the inverse transformation T−1
C . Then, the NEM approximations of the

bending–membrane strain ε in Equation (11) and the transverse shear strain γ in
Equation (12) end up with

εh =
N

∑
J=1

ĤϕJdJ =
N

∑
J=1

BJdJ (24)

γh =
N

∑
J=1

Ĥs ϕJdJ =
N

∑
J=1

BJ
sdJ (25)

The transverse shear strains in Equation (25), which are directly computed from
the standard C0−displacement approximation, suffer from shear locking [24,28,29]. To
suppress the shear locking, the transverse shear strains are interpolated by employing the
concept of the 3-node triangular MITC3+shell finite element depicted in Figure 3. Each
element ve in the physical NEM grid =C is to be mapped to the master triangular element
v̂. Moreover, the displacement field is re-interpolated within each element

uh

vh

wh


e

=
3

∑
K=1


u0
v0
w0


e

K

NJ(ξ, η) +
3

∑
K=1

z·


ϑx
ϑy
0


e

K

NJ(ξ, η) (26)

with de
K =

(
ue

0, ve
0, we

0, ϑe
y, ϑe

y

)T

K
being the local nodal vector within ve and NK(ξ, η) being

the linear triangular FE shape functions [30]. Then, the element-wise transverse shear
strains are interpolated as

γ̂e
θz =

2
3

[
γ
(B)
θz −

1
2

γ
(B)
xz

]
+

1
2

[
γ
(C)
θz + γ

(C)
xz

]
+

ĉ
3
(3η − 1) (27)

γ̂e
xz =

2
3

[
γ
(A)
xz −

1
2

γ
(A)
θz

]
+

1
2

[
γ
(C)
θz + γ

(C)
xz

]
+

ĉ
3
(1− 3ξ) (28)
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using the values at the typing points and ĉ = γ
(F)
θz − γ

(D)
θz + γ

(E)
xz − γ

(F)
xz . The analytical

manipulation of Equations (27) and (28) using Equations (12) and (26), together with the
chain rule between two coordinates (s, x) and (ξ, η), leads to

γ̂e = B̂ede (29)

with B̂e being the (2× 15) matrices in terms of ξ, η, z, α and R and de = {de
1, de

2, de
3} being

the (15× 1) element-wise nodal vector.
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Meanwhile, for the free vibration analysis of FG-CNTRC conical shell panels, the
standard Galerkin weak form can be derived from the dynamic form of energy principle [31]∫ h/2

−h/2

∫
v

[
(δε)TDε + (δγ)TDsγ

]
dvdz +

∫ h/2

−h/2

∫
v
(δd)Tmd dv dz = 0 (30)

where m is the (5× 5) symmetric matrix defined by

m = ρ

[
I mT

1
m1 m2

]
, m1 =

[
z 0 0
0 z 0

]
(31)

with the (3× 3) identity matrix I and m2 = diag
(
z2, z2). Substituting Equations (24) and

(28), together with the constitutive relations Equations (15) and (16), into Equation (29)
results in the modal equations given by[(

Kσ +
M

∑
e=1

Ke
s

)
−ω2M

]
¯
d = 0 (32)

to compute the natural frequencies {ωI}N
I=1 and the natural modes

{¯
d I

}N

I=1
. Here, the

stiffness and mass matrices are defined by

Kσ =
∫ h/2

−h/2

∫
v

BTDB dvdz (33)

Ke
s =

∫ h/2

−h/2

∫
ve

B̂TD̂sB̂e dvdz (34)

M =
∫ h/2

−h/2

∫
v

ΦTmΦ dvdz (35)
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In which
¯
d = [d1, d2, . . . , dN ], B = [B1, B2, . . . , BN ], Φ = [Φ1, Φ2, . . . , ΦN ] with

ΦJ = diag
[
ϕJ , ϕJ , ϕJ , ϕJ , ϕJ

]
and D̂s given by

D̂s =
κ

1 + α·(Le/h)2

[
G23 0
0 G13

]
(36)

with the shear correction factor κ = 5/6, the length Le of the longest sides of Delaunay
triangles, and a positive constant α called the shear stabilization parameter [21,24]. The
value of 5/6 is taken for the shear correction factor because the displacement field is
expressed by the FSDT. The value of α is recommended to be 0.1 [21] and taken through the
preliminary experiment. This modification of shear modulus was proposed for the sake of
further stabilization of the MITC3 element. The numerical integration of three matrices is
performed triangle by triangle, and 7 Gauss integration points are used for Kσ and M while
1 Gauss point is used for Ke

s. A flowchart for the free vibration analysis by the present 2-D
NEM-based method is represented in Figure 4.
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Meanwhile, three types of boundary conditions, simply-supported (S), clamped (c)
and free, are given, where S and C are given as

S : v0 = w0 = ϑy = 0 (37)

C : u0 = v0 = w0 = ϑx = ϑy = 0 (38)

at side 1© shown in Figure 2, for example. It is noted that the simply-supported condition
(37) implies that the shell panel is movable [32].

4. Results and Discussion
4.1. Verification

The numerical formulae given in Section 3 were coded in Fortran and integrated
into the NEM program [2,26], which was previously developed for plate-like structures.
The present method was compared with the other reference methods for two completely
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clamped isotropic and one FG-CNTRC conical shell panels, which are represented in
Figure 5. The geometry dimensions of the first example are R0 = 1.0 m, ` = 3.0 m,
h = 0.03 m, α = π/6 and θ0 = π/3, and the elastic modulus, Poisson’s ratio, and the
density are E = 2.1 GPa, ν = 0.3 and ρ = 1150 kg/m3, respectively. The natural frequencies
were normalized as ω̂ = ω`2

√
ρh/D with D = Eh3/12

(
1− ν2) being the flexural rigidity.
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Figure 5. Three conical shell panels taken for numerical experiments: (a) isotropic (example 1),
(b) isotropic (example 2), (c) FG-CNTRC (example 3).

The lowest four natural frequencies were computed for different NEM grid densities
and recorded in Table 1. Referring to Figure 2, the grid density m× n indicates that the
total node numbers are m and m along the ζ2- and ζ2−axes. It is observed that the four
normalized natural frequencies uniformly decrease and show a stable convergence with
a relative difference γ = |∆ω̂|/ω̂ × 100% less than 0.3%. According to this convergence
experiment, the NEM grids with equal or similar density to 21× 21 were used for the
remaining numerical experiments.

Table 1. Convergence of normalized natural frequencies ω̂ = ω`2√ρh/D of the first clamped
isotropic conical shell panel to the grid density.

Mode
Grid Density

13× 13 15× 15 17× 17 19× 19 21× 21 23× 23

1 219.21 215.60 213.55 212.27 211.41 210.80
2 270.25 263.52 260.02 258.14 257.12 256.55
3 321.33 316.65 314.07 312.49 311.44 310.70
4 358.66 353.54 350.94 349.74 349.24 349.06

In Table 2, the lowest four normalized natural frequencies at the grid density 21× 21
are compared with the reference solutions obtained by the numerical methods. Where the
term without locking suppression indicates the numerical results obtained by the present
method in which the transverse shear stiffness matrix Ke

s in Equation (34) is obtained using
the full integration without using MITC3+shell elements. One can see that big errors
occur in the free vibration analysis when the locking is not suppressed, such that the four
normalized natural frequencies are remarkably larger than the reference solutions. On the
other hand, the present method using the MITC approach shows a good agreement with
three reference solutions such that the maximum relative difference is 2.61% at mode 4.
Here, Bardell et al. [33] used the h-p finite element method, Au and Cheung applied the
finite strip method, while Xiang et al. [17] used the element-free kp-Ritz method, respectively.
These three methods used curved meshes, but the present method uses a 2-D planar grid,
which is easier to implement.
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Table 2. Comparison of normalized natural frequencies ω̂ = ω`2√ρh/D of the first clamped isotropic
conical shell panel.

Mode Bardell et al.,
1998 [33]

Au and Cheung,
1996 [34]

Xiang et al.,
2021 [17] Present Without Locking

Suppression

1 209.84 213.4 207.31 211.41 459.36
2 257.11 262.5 255.11 257.12 495.22
3 307.90 314.7 305.62 311.44 555.35
4 351.90 358.6 349.75 349.24 619.71

The second example is the completely isotopic conical shell panel in which the semi-
vertex and sub-tended angles α, θ0 and the thickness h are smaller than those of the first
example. In other words, the second example is close to a clamped very thin plate-like
structure. The geometry dimensions are R0 = 1.0 m, `/s = 0.2, s/h = 1000,α = 7.50 and
θ0 = 200. The material properties are the same as in the first example. The parameter b in
the normalization factor is represented in Figure 1. It is clearly seen that the present method
is in good agreement with the other three numerical methods, such that the maximum
relative difference is 1.53% at mode 3. However, the case without locking suppression
shows big errors such that the four normalized natural frequencies are larger than the
reference solutions. However, the errors are shown to be smaller than those in Table 2
because the membrane deformation decreases as the sub-tended angle θ0 becomes smaller.
In other words, the shell panel becomes a plate-like structure in reverse proportion to θ0 as
represented in Figure 5b, so that the membrane-induced locking becomes less severe. Here,
Lim and Liew [35] employed the Ritz method using the pb-2 shape functions to overcome
the mathematical complexity stemming from the shell geometry, similar to the present
method. However, differing from the present method, they integrated the whole shell as a
single element using the pb-2 shape functions.

It has been justified from Tables 2 and 3 that the present method does not suffer
from shear locking. Moreover, it is worth noting that the present results were obtained
using 2-D planar, not 2-D curved, and coarse NEM grids. The detailed comparison
showing the superiority of NEM against FEM at coarse grids may be referred to in the
previous work [36].

Table 3. Comparison of normalized natural frequencies ω̂ = ωb`
√

ρh/D of the second clamped
isotropic conical shell panel.

Mode Bardell et al., 1998
[33]

Xiang et al., 2021
[17]

Lim and Liew,
1995 [35] Present Without Locking

Suppression

1 235.35 233.39 239.10 236.03 337.67
2 247.45 245.43 251.32 248.84 361.29
3 258.64 256.59 262.61 260.52 397.98
4 269.32 267.23 273.37 269.30 457.46

The third example is FG-CNTRC conical shell panels manufactured with poly (methyl
methacrylate) (PMMA) reinforced with (10,10) SWCNTs. The material properties of the two
materials are presented in Table 4, and the efficiency parameters ηj(j = 1, 2, 3) introduced
in Equations (5)–(7) for PMMA/CNT are given in Table 5, respectively. These material
properties and parameters are referred to the rule of mixture results at the temperature of
T = 300K, which were reported by Han and Elliott [37] and Shen and Xiang [38].
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Table 4. Material properties of FG-CNTRC conical shell panels (1, 2, 3 = x, θ, z).

Materials
Young’s Moduli (GPa) Poisson’s Ratios Shear Moduli (GPa) Density (kg/m3)

E11 E22 E33 ν12 ν23 ν31 G12 G23 G31 ρ

CNT 5646.6 7080.0 7080.0 0.175 - - 1944.5 - - 1400

PMMA 2.5 0.34 0.9328 1150

Table 5. The efficiency parameters ηj for PMMA/CNT for different values of V∗CNT .

V*
CNT η1 η2 η3

0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109

The geometry dimensions are R0 = 0.2 m, ` = 0.8 m, α = 450 and θ0 = 1200, and the
volume fraction V∗cnt of CNTs is set by 0.12. The natural frequencies were normalized as
ω̂ = ω`2

√
ρmh/Em/(2πh) with ρm and Em being the material properties of PMMA. The

fundamental frequencies were computed for three different thickness ratios R0/h, four
different CNT distribution patterns and two different boundary conditions. In Table 6, the
results are compared with the reference solutions, which were obtained by Xiang et al. [17]
using the element-free kp-Ritz method, where SSSS and CCCC indicate that all sides 1©~ 4©
of the shell panel are simply supported and clamped, respectively. It is found that both
methods are in good agreement, such that the maximum relative difference is 4.75% at FG-Λ
for R0/h = 25 and SSSS. From the detailed comparison, it is found that the normalized first
frequencies obtained by the present method are, as a whole, higher than those of the Ritz
method for SSSS and vice versa for CCCC. In addition, it is seen that the relative differences
for SSSS are, as a whole larger than those for CCCC.

Table 6. Comparison of normalized first frequencies ω̂1 = ω`2√ρ/E/(2πh) for the FG-CNTRC
conical shell panels.

Method B.C. R0/h
CNT Distribution Pattern

FG-U FG-O FG-X FG-Λ

Ritz [17]

SSSS
25 7.1582 6.8063 7.5283 6.8247
50 10.9383 10.6914 11.2019 10.6209
100 16.6892 16.3410 16.9865 16.3520

CCCC
25 10.2580 9.3196 11.1090 9.6157
50 14.0268 13.1407 14.8966 13.3853
100 19.9495 19.1304 20.8134 19.3277

Present

SSSS
25 7.4946 7.1102 7.4803 7.1495
50 10.8709 10.4183 11.0825 10.4999
100 17.2480 16.9044 17.5377 16.9233

CCCC
25 10.0308 9.1407 10.7619 9.4352
50 13.6482 12.7137 14.1845 12.9821
100 19.9310 19.1746 20.7438 19.3556

4.2. Parametric Investigation

Next, the free vibration responses of FG-CNTRC conical shell panels are parametrically
investigated with respect to the major parameters. The example shown in Figure 5c is taken
without changing the material properties, but the volume fraction V∗cnt of CNTs and the
geometry dimensions of the shell panel are changed depending on the simulation case. The
effect of the thickness ratio R0/h on ω̂1 is firstly investigated. It is seen from Figure 6a,b
that ω̂1 uniformly increases in proportion to R0/h, regardless of the volume fraction and
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the distribution pattern of CNTs. It is entirely owing to the calibration with the thickness h,
so, actually, ω1 decreases with R0/h because the stiffness of the shell panel decreases as
the thickness h becomes smaller. Meanwhile, ω̂1 uniformly increases with increasing the
value of V∗cnt because the stiffness increase due to the increase of V∗cnt gives rise to more
effect on ω̂1 than the mass increase. This explanation is manifest from the fact that ω̂1
of the non-CNTRC shell panel is much lower. It is found from Figure 6b that ω̂1 is also
influenced by the CNT distribution pattern such that the magnitude order of ω̂1 is FG-X,
FG-U, FG-Λ and FG-O. This is because the stiffness of the shell panel is also affected by the
CNT distribution pattern.
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Figure 7a,b represent the variations of ω̂1 to the semi-vertex angle α for different
CNT distribution patterns and different boundary conditions, respectively. Where CSCS
indicates that two sides 1© and 3© are clamped while the other two sides 2© and 4© are
simply supported, by referring to Figure 2. It is observed that ω̂1 uniformly decreases
with increasing the value of the semi-vertex angle, regardless of the CNT distribution
pattern and the boundary condition. The radius increase of the shell along the x−axis
becomes more apparent as α increases, and accordingly, the stiffness of the shell panel
decreases in proportion to the semi-vertex angle. Meanwhile, it is found from Figure 7b
that ω̂1 is remarkably influenced by the boundary condition such that the magnitude
order of ω̂1 is CCCC, CSCS, SSSS and CFCF. This order is consistent with the order of
boundary constraint.

Figure 8a,b represent the variations of ω̂1 to the sub-tended angle θ0 for different
thickness ratios and different boundary conditions. All the plots in the two figures show
noticeable fluctuations with respect to θ0. It was caused by the sensitivity of numerical
natural frequency to the modification of the NEM grid owing to the change in the circular
shell side length according to the change of θ0. Moreover, this fluctuation is also reported
in the numerical results of Xiang et al. [17]. It is seen from Figure 8a that the variation of
ω̂1 is not remarkable until θ0 decreases to near 300, but thereafter ω̂1 abruptly goes up in
reverse proportion to θ0, regardless of the thickness ratio R0/h. Moreover, the remarkable
difference in ω̂1 between the thickness ratios until near θ0 = 300 becomes negligible as θ0
decreases. It is because conical shell panels approach narrow plate-like structures of zero
curvature as θ0 tends to zero, so the fundamental frequency increases owing to the increase
of structural stiffness. And the calibrated fundamental frequencies of plate-like structures
with different thicknesses approach the same limit as the thickness tends to zero [34,39].
The limit value depends on the boundary condition, as represented in Figure 8b, such that
it becomes larger in proportion to the constraint strength of boundary condition. It is worth
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noting that the variation of ω̂1 is not sensitive to θ0 for CFCF, because two sides 2© and 4©
which are relatively long are not constrained.
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Figure 8. Variation of ω̂1 to the sub-tended angle θ0 (V∗cnt = 0.17, α = 45o, FG-Λ): (a) for different
thickness ratios (SSSS), (b) for different boundary conditions (R0/h = 50).

The free vibration of the FG-CNTRC conical shell panel was investigated with respect
to the shell radius R0. It is observed from Figure 9a,b that ω̂1 shows a uniform decrease
with increasing of the value of R0, regardless of the CNT distribution pattern and the panel
length. It is because the pane stiffness decreases while its total mass increases as the shell
radius increases. However, the decreased slope becomes lower in proportion to the shell
radius. Regarding the CNT distribution pattern, the magnitude order of ω̂1 is the same as
in the previous simulation cases. Meanwhile, it is seen from Figure 9b that ω̂1 uniformly
increases in proportion to `, but which is entirely owing to the calibration with `2. The
non-calibrated fundamental frequency ω1 decreases with increasing the value of ` because
the mass increase is superior to the stiffness increase as the shell becomes longer.
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Figure 9. Variation of ω̂1 to the shell radius R0 (SSSS, V∗cnt = 0.12, R0/h = 25, θ0 = 120o, α = 45o):
(a) for different CNT distribution patterns (` = 0.8 m), (b) for different lengths ` (FG-U).

Next, two types of three-layered symmetric sandwich FG-CNTRC conical shell panels
are considered. One is composed of a PMMA homogeneous core and two FG-CNTRC
faces, and the other consists of a FG-CNTRC core and two PMMA homogeneous faces. The
free vibration response was investigated with respect to the core thickness ratio hc/h. It is
seen, from Figure 10a for the PMMA homogeneous core, that ω̂1 slightly increases with the
increase of hc/h, but thereafter, it drops remarkably as hc/h tends to unity. It is because
the mass decrease is superior for the core increase up to a certain thickness, but a further
increase in core thickness gives rise to a remarkable decrease in panel stiffness. This trend
is shown to be severer as the semi-vertex angle α increases. On the other hand, the CNTRC
core shows a different variation of ω̂1 to the core thickness, as represented in Figure 10b.
The normalized first frequency ω̂1 uniformly increases in proportion to hc/h, and the slope
of the increase becomes higher with the increase of hc/h and α. It is because the increase
of CNTRC core gives rise to the increase of panel stiffness, and this effect becomes more
significant as hc/h and α increase.
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5. Conclusions

The free vibration of functionally graded CNT-reinforced composite (FG-CNTRC)
conical shell panels was analyzed by a 2-D numerical method. The numerical method
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was developed in the framework of the 2-D planar natural element method (NEM) by
introducing a geometry transformation between the shell surface and the planar NEM grid
and by adopting the MITC3+shell element. The benchmark experiments were performed
to validate the developed 2-D NEM-based numerical method. Moreover, the free vibration
responses of FG-CNTRC conical shell panels were profoundly investigated with respect to
the associated parameters. The numerical results draw the following major observations:

• The numerical method reliably and effectively solves the free vibration of FG-CNTRC
conical shell panels without causing shear locking with the maximum relative dif-
ference of less than 5% to the reference solutions, even for coarse and 2-D planar
NEM grids.

• The normalized first frequency ω̂1 increases proportional to the CNT volume fraction
V∗CNT , but it uniformly decreases with increasing the values of semi-vertex angle α and
shell radius R0.

• To the sub-tended angle θ0, the ω̂1 does not show remarkable change except for slight
fluctuation until the decrease of θ0 to a certain value. However, a further decrease
of θ0 causes the sudden increase of ω̂1, except for CFCF. The increased intensity is
dependent on the boundary condition, but it is not sensitive to R0/h.

• The ω̂1 uniformly increases with thickness h and length ` owing to the calibration,
but actually, its non-calibrated value ω1 uniformly decreases proportional to these
two parameters.

• In the symmetric sandwich FG-CNTRC conical shell panels, ω̂1 for the PMMA core
slightly increases and then drops remarkably proportional to hc/h, and vice versa for
the CNTRC core.
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