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Abstract: Metal-organic frameworks (MOFs) are porous crystalline materials assembled from organic
ligands and metallic secondary building blocks. Their special structural composition gives them the
advantages of high porosity, high specific surface area, adjustable pore size, and good stability. MOF
membranes and MOF-based mixed-matrix membranes prepared from MOF crystals have ultra-high
porosity, uniform pore size, excellent adsorption properties, high selectivity, and high throughput,
which contribute to their being widely used in separation fields. This review summarizes the synthesis
methods of MOF membranes, including in situ growth, secondary growth, and electrochemical
methods. Mixed-matrix membranes composed of Zeolite Imidazolate Frameworks (ZIF), University
of Oslo (UIO), and Materials of Institute Lavoisier (MIL) frameworks are introduced. In addition, the
main applications of MOF membranes in lithium–sulfur battery separators, wastewater purification,
seawater desalination, and gas separation are reviewed. Finally, we review the development prospects
of MOF membranes for the large-scale application of MOF membranes in factories.

Keywords: metal-organic framework; MOF membranes; mixed-matrix MOF membranes; MOF
membrane application

1. Introduction

With the continuous development of membrane science, membrane technology has
achieved tremendous development in field concerning chemicals, petroleum, energy,
aerospace, food, and environmental protection. According to the material of the membrane,
membranes can be roughly divided into two categories: organic membranes and inorganic
membranes. Organic membranes mainly include polyethersulfone and polyvinylidene
fluoride membranes, with shortcomings that include a relatively short service life, poor
thermal stability, and low selectivity, which limit the application of polymer membranes in
the field of membrane separation [1]. Meanwhile, inorganic membranes mainly include
ceramic membranes and molecular sieve membranes, which are not easy to prepare and
are fragile [2]. Therefore, new membrane materials need to be developed to meet higher
demands regarding separation performance.

Metal-organic framework (MOF) materials have been favored by researchers since
they were first prepared in 1995 [3]. More recently, MOFs are considered to be one of the
most promising emerging porous materials. MOFs are composed of metal ions and metal
clusters linked with organic ligands. This structure, assembled by strong coordination
bonds, gives MOFs an open, crystalline framework and enables the porosity of MOFs to be
adjusted via the ratio of material compositions [4,5]. Since MOFs have the advantages of
high specific surface area and large porosity, they are suitable for various applications, such
as gas adsorption and energy storage [6]. Therefore, MOF membranes prepared from MOFs
exhibit more excellent performance than conventional membranes in the field of adsorption
and separation due to their unique advantages of high selectivity and permeability.
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Currently, MOFs can be divided into two categories according to the composition
of the membrane. One consists of MOF membranes composed of MOFs only, and the
other concerns mixed-matrix membranes (MMMs) composed of both MOF materials and
polymer materials. These two kinds of membranes have different characteristics. MOF
membranes can be designed with suitable pore sizes according to different separation re-
quirements, while MMMs have the advantages of a filling phase and dispersed phase, and a
simple preparation process. Polymer membranes present a trade-off between permeability
and selectivity in the separation process, such as Robeson’s upper bound. In contrast,
the addition of MOF particles to a polymer can improve both membrane selectivity and
permeability [7]. With the unique microporous structure of MOF materials, MOF-based
membranes have great application prospects in the fields of separation and purification.
Depending on the system of application, separation can be divided into solid–liquid sepa-
ration, liquid separation, and gas separation. The main applications of solid separation are
battery separators [8,9], seawater desalination [10,11], and wastewater separation [12–16].

This review will focus on several methods for the preparation of MOF membranes. In
addition to the conventional methods, several new methods for preparing MOF membranes
are introduced in this review, such as the freezing-assisted in situ growth method and
the electrochemical-assisted in situ growth method. Several MOF-based hybrid matrix
films are presented from the perspective of filling different MOF materials, which include
Zeolite Imidazolate Frameworks (ZIFs), University of Oslo (UIO), and Materials of Institute
Lavoisier (MIL) frameworks. Specific applications of MOF membranes, including on
lithium–sulfur battery separators, wastewater purification, seawater desalination, and gas
separation, are also presented.

2. Preparation of MOF Membrane

Commonly used methods of preparation of MOF membranes include the in situ
growth method [17], secondary growth method [18], and electrochemical methods [19].
Each method has its unique advantages: for example, the in situ growth method can obtain
high-quality single crystals and the preparation method is simple; the secondary growth
method can control the final orientation of the membrane and obtain a dense membrane;
and the electrochemical method requires a lower synthesis temperature (Figure 1) [20–25].

2.1. In Situ Growth Method

The in situ growth method involves directly contacting the reaction solution with the
substrate and growing the MOF membrane on the surface of the substrate. According to
the different substrates, the in situ growth method can be mainly divided into the direct
growth method and the modified substrate method.

2.1.1. Direct Growth Method

The direct growth method involves growing MOF membrane using unmodified
substrates. The heat required for this preparation method is generally provided by the
hydrothermal or solvothermal reaction. In addition, the substrate is directly in contact
with the precursor sol or solution, and MOF crystals are directly nucleated and grown on
the substrate. A previous study confirmed that MOF-5 membranes with good continuity
could be successfully prepared on the surface of unmodified alumina substrates via the
hydrothermal method and solvothermal method [17]. In addition, porous titanium dioxide
was used as a substrate in one previous study. The precursor solution consisted of a mix-
ture of methanolic solution of zinc chloride, 2-methylimidazole, and sodium formate. The
titanium dioxide substrate was immersed in the precursor solution for 20 min and then
heated at 100 ◦C for 4 h. ZIF-8 membranes were obtained after cooling and washing repeat-
edly with methanol [26]. Although the direct synthesis method makes it very simple to
prepare MOF membranes, it is not commonly used due to the lack of nucleation sites on the
substrate, which cannot guarantee tight bonding between the crystal and the substrate [27].
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Figure 1. Various methods of preparing MOF membrane. (a) Preparation of ZIF-100 using
the in situ growth method. (b) Preparation of ZIF-8 membrane using the freezing-assisted in
situ growth method. (c) Preparation of ZIF-95 membrane using the secondary growth method.
(d) Preparation of ZIF-8 membrane using the secondary growth method at a low temperature.
(e) Preparation of MOF membranes by cathodic deposition. (f) Preparation of ZIF-8 membranes by
aqueous cathodic deposition.

2.1.2. Modified Substrates Method

With the deepening of research, some researchers have found that the loose binding
of MOF to a substrate would make the prepared membrane discontinuous. At present,
the modification of the substrate is generally considered to be a more effective method to
improve the bonding of the substrate to the MOF membrane. Commonly used modification
methods include organic modification and inorganic compound modification [27].

Polydopamine (PDA) has often been used as a modifying material in organic mod-
ification methods. The binding effect of PDA is effective in increasing the compatibility
and interaction between the MOF filler and the substrate [28]. In addition, membranes pre-
pared using PDA-modified substrates had better continuity. ZIF-100 has a complex crystal
structure with a high affinity for CO2 and high thermal stability. During the preparation
of ZIF-100 membranes, if ZIF-100 was directly synthesized on an α-alumina substrate, it
was difficult to obtain a continuous ZIF-100 membrane. A previous study demonstrated
that by using PDA-modified α-alumina as the substrate, placing it in an autoclave filled
with a synthetic solution, inducing the thermal reaction of dissolution, and washing with
DMF many times, a continuous ZIF-100 membrane with much denser and thicker mate-
rials could be obtained (Figure 1a) [20]. In addition, some researchers have proposed a
method that can be used to fabricate a ZIF-8 membrane using Zn2+-doped PDA-modified
substrates. ZIF-8 is a widely studied ZIF material, which is probably because of its stability
and flexible framework. It is constructed from Zn2+ and 2-methylimidazole with sodalite
(SOD) topology [29]. For this process, PDA and NaIO4 were dissolved in a buffer solution
as a modification solution of substrates, and the addition of NaIO4 could effectively accel-
erate the precipitation of PDA on substrates. The crystallinity and the degree of order of
prepared ZIF-8 membranes were higher compared with conventional ZIF membranes, and
the synthesis time was significantly shortened due to the effect of Zn2+ [30].

When inorganic compounds were used to modify the substrate, the same inorganic
compound as the metal contained in the MOF membrane was generally selected, because
the inorganic compound could directly participate in the reaction as a metal source. The
previous study found that zinc-based sol was applied to the substrate to obtain ZnO,
and then a ZIF membrane with good thermal stability and good separation performance
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could be obtained. In this method, the ZnO nanorods layer on the substrate had multiple
functions, including providing a metal source, nucleation sites for the growth of ZIF
nanosheet membrane, and anchoring sites between membrane and substrate, which were
conducive to the formation of the stable and continuous orientation of the nanosheet
membrane [31]. In addition, a previous study confirmed the efficient preparation of ZIF
membranes using zinc oxide as the metal source and ammonium oxide as the modifier. The
addition of ammonium oxide can effectively control the orientation of the membrane, while
the self-transformation of ZnO and the auxiliary action of ammonia can achieve ultrathin-
ZIF membranes (50 nm) with good permeability and selectivity to H2 [32]. Therefore, the
use of the same metal oxides as the modification materials can make the combination of the
membrane and the substrate occur more tightly and produce denser membranes, providing
an effective novel method for the preparation of MOF membranes.

The modification of substrates by both organic molecules and inorganic molecules
results in a tighter binding between the membrane and the substrate. The difference is that
in the former, organic molecules can form substrates with nucleation sites and effectively
enhance the binding force with MOF, while the latter penetrates the MOF membrane
through the direct participation of the metal source in the reaction. In addition, the
nanostructure of inorganic molecules increases the surface area of the substrate, provides
initial attachment sites for MOFs, and makes the membrane more inclined to grow on the
substrate surface [27].

In addition to some of the traditional in situ growth methods mentioned above, the
use of other techniques in combination with them has been gradually emerging. An in situ
growth method using freeze-assisted growth has been developed. After the substrate was
immersed in the metal solution, it was frozen with liquid nitrogen and finally immersed
in a 2-methylimi-dazole (Hmim) solution. After freezing, the particles of ZIF-8 grow in
the pores of the substrate, which eliminates the need for a dense separation layer on the
membrane surface. This method proposes a good way of overcoming the disadvantages of
the ZIF-8 membrane in preparation (Figure 1b) [21]. In addition to using freeze-assisted
methods, other researchers have used electrochemically assisted in situ growth. For this
method, the solvent was replaced by metal plates and the metal ions required for the
reaction were supplied by said metal plates. Metal ions were continuously deposited on
the surface of the substrate, and eventually, a continuous film was obtained [33].

2.2. Secondary Growth Method

Most methods aimed at the synthesis of MOF membranes consist of immersing the
substrate in a mixed solution of metal ions and organic ligands so that the MOF membrane
may grow directly on the substrate. However, direct growth can lead to the heterogeneous
nucleation of the prepared MOF substrate, resulting in membrane defects. The secondary
growth method makes it easier to control the final orientation of the membrane and can
produce a more dense and continuous MOF membrane [34].

The secondary growth method first requires seeds to be sown on the substrate, and
after the seed layer is formed, the seed layer grows a continuous MOF membrane after
heating. Some researchers have used metal oxide induction to prepare the seed layer. ZIF-95
has high thermal stability, retains its structural stability at 500 ◦C, and also has a huge cavity
and narrow pore size. Some researchers have successfully prepared ZIF-95 nanosheets as
seeds. The seeds were wrapped in the substrate and then crystallized in an air oven. A
ZIF-95 membrane was obtained after being cleaned with methanol (Figure 1c) [22]. During
the process, a layer of 3-aminopropyltriethoxysilane (APTEs) could be deposited on the
substrate using the mechanism of the reaction between APTEs and alumina substrate. The
substrate was repeatedly immersed in the mixed solution of H2OEt-IPA and Cu(NO3)2
to effectively obtain the seed layer. After secondary growth, the Kgm-OEt membrane
could be obtained. During this process, membranes grown on the APETs-treated substrates
were continuous and defect-free and had an orientation suitable for gas transmission [18].
Some researchers attempted to perform secondary growth at low temperatures. After
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the seed layer was prepared, the precursor solution was prepared in an ice-water bath
environment, after which the seed layer was placed in a low-temperature reaction for
secondary growth. In this preparation process, low temperatures can effectively eliminate
the gap (Figure 1d) [23].

2.3. Electrochemical Method

Compared with other methods, the electrochemical method can be synthesized at
room temperature with low energy consumption, thus meaning it is regarded as a green
synthesis method. In addition, the reaction time is short and the required equipment
is simple and convenient [35]. Recently, electrochemical methods have mainly included
anode synthesis and cathode synthesis [36].

The anode precipitation method mainly uses a high, positive voltage to dissolve
the metal in the anode, and the generated metal ions react with the ligand to obtain the
MOF membrane at the anode [37]. During the preparation of MOF membranes using
electrochemical methods, if the ions in the MOF membrane are high-valent cations, they
may require a high reaction temperature. In a recent study, researchers used a new high-
temperature and high-pressure battery, which could effectively prepare MOF membranes
composed of high-valent cations. The solution used for this method was environmentally
friendly and non-corrosive [19].

When the MOF membrane is prepared by the cathodic deposition method, the metal
source for cathodic deposition is generally obtained by adding metal salts. However,
when preparing MOF films by cathodic precipitation, impurities may be generated, and
even MOF particles cannot be formed. In response to the above problems, the researchers
proposed a method that used hydrogen peroxide to prepare MOF membranes. Hydrogen
peroxide was oxidized to a superoxide in the reaction to deprotonate the OH− ligand,
which could effectively inhibit the co-precipitation of metals and produce a high-purity
MOF membrane (Figure 1e) [24]. In addition, the electrochemical methods used to prepare
MOF membranes cause damage to the environment due to the use of various solvents.
Since the researchers presented a cathodic precipitation method using water as the only
solvent, the resulting membrane was prepared without the use of a supporting electrolyte,
yielding a ZIF-8 membrane with low defect density after only one hour. This presented a
simple and pollution-free method for the preparation of MOF membranes (Figure 1f) [25].

The difference between the cathode synthesis method and the anode synthesis method
is that the metal ions in the cathode synthesis method are not formed by the dissolution
of the electrode, but metal ions are added, and then the OH- generated at the cathode
deprotonates the ligand, making it self-assemble with metal ions on the electrode surface
to form MOFs membranes. The membranes of the anodic deposition method form more
easily on the substrate, while the membranes of the cathodic deposition method form more
easily on the electrodes [38]. The characteristics of the above three synthesis methods are
shown in Table 1

Table 1. Characteristics of the synthesis methods.

Synthesis Methods Advantages Disadvantages Reference

In situ growth method Easy to prepare High energy
consumption [39]

Secondary growth
method

Can produce a more
dense and continuous

membrane

A complex process,
difficult to produce on a

large scale
[34]

Electrochemical method

Easy to prepare and
control membrane

structure by altering the
voltage

It is necessary to ensure
continuous contact

between the metallic
pattern and the power

[37,39]
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3. Mixed-Matrix Membranes

During the use of filtration membranes, the balance between selectivity and permeabil-
ity limits their application. Mixed-matrix membranes (MMMs) can solve this problem very
well and can effectively improve the performance of the membrane by adding different
filler materials. By improving the compatibility of the filler material with the polymer, the
performance of the membrane can be improved. Therefore, the key to the preparation
of mixed-matrix membranes is the selection of the correct combination of filler and dis-
persed phases [40]. MOFs are suitable as filling materials for MMMs due to their adjustable
pore sizes. MOFs are commonly used as filler materials, (including Zeolite Imidazolate
Frameworks, ZIF, University of Oslo, UIO, and Materials of Institute Lavoisier frameworks,
MILs); their advantages and disadvantages are shown in Table 2.

Table 2. Characteristics of common MOF particles.

Type of Filler Crystal Structure Metal Ion Advantage Disadvantage Reference

ZIF Tetrahedral network
structure Zn/Co Thermally and

chemically stable Expensive [29,41–43]

UIO
Three-dimensional

microporous
structure

Zr
Thermal stability,

water stability, good
selectivity to gases

Certain degrees of
ligand defects [44–47]

MIL
Open face-centered
cubic microporous

framework
Al/Cr/Fe High stability, large

specific surface area High cost [48,49]

3.1. Zeolite Imidazolate Frameworks

Zeolite Imidazolate Frameworks (ZIFs) molecular sieve imidazolate framework is a
type of MOF. ZIF is a porous coordination polymer with homogeneous micropores and
large pores in which divalent metal ions are connected to four non-derivative ligands. The
common cations in ZIF are Zn(II) or Co(II) [50]. Due to their excellent thermal stability,
chemical stability and gas adsorption capacity, ZIFs are favored by researchers [51]. ZIF-8
is a suitable nanoparticle to fill polymers in various ZIF crystals. In order to improve
the selectivity of the prepared mixed-matrix membranes, researchers usually add some
materials with excellent properties, such as graphene oxide (GO), to the casting solution.
Some researchers have successfully prepared ZIF-8/GO composites by nucleating ZIF-8
grown on the surface of graphene oxide and used it as a filler phase to prepare hybrid
matrix films. During the separation process, the MOF in the composite acted to enhance
the CO2 affinity of the membrane, and GO acted to limit the diffusion of macromolecules,
both of which increase the selectivity of the membrane for CO2/CH4 by 61% [52].

During the process of membrane preparation, if metal-organic frameworks, such
as ZIF, are directly added to polymers for the preparation of mixed-matrix membranes,
non-selective interfacial voids and insufficient adhesion may occur. One previous study
confirmed that adding ionic liquids can effectively solve the above problems [53]. MOF
particles are modified by ionic liquids, and the modified MOF particles were used to fill
polymers to produce mixed-matrix membranes with efficient CO2 adsorption capacities
(Figure 2) [54]. In addition, to explore the effect of different ionic liquids on mixed-matrix
membranes, ZIF-8 nanoparticles were modified by selecting different loadings of various
types of ionic liquids and using them as filling materials. The study found that filling
ionic liquids with high affinity to be used as modification materials could improve the CO2
selectivity of the prepared mixed-matrix membranes, but excessive loading had little effect
on the performance of the mixed-matrix membranes [55].
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Figure 2. The preparation method used for MMMs.

The addition of MOF particles improved the CO2 permeability of the mixed-matrix
membrane, but at the same time decreased its CO2 selectivity, which might be due to
the poor compatibility between the MOF particles and the membrane. It was found that
amine-functionalized ZIF-8 could effectively improve the permeability and selectivity of
the membrane, which was due to chemical interactions and the effect of the controlled
fence combination that enhanced the selectivity of the membrane for CO2 [56]. In addition,
it was found that the crystal structure and thermal stability of the synthesized NH-ZIF-8
were identical to those of the pure ZIF-8 crystals. By adding it to the polymer Pebax, the
compatibility of ZIF with Pebax was improved, and the modification of amino groups
can also improve the affinity of ZIF-8 for CO2. Therefore, this amino-modified membrane
has higher CO2 permeability and separation performance [57]. The hydrogen bond be-
tween the ammoniated ZIF-8 and the polymer was strengthened, which also increased the
hydrophilicity of the membrane [58].

In addition to using the pure ZIF-8 crystals described above or modified ZIF-8 crystals
as the dispersed phase to prepare mixed-matrix membranes, a new method using core-shell
structures as filler materials has been proposed. By growing one MOF on the surface of
another MOF ionic surface, a core-shell structure MOF crystal is obtained, which has the
excellent properties of both a core structure and a shell structure. For example, ZIF-67 and
ZIF-8 have the same topology, which makes them easy to combine into a core-shell structure,
enabling the preparation of highly permeable mixed-matrix membranes with ZIF-67@ZIF-8
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core-shell structures (Figure 3) [59]. Because the surface of ZIF-67 crystals grew unevenly
in the study that attempted this, the core-shell nanoparticles had higher specific surface
areas and rougher surfaces, which made the connection between crystals and polymers
much stronger, and the mechanical properties of the mixed-matrix membranes were also
significantly improved. In addition, it was found that in the process of preparing the
ZIF-8@ZIF-67 core-shell structure, since the solvothermal method was difficult to control
during the reaction process, the precise layered core-shell structure could not be obtained,
so it was not suitable to use the solvothermal method. However, the core-shell structure
was prepared by the self-assembly method, which could successfully solve this problem
and prepare a mixed-matrix membrane with high performance. In particular, the mixed-
matrix membranes prepared with ZIF-8@ZIF-67 core-shell structures exhibited nearly twice
the performance in terms of H2/CO2 separation performance compared with membranes
prepared from other MOF materials [60].
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3.2. University of Oslo

University of Oslo (UIO) is a type of MOF material. It was usually constructed from
Zr4+ and dicarboxylic acid ligands. UIO-MOF has many active binding sites. Compared
with other MOF particles, UIO-MOF has good thermal and chemical stability as well as
strong hydrodynamic properties [44,47]. Common UIO-MOFs include UIO-66 and UIO-67.
During the preparation of mixed-matrix membranes, to enhance the interaction between
polymers and MOFs, MOFs are often modified to have some specific functional groups.
When using UIO nanoparticles to prepare mixed-matrix membranes, -NH2 is often used
as a modification group. When UIO-66-NH2 is used to fill the polymer, hydrogen bonds
form between the two, making the membrane more compact. Moreover, the UIO-66-NH2
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in the polymer has also been shown to improve the permeability of the membrane because
of the shortcuts for gas provided by UIO-66-NH2 [61]. The amino groups in the modified
nanoparticles can react with functional groups in the matrix or other modified materials,
improving the interaction between the MOF and the polymers. By modifying UIO-66 with
NH2-BDC, imidazole-2-carbaldehyde (ICA) is grafted onto the nanoparticles through the
reaction of amino groups with ICA. In this mixed-matrix membrane, the introduction of
ICA in one study led to an increase in the number of nitrogen atoms on the membrane
surface, which facilitated the incorporation of CO2 [62]. In addition to amination, UIO-
66-NH2 can be further modified by using bromomethylated poly (BPPO) as a coupling
agent to react with the -NH2 group, which could enhance the interaction between the MOF
and the polymer, which in turn has been shown to improve the thermal stability and gas
separation performance of the mixed-matrix membrane [61].

In terms of modifying UIO nanoparticles, in addition to using -NH2 modification,
other materials can be used for modification, such as branched polyethyleneimine (PEI),
polydimethylsiloxane (PDMS), and azobenzene groups. The multiple primary amine sites
on PEI enables it to promote the adsorption of CO2. Therefore, PEI has often been used to
modify porous materials to improve the adsorption performance of materials for CO2. 4,4′-
(hexafluoroisopropylidene) diphthalic anhydride-4,4′-diphenylamine (6FDA-ODA) was
selected as the polymer matrix to successfully prepare a mixed-matrix membrane loaded
with UIO-66-PEI particles with high separation efficiency [63]. PDMS is also a polymer
commonly used in gas separation membranes, but when used with MOF particles, it causes
pore blockage, thus reducing membrane permeability. In a recent study, researchers tried
to use covalent grafting to improve the dispersion of MOF particles in polymers, which
would reduce the clogging of PDMS and MOF. The gas permeability of the membrane
was improved without decreasing the selectivity, and there was no obvious defect on
the surface [64]. When Azo-UiO-66 was used to fill the polymer, the permeability of the
membrane changed depending on the presence or absence of UV irradiation, which was
due to the presence of the azobenzene guest molecule. A mixed-matrix membrane using
Azo-UiO-66 as a filler material was reported. The Azobenzene group in Azo-UiO-66 placed
it in a nitrogen-rich environment, thus reducing its nitrogen affinity and improving CO2/N2
selectivity [65]. Different combinations of UIO-66 hybrid matrix films are shown in Table 3.

Table 3. Mixed-matrix membranes with UIO-66 in different combinations.

Filler Polymer CO2/N2 Selectivity CO2/CH4 Selectivity Loading (wt %) References

UiO-66-NH2@ICA Matrimid 64.7 10 [62]
Azo-UiO-66 Matrimid 40 20 [65]

UiO-66-PEI @pSBMA 6FDA-ODA 60.32 15 [66]
UiO-66-PEI 6FDA-ODA 56.49 15 [63]

UiO-66-NH2
6FDA-ODA

51.6
25 [67]

PES 50.2 15 [61]
UiO-66-Br ODPA-TMPDA 34.5 20 [68]

UiO-66-(OH)2 ODPA-TMPDA 38.9 20 [68]
UiO-66@HNT Pebax-1657 76.26 20 [69]

3.3. Materials of Institute Lavoisier Frameworks

MIL has also been a popular MOF material over recent years. The common MIL today
usually consists of carboxylates and cations. These cations are all trivalent, such as iron,
chromium, and aluminum [49]. MIL is a MOF with high porosity. It also has high thermal
and chemical stability. Currently, most MIL-based mixed-matrix membranes are applied in
the direction of gas separation. For example, MIL-68(Al) has a rich void structure and is
rich in hydroxyl groups in the pore channels, which makes it highly adsorbable to CO2.
Using this property, some researchers have prepared hybrid mechanism membranes with
high CO2/CH4 separation performance, with CO2/CH4 selectivity values of up to 79 [48].
In order to overcome the compatibility problem of fillers in mixed-matrix membranes, some
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researchers have proposed the preparation of gel mixed-matrix membranes, and during
the preparation process, it was found that the addition of MIL-101(Cr) could improve
the mechanical properties of the membranes as well as the gas separation properties
compared with conventional gel membranes. In the subsequent study, it was found that
further modification of MIL-101(Cr) with tripropionin could promote the dispersion of MIL-
101(Cr), thus further improving the separation performance [70]. Some researchers have
attempted to synthesize MIL-101(Al) in carbon nanotubes (CNTs). This new composite
material could improve the selective adsorption of CNTs. By growing MIL-101(Al) in
situ in CNTs, active sites were successfully introduced. The permeability of the prepared
membranes was also improved by using MOF-modified CNTs to fill the polymer, enhancing
the permeability to 2.5 times that of the pure polymer membrane.

4. Application

Due to their excellent separation performance, MOF membranes have been widely
used across various fields in recent years, such as the desalination of seawater, purification
of industrial wastewater, and separation of gases (Figure 4) [51,55]. The application of MOF
in different applicable systems will be described in detail below.
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4.1. Application in Solid and Liquid Phases

In solid–liquid systems, MOFs are mainly used in separators of lithium–sulfur batter-
ies, the purification of wastewater, and the desalination of seawater, as shown in Table 4.
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Table 4. Application of MOF membranes.

Scope of Application Effects References

Lithium–sulfur battery separator Inhibit the shuttle effect of
polysulfides [8,9]

Industrial waste Adsorption of heavy metals and
pollutants in wastewater [12–15]

Seawater Adsorption of salt ions in seawater [10,11]

4.1.1. Battery Separator

The increase in human demand for energy and the polluting impact fossil energy on the
environment has stimulated the development of new energy. Due to the abundant resources,
low cost, and high theoretical specific energy of lithium–sulfur batteries, they are gradually
attracting much attention. However, there are many problems with the applications, which
limit the development of lithium–sulfur batteries. For example, soluble long-chain Li2Sn
is generated during the charging and discharging process of the battery [71]. This long-
chain substance is dissolved in the electrolyte and produces a shuttle effect. In addition,
during the charging and discharging process, due to the uneven deposition of lithium, the
formation of lithium dendrites may pierce the battery separator and cause the battery to
short circuit. These problems severely affect the life and performance of batteries. Therefore,
the separator used in lithium–sulfur batteries not only needs to have certain flexural
resistance and conductivity but also needs to be able to effectively inhibit the shuttle effect
of polysulfides and quickly capture the active material of the positive electrode. Therefore,
MOFs with highly ordered pores, adjustable porosity, and large specific surface areas are
very suitable as ionic sieve materials for the preparation of separators in lithium–sulfur
batteries [72,73].

In recent studies, some scholars have used Mn-BTC MOF, PVDF (polyvinylidene di-
fluoride), and acetone as coating solutions to coat the separators of lithium–sulfur batteries.
Due to the large specific surface areas of the MOF particles, the electrolyte can penetrate
the voids, which improves the conductivity of the separator, with conductivity improving
from 5.1 × 10−4 S·cm−1 with uncoated MOF to 5.6 × 10−4 S·cm−1 with coated MOF. In ad-
dition, the shuttle effect of polysulfides has been shown to be suppressed by the ionic force
generated by COO- in the coating solution, which could effectively suppress the shuttle
effect of polysulfides, thereby improving the charge cycle performance of lithium–sulfur
batteries. The batteries using this separator had a good cycle life, with only a 3.86% loss of
battery discharge capacity after 10 cycles [8].

In addition, polyolefin membranes are often used as battery separators in lithium–
sulfur batteries. Due to the low melting point of polyolefin membranes and high operating
temperatures during charging and discharging, there is a great safety problem. To over-
come this problem, in addition to coating different materials on the original separator
to modify it, choosing a suitable alternative separator material to improve the thermal
stability of the separator has become a research hotspot regarding lithium–sulfur batteries.
One previous study confirmed that the use of MOF materials could effectively produce
high-performance nanofiber membranes loaded with ZIF-67 nanoparticles and Cu-BTC
nanoparticles via electrospinning. Because of the addition of MOF particles, the porosity of
the membrane increased, which was beneficial to improving the penetration and diffusion
of electrolytes, thereby effectively inhibiting the “shuttle effect” and reducing the formation
of dendrites. Additionally, during the charging and discharging process of the battery, the
decomposition of MOF generated carbon particles, which effectively improved the stability
of the membranes. In addition, the fluorinated emulsion in the casting solution reacted
with the lithium salt in the electrolyte. The addition of fluorinated emulsion and MOF
particles could therefore reduce the fiber diameter of the membrane, thereby effectively
improving the electrolyte affinity of the membranes [9].
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4.1.2. Seawater Desalination

The process of removing salt ions from seawater is called seawater desalination.
Although the application of MOF membranes in seawater desalination is still in the de-
velopment stage, it has shown great potential in desalination, nanofiltration, and other
filtration processes involved in seawater treatment [74]. In particular, the new thin-film
nanocomposite (TFN) membrane has limited further wide application due to its high cost,
poor stability, and easy leaching of nanoparticles during use [75]. Some researchers tried
using MOF particles as filler particles for TNF reverse osmosis (RO) membranes. MOF
particles were deposited on the film surface through an atomization-assisted pre-deposition
method, which reduces the time for MOF to be deposited on the membrane. It also im-
proved the chlorine resistance of the membrane, and the salt rejection was still higher
than 93% after being subjected to high-concentration NaClO treatment. When this RO
membrane was used in seawater desalination experiments, a membrane salt rejection of
99.2% and a water flux of 40 L·m−2·h−1 were found [76].

Although reverse osmosis (RO) technology is considered to be a promising desalina-
tion method, the high energy consumption limits its application in the filtration environ-
ment. Pervaporation (PV) technology can not only reduce the energy consumption in the
desalination process but also produce high-purity water compared to RO. However, during
the pervaporation process, the filter membrane was found to be unstable [77]. To solve
this problem, a highly stable and highly selective UIO-66 thin membrane was prepared by
using a secondary growth method to induce the seed layer of UIO-66 with titanium dioxide
with a salt rejection rate of 99.9% and a water flux of 37.4 L·m−2·h−1. The membrane not
only performs well in high-salt and low-salt solutions but also has good stability even
under extreme conditions [11].

4.1.3. Wastewater Purification

Water is one of the most important resources for human beings. With the recent
surge in population, the freshwater resources of the earth are gradually decreasing, and
the number of people in a state of water shortage continues to rise. In addition to the
desalination mentioned in the above section, the purification of domestic and industrial
wastewater has gradually become an effective method used to alleviate the current water
shortage. The purification principle of wastewater is similar to that of seawater desalination,
and the main purpose is to separate impurities such as heavy metals and wastes from
wastewater [10]. In the purification of wastewater, the use of adsorbents such as activated
carbon to remove pollutants is considered a relatively simple method; however, these
adsorbents have poor adsorption efficiency and low selectivity, which cannot meet the
expectations of adsorbents [78]. Research has found that MOF materials have excellent
adsorption performance for heavy metals, which make them a potential heavy metal
adsorbent. Therefore, MOF membranes could effectively purify wastewater [79].

Mercury can be accumulated in the human body through water and food, posing a
serious threat to human health [80]. One previous study confirmed that a MOF membrane
(UIO-66-S), which was prepared using ZrCl4, DMF, and other reagents, could effectively
adsorb mercury in wastewater. The membrane presented excellent mercury removal
efficiency and could remove more than 80% of mercury in wastewater within 20 min.
In addition, the membrane solved the problems of unstable MOF materials and difficult
membrane regeneration during the purification process, so that the MOFs could present
excellent stability and durability. After multiple purifications of wastewater, the mercury
removal rate of the membrane could be maintained above 98% [12].

In addition to mercury, a large amount of lead-containing wastewater is also produced
in industrial production, especially in battery industries. Lead is classified as a pollutant
and is very harmful to humans and plants. Therefore, the treatment of lead-containing
wastewater has become the primary problem facing current wastewater treatment [81].
Some researchers have combined UIO-66-NH2 with ceramic membranes to prepare a
ceramic membrane loaded with modified MOF particles, which effectively removed lead
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from wastewater. Under optimal conditions, the maximum removal rate of lead by this
membrane reached 1795.3 mg·g−1. In addition, the regeneration ability and anti-fouling
ability of the membrane were also excellent, and the pure water flux after the cleaning was
no different from that of the original membrane at 1174 L·m−2·h−1 [13].

Copper has many uses in everyday life, and it may enter water in different ways. Once
copper is excessive in the human body, it can cause various diseases. Therefore, copper
in industrial wastewater also needs to be removed [82]. A method of using Zr-MOF to
fill ceramic membranes to achieve the adsorption of copper ions in wastewater has been
proposed. This membrane can achieve a retention capacity of 988.2 mg·g−1 for copper ions
under optimal conditions, at a pH of 6, a transmembrane pressure of 0.05 MPa, a crossflow
speed of 4.5 m·s−1, and a temperature of 40 ◦C [14].

With the development of the textile industry, the water pollution problem posed
by dyes also needs to be solved urgently. The application of the membrane method to
treat dyes in wastewater is an environmentally friendly method. A method for preparing
nanofiltration membranes with efficient removal of dyes has been developed. One study
found that the gallic acid monohydrate (GA)/ZIF-67 membrane was prepared on the
surface of polyimide (PI), then immersed the membrane in polypyrrole (Py) solution.
Ammonium sulfate was then added as an oxidant to form hydrogen bonds and covalent
bonds between GA and Py. The stability and the rejection rate of the membrane were
effectively improved. Additionally, the addition of MOF increased the water channel of
the selective layer, which greatly improved the water flux of the membrane, with rejection
rates for rose bengal (RB), methyl blue (MB), Congo red (CR), and bromothymol blue (BTB)
of 98.53%, 98.7%, 99.19%, and 80.2%, respectively [15].

In addition, with the rapid development of agriculture, many organic pollutants such
as antibiotics can pollute water sources. Such organic pollutants pose a considerable threat
to both the environmental and human health. Unlike the adsorption method to treat heavy
metals, the photocatalytic method can degrade organic pollutants in water. When MOF
treats wastewater, it is usually separated from the suspension, which is a time-consuming
process. The preparation of MOF membranes with photocatalytic properties can effectively
avoid this process. A nanofiber hybrid membrane carrying NH2-MIL-125 particles has
been used to remove dyes from wastewater. This hybrid membrane can remove up to 56%
and 60.5% of methylene blue(MB) and sodium fluorescein (SF), respectively [83].

4.2. Application in Liquid and Liquid Phase

The main application of MOFs in liquid–liquid systems is oil–water separation. Tra-
ditional oil–water separation methods have obvious shortcomings in dealing with major
pollution, such as large energy loss and low efficiency [84]. Therefore, the development
of an oil–water separation membrane with good separation performance and low cost
of use is in line with the existing major needs. With the rise of MOF materials, many
researchers have realized that MOF materials with good structural characteristics are ex-
tremely suitable for the preparation of oil–water separation membranes. Figure 5 shows the
performance of different MOF-based membranes in oil–water separation as summarized
by a researcher [85].
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4.2.1. Treatment of Machining Oil Wastewater

The anti-fouling ability of a membrane can be significantly improved by introducing
hydrophilic groups. Due to the hydrophilic groups on the surface of modified MOFs,
these membranes have been shown to present high anti-fouling ability and stability during
oil–water separation, as well as good separation performance after multiple cycles. A high-
performance oil–water separation membrane was prepared by self-assembly of modified
MOFs, and the retention rate of the pump oil reached up to 99.9% [86]. In addition,
this study found that the oil–water separation efficiency of the membrane could also be
effectively improved by using a metal-phenolic network (MPN) and MOF materials to
build a multilayer membrane structure. Since the affinity provided by MPN made MOF
particles disperse more uniformly, the water flux after water/pump oil emulsion separation
could be as high as 6300 L/m2 h, and even after five cycles of use, the water flux was
still as high as 5500 L/m2 h [84]. Additionally, some researchers have confirmed the
formation of UIO-66 in graphene oxide (GO) nanosheets using a hydrothermal method
and then modified it with polyacrylic acid (PAA) to prepare MOF membranes by vacuum-
assisted self-assembly. The performance of the filtration membrane could be significantly
improved, and the permeation flux of MOF membranes after pump oil–water separation
reached 5067 L·m−2·h−1·bar−1, which was due to the increase in the distance between the
membranes with the combination of GO and MOF. In addition, due to the introduction of
abundant hydrophilic groups (carboxyl groups) on the membrane surface, the membrane
had good anti-fouling properties, with the water flux of the membrane remaining above
80% of the original flux after three cycles of use [87]. An oil–water separation membrane
with anti-fouling properties was prepared using melamine-modified UIO-66-NH2 (UiO-66-
NH-Mlm) for the preparation of composite membranes. After modification, the number of
-NH2 groups in the membrane increased, thus improving the hydrophilicity. Additionally,
the contamination resistance of the membrane was improved, which was probably because
the addition of MOF reduced the roughness of the membrane surface to retain more than
99% of the oil [88].

4.2.2. Treatment of Edible Oil Wastewater

Kitchen garbage such as edible oil is often discharged into the sewer without treat-
ment, causing huge amounts of damage to the environment [89]. At present, the most
commonly used methods in the treatment of edible oil, such as adsorption, oxidation,
and photocatalysis, all need to consume a lot of energy. Similar to the treatment of oily
wastewater in industry, the membrane treatment method, with its low energy consumption
and simple operation, has gradually become the first choice for treating edible oil [90].

The oil–water separation membrane was prepared with a nanofiber MOF selective
layer built on a polyethersulfone (PES). The nanofibers carried in the separation mem-
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brane provided a flow channel for water molecules, so the membrane permeability was
improved, producing a permeability coefficient of 46.4 L·m−2·h−1·bar−1. Additionally, due
to the good photothermal properties of the nanofibers, the permeability of the membrane
increased to 69.8 L·m−2·h−1·bar−1 in light, and the high charge of the nanofibers gives the
membrane good separation performance. For the simulated waste edible oils produced
from olive oil and sunflower oil, the rejection rates were 97.8% and 97.0%, respectively [90].
To obtain oil–water separation membranes with better separation performance, electro-
spinning was also a commonly used method. Several researchers prepared electrospun
membranes with MIL-100 (Materials of Institute Lavoisier) for the separation of soybean
oil/water mixtures. MIL-100 increased the surface roughness of the membrane, which
made the membrane have good anti-oil fouling performance, and the oil-removal efficiency
of the membrane remained above 99.0% even after five oil–water separation tests. Most
importantly, compared with other oil–water separation membranes, the membrane also pre-
sented good filterability for food additives such as vanillin and amaranth, with a removal
rate of over 99%. Therefore, the membrane presented a highly potential multifunctional
filtration membrane [91].

4.2.3. Treatment of Other Oil Wastewater

In addition to the above-mentioned oil wastewater, there are also some machining
emulsified oil wastewaters, such as kerosene and lubricating oils. These oils will pollute
the environment. In one study, ZIF-8 was etched with TA to obtain TA-ZIF-8, which was
assembled with MXene on a cellulose acetate membrane to produce a composite membrane
with excellent oil–water separation performance, with the retention rate of lubricating
oil in particular reaching 98%. The water flux remained unchanged at 4432.8 L·m−2·h−1,
even after eight cycles [92]. In addition, during the synthesis of MOF materials, due to
the limitations of the method, the prepared MOFs were polyhedral, which limits their
wide application in oil–water separation. The researchers proposed a novel method for
preparing MOF materials to effectively solve the above problems. The copper mesh was
soaked with NaOH solution and K2S2O8 to make Cu(OH)2 in the copper mesh, to grow
MOFs in situ and successfully construct a layered structure. The ultra-wetting membrane
prepared by this method required only a short time and had high separation efficiency and
stability. Even after 20 cycles of use, the separation efficiency of the membrane for kerosene
remained above 98.8% [93].

4.3. Application in Gas and Gas Phase

To address the excessive emissions of greenhouse gases, a common measure is to
capture carbon dioxide from the exhaust gas of power plants [94]. Amine scrubbing is
considered to be an effective method for capturing carbon dioxide, but it has gradually
been replaced by new technologies due to its high price. MOFs have an excellent affinity
for acidic gases and have suitable pore sizes, which enables them to capture CO2 effectively.
They are gradually being applied to gas adsorption, such as to the treatment of the large
amount of CO2 waste gas produced by burning fossil fuels in power plants [95,96].

A membrane-making method combining electrospinning and seed growth could
effectively solve the problem of the low loading of MOF particles during electrospinning.
Due to the increased loading capacity of HKUST-1 on the nanofiber membrane, the CO2
capture capacity has been shown to also be significantly improved. In addition, after
using this membrane for multiple-cycle adsorption, the MOF membrane still had high CO2
adsorption performance, showing high cycle stability and low production costs. These
advantages made this MOF membrane suitable for large-scale applications [97]. In addition,
one previous study confirmed that a polyethylene-chitosan-hydrogel network as the base
material (Figure 6a), and the network structure filled with carbonic anhydrase-modified
MOF material (CA@ZIF-8) could produce a MOF membrane with excellent recyclability
(Figure 6b). This porous structure, shown in Figure 6a, can improve the mass transfer
of both matrix and product. Moreover, as shown in Figure 6b, CA@ZIF-8 can still keep
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its structure intact in this porous structure. The MOF membrane also had an excellent
carbon dioxide capture capacity, which was 20 times higher than that of traditional carbonic
anhydrase materials. Additionally, the MOF membrane exhibited good stability, and the
activity of the membrane could be still maintained at half of the original value after 11
cycles. Moreover, the MOF membrane could be directly recovered after CO2 capture
without complicated operations such as high-speed centrifugation, which reduces the cost
of large-scale applications [98].
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Figure 6. SEM images of (a) a blank PVA/CS hydrogel membrane without CA@ZIF-8, and (b) a
PVA/CS/CA@ZIF-8 composite membrane.

In addition to improving the cyclic stability of the membrane, capture cost can also
be reduced by enhancing the permeability of the membrane to CO2. Commonly used
methods include the modification of filled nanoparticles and the preparation of mixed-
matrix membranes using multiple nanoparticles. In the previous study, filler particles
were modified with PDA to enable them to have good viscosity, and the CO2 capture
capacity of the membrane was greatly improved because PDA inhibited the transport of
non-selective gases in the membrane. Especially, the selectivity of the prepared PDA/UIO-
66 membrane in CO2/N2 was 51.6, which was more than twofold higher than that of other
MOF-loaded membranes. Additionally, the PDA/UIO-66 membrane exhibited high stabil-
ity even under humid conditions, and the permeability of the membrane did not change
significantly within 35 h [99]. In addition, multi-component mixed-matrix membranes were
prepared by selecting the polymer PIM-1 with high permeability and the polymer MEEP
polyphosphazene with good selectivity as the dispersed phase and adding them to the
MOF membrane. As the HKUST-1 reacted with functional groups in the polymer, the CO2
permeability of the membrane was enhanced, which reached as high as 25,670 Barrer. Ad-
ditionally, it was found in adsorption experiments that the balance between the selectivity
and permeability of the membrane was broken, and its value exceeded the Robeson upper
bound. Its superior performance could effectively reduce the cost of application, and the
cost of capturing one ton of CO2 using this MOF membrane was as little as $55/tonne [100].

4.4. Application in Gas and Solid Phase

The main application of MOF in solid–gas systems is the adsorption of solid particles
in the air. With the rapid development of industry, the problem of air pollution has
gradually become serious, and millions of people die every year from diseases caused
by air pollution. Among them, particulate matter (PM) is regarded as the most harmful
powder [101]. Therefore, there is an urgent need to develop a high-efficiency filtration
membrane that can filter particles in the air.
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A MOF membrane that could effectively filter airborne particles has been developed.
The membrane was developed with the use of two plastic syringes for simultaneous elec-
trospinning, and its unique biocomponent effectively improved the mechanical properties
and tensile strength (3.79 ± 0.12 MPa) of the MOF membrane. In addition, the surface
area of the MOF membrane was increased, which caused the PM capture efficiency of the
membrane to be improved. In the capture experiments, the removal rates of PM2.5 and
PM10 reached as high as 90% and 98%, respectively [102]. Additionally, one previous study
confirmed that a MOF membrane with excellent adsorption of air particles could be pre-
pared via the in situ growth of ZIF-67 on SiO2 nanofibrous membranes. Taking advantage
of the structural advantages of the nanofiber membrane, the membrane could not only
adsorb solid particles in the air but also adsorb toxic gases such as SO2. Moreover, since
ZIF-67 was grown in situ rather than doped in the membrane, the contact area between
MOF particles and the adsorbate could be greatly increased. The filtering efficiency of the
membrane could reach 98.9% under the PM2.5 concentration of 1000 µg·m−3. Additionally,
the SO2 adsorption capacity could reach 1234 g/mg [103].

5. Conclusions

Compared with traditional polymer membranes or molecular sieve membranes, MOF
membranes have more excellent properties, such as large specific surface areas and ad-
justable pore sizes. In this article, several typical MOF membrane preparation methods
are reviewed, including the in situ growth method, secondary growth method, and elec-
trochemical method. In situ, the growth method can obtain high-quality single crystals
and the preparation method is simple; the secondary growth method can control the fi-
nal orientation of the membrane, resulting in denser filtration membranes; whereas the
electrochemical method only requires a lower synthesis temperature. In addition, this
article compares and analyzes the MOF materials commonly used in the preparation of
mixed-matrix membranes, including ZIF, UIO, and HKUST. Due to the good stability and
gas adsorption capacity of ZIF, it is currently regarded as the most commonly used filling
material for mixed-matrix membranes. In addition, this article also summarizes the specific
applications of MOF membranes in different fields. Because of the excellent filtration of the
MOF membrane, it has broad application prospects in the fields of seawater desalination
and water purification and can effectively remove heavy metals and organic pollutants
from industrial wastewater; it can also effectively reduce the shuttle effect of lithium–sulfur
batteries through use as a lithium–sulfur battery separator. Its special pore size and porous
structure enables it to effectively capture CO2, thus showing a good application prospect
in controlling the greenhouse effect. Although MOF is widely used at present, it cannot
be used on a large scale, and the production costs of MOF membranes are also high; these
form the problems encountered in the process of MOF membrane development. Therefore,
the selection of MOF membranes prepared using low-cost ligands and the development of
MOF membranes that can adapt to industrial conditions are the current issues that research
into MOF membranes should address.
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