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Abstract: Porous organic polymers (POPs) have plenteous exciting features due to their attractive
combination of microporosity with π-conjugation. Nevertheless, electrodes based on their pristine
forms suffer from severe poverty of electrical conductivity, precluding their employment within
electrochemical appliances. The electrical conductivity of POPs may be significantly improved and
their porosity properties could be further customized by direct carbonization. In this study, we
successfully prepared a microporous carbon material (Py-PDT POP-600) by the carbonization of Py-
PDT POP, which was designed using a condensation reaction between 6,6′-(1,4-phenylene)bis(1,3,5-
triazine-2,4-diamine) (PDA-4NH2) and 4,4′,4′ ′,4′ ′ ′-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (Py-Ph-
4CHO) in the presence of dimethyl sulfoxide (DMSO) as a solvent. The obtained Py-PDT POP-600
with a high nitrogen content had a high surface area (up to 314 m2 g−1), high pore volume, and good
thermal stability based on N2 adsorption/desorption data and a thermogravimetric analysis (TGA).
Owing to the good surface area, the as-prepared Py-PDT POP-600 showed excellent performance
in CO2 uptake (2.7 mmol g−1 at 298 K) and a high specific capacitance of 550 F g−1 at 0.5 A g−1

compared with the pristine Py-PDT POP (0.24 mmol g−1 and 28 F g−1).

Keywords: porous organic polymers; Schiff base condensation reaction; carbonization; gas uptake;
electrochemical performance

1. Introduction

Recently, the development of energy storage technologies to suit the modern needs
of higher energy densities and specific powers is considered to be a hot global concern
within academia and industrial fields [1–10]. Indeed, replacing fossil fuels via the use of
batteries and supercapacitors can diminish severe global warming, in addition to being eco-
friendly [11–15]. Ultra-capacitors or even electric double-layer capacitors are nominated
supercapacitors; both discriminate over classical batteries by their long cycle life as well as
their lightweight, low internal resistance, high power density, low servicing, reasonable
energy density, flexibility, and wide thermal stabilities [16–20]. Due to its benefits, the
supercapacitor has received much interest as a future energy storage technology. According
to the differences in energy storage mechanisms, supercapacitors can be classified as
redox electrochemical capacitors (pseudocapacitors), hybrid capacitors, and electrochemical
double-layer capacitors (EDLCs) [21–27].

Conjugated microporous polymers (CMPs), covalent organic frameworks (COFs),
polymers of intrinsic microporosity (PIMs), and hyper-cross-linked polymers (HCPs) have
been considered as different types of porous organic polymers (POPs) [28–35]. POPs are

Polymers 2023, 15, 1891. https://doi.org/10.3390/polym15081891 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15081891
https://doi.org/10.3390/polym15081891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-0301-8372
https://orcid.org/0000-0001-9097-1377
https://orcid.org/0000-0002-4306-7171
https://doi.org/10.3390/polym15081891
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15081891?type=check_update&version=3


Polymers 2023, 15, 1891 2 of 16

an absorbent material that can be synthesized using many reactions such as the Schiff
base reaction, Suzuki cross-coupling reaction, Sonogashira–Hagihara coupling reaction,
Yamamoto coupling reaction, and Friedel–Crafts reaction [36–46]. POPs are particularly
intriguing because of the unique characteristics of prolonged conjugation with persistent
microporosity [40–46]. The electrical conductivity and pore structure of POPs might
significantly improve with direct carbonization.

Currently, environmental problems have gained massive interest from researchers,
specifically after the modern industrial revolution, and global warming is considered to
be one of these hot problems [47–50]. The term “global warming” refers to the warming
of the earth’s atmosphere and seas as a result of growing greenhouse gas concentrations
brought on by human activities such as burning fossil fuels (coal, oil, and gas) and extensive
deforestation [51–53]. From the beginning of the Industrial Revolution in 1750, carbon
dioxide (CO2), one of the principal greenhouse gases linked to global climate change,
has increased by more than 40%. There were significant environmental issues in May
2021 when atmospheric carbon dioxide levels hit a record high of 419 ppm [54,55]. Thus,
reducing and controlling carbon emissions are pressing global concerns [56–58].

Porous organic polymers, metal–organic frameworks (MOFs), and activated carbons
are frequently used for CO2 capture. POPs have become more popular and are consid-
ered to be possible porous material candidates that could effectively handle the carbon
capture issue due to their simple synthesis and post-functionalization as well as excellent
physiochemical stability and selectivity. POPs offer several benefits as a type of effective
carbon capture material, including: (1) POPs are made of rigid monomers, which give rise
to permanent porosity in the polymers; (2) there are numerous bond formation methods
and cross-linking reactions, which give rise to polymers with different topological struc-
tures and tunable pore structures; (3) the cross-linking of lighter elements is used to create
POPs, which results in polymers with high CO2 mass capacities; and (4) POPs are made of
covalent bonds, giving rise to polymers with good physiochemical stability [35–40]. Thus,
POPs with a specific performance and pore structure could be created to fit the demand
for CO2 capture, energy storage, catalysis, and photocatalysis [34,38]. POPs have been
used as a precursor for porous carbon materials (PCMs) [45]. PCMs derived from POPs
have good properties such as large surface areas, high pore volumes, excellent electrical
conductivity, and good thermal, mechanical, and chemical stabilities, so their preparation
has attracted significant attention. Subsequently, porous carbonaceous materials have
been widely applied in numerous real-life applications such as gas capture, dyes and
iodine capture, fuel cells, electromagnetic interface shielding, catalysis, water treatment
and purification, electrochemical energy storage in batteries and supercapacitors, and gas
separation [40–46].

In this work, we prepared Py-PDT POP through a condensation reaction between
6,6′-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PDA-4NH2) and 4,4′,4′ ′,4′ ′ ′-(pyrene-
1,3,6,8-tetrayl)tetrabenzaldehyde (Py-Ph-4CHO). We then prepared a N-rich porous carbon
material (Py-PDT POP-600), derived from the carbonization of Py-PDT POP at 600 ◦C. The
properties, including the thermal degradation temperature, char yield, molecular structures,
texture, porosity, and crystallinity of Py-PDT POP and Py-PDT POP-600, were investigated
utilizing spectroscopic and microscopic techniques such as thermal gravimetric analysis
(TGA), nuclear magnetic resonance (NMR), solid-state Fourier transform infrared (FTIR),
Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), and scanning
electron microscopy (SEM). Furthermore, the electrochemical analysis was performed using
cyclic voltammetry (CV) and galvanostatic charge−discharge (GCD) to investigate the
impact of carbonization on the capacitive behavior of Py-PDT POP. Furthermore, CO2
uptake was measured to explore the potential application in gas capture. It was found that
the carbonization process was an effective technique to enhance the porosity of Py-PDT
POP, which is extremely helpful for the enhancement of the CO2 adsorption capacity and
capacitive behavior.
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2. Experimental Section
2.1. Materials

4-Formylphenylboronic acid (FP-BO), tetrakis(triphenylphosphine)palladium [Pd(PPh3)4],
2-cyanoguanidine, potassium carbonate (K2CO3), hydrochloric acid (HCl), dimethyl sulfox-
ide (DMSO), 1,4-dioxane (DO), 1,4-dicyanobenzene (BZ-2CN), dimethylformamide (DMF),
anhydrous magnesium sulfate (MgSO4), and potassium hydroxide (KOH) were purchased
from Alfa Aesar Sigma-Aldrich (Saint Louis, MO, USA). The 1,3,6,8-tetrabromopyrene
(Py-Br4) monomer employed in this study was acquired using our reported methods
(Scheme S1) [59].

2.2. Synthesis of 1,3,6,8-Tetrakis(4-formylphenyl)pyrene (Py-Ph-4CHO)

Py-Br4 (2.00 g, 3.86 mmol), FP-BO (23.2 mmol), K2CO3 (4.2 g, 30 mmol), and Pd(PPh3)4
(0.24 g, 0.2 mmol) in dry DO (60 mL)/H2O (20 mL) were added to a reaction flask. The
flask was stirred under nitrogen and kept at 110 ◦C for three days. The obtained yellow
suspension was discharged into a beaker containing H2O. After that, the precipitate was
separated and exposed to washing processes via 2 M HCl (40 mL). The powder was
extracted using CHCl3 (3 × 100 mL) and dried over MgSO4. Furthermore, the solvent was
evaporated using a rotary evaporator and then recrystallized through hot CHCl3 to afford a
pure solid powder with a bright yellow color (Scheme 1a; 1.7 g, 85%). The FTIR (KBr, cm−1;
Figure 1a) were 3061, 1700, and 1598. The 1H NMR data of Py-Ph-4CHO is not provided in
this study due to its poor solubility in all organic solvents. The ssNMR (ppm; Figure 1b):
183 (CHO) and 144–121 (aromatic rings).
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resonance spectroscopy (NMR).

2.3. Synthesis of 6,6′-(1,4-Phenylene)bis(1,3,5-triazine-2,4-diamine) (PDT-4NH2)

A mixture of KOH (1.124 g, 20 mmol) and 2-cyanoguanidine (4.048 g, 48 mmol) in
DMF (160 mL) was added to a flask containing BZ-2CN (1.544 g, 9.2 mmol) in DMF (40 mL).
The flask was magnetically stirred under nitrogen at 130 ◦C for 20 h (refluxing system). The
obtained suspension was washed with MeOH and EtOH many times and dried to afford
PDT-4NH2 as a white powder (Scheme 1b; 75%). The FTIR (KBr, cm−1; Figure 1a): 3300,
3123, and 1547. The 13C NMR (125 MHz, δ, ppm; Figure 1b): 170.65 (d), 168.46 (c), 139.96
(b), and 127.91 (a).

2.4. Synthesis of Py-PDT POP

PDT-4NH2 (0.26 g, 0.87 mmol), Py-Ph-4CHO (0.17 g, 0.27 mmol), and DMSO (20 mL)
were added into a Schlenk flask. The flask was exposed to a thaw cycle three times. The
flask was then heated to 180 ◦C and stirred for three days under nitrogen. After cooling
the flask to room temperature, the product was separated by filtration and washed with
DMF, MeOH, and acetone. The brown powder of Py-PDT POP was dried under a vacuum
at 100 ◦C for 24 h. Finally, Py-PDT POP was obtained as a dark brown powder (70%;
Scheme 2a).

2.5. Synthesis of Py-PDT POP-600

The as-prepared Py-PDT POP was placed in a ceramic boat into a tubular furnace and
carbonized at 600 ◦C for 8 h (heating rate of 5 ◦C min−1) under a N2 atmosphere. After
allowing the tube furnace’s temperature to reach the ambient temperature, the carbonized
product was collected as a black powder and named Py-PDT POP-600 (Scheme 2b).
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3. Results and Discussion
3.1. Synthesis and Characterization of Py-Ph-4CHO, PDT-4NH2, and Py-PDT

Scheme 1 shows the synthesis of the Py-Ph-4CHO and PDT-4NH2 monomers. A
pyrene molecule was reacted with a neat bromine solution in the presence of C6H5NO2 at
an elevated temperature (120 ◦C) to afford Py-Br4 as a light green solid with a high yield
(Scheme S1). The obtained Py-Br4 was insoluble in all organic solvents and used in the next
step without purification. The bands in the FTIR pattern of Py-Br4 centered at 3053 and
682 cm−1 for aromatic C-H and C-Br units (Figure S1). The Py-Ph-4CHO monomer was
synthesized through the Suzuki coupling reaction of Py-Br4 with FP-BO in the presence
of K2CO3/DO/H2O at 110 ◦C for three days to afford a yellow solid (Scheme 1a). The 1H
NMR results of the Py-Br4 and Py-Ph-4CHO monomers are not provided because of their
poor solubility. A reaction of 2-cyanoguanidine with 1,4-dicyanobenzene (BZ-2CN) was
then created in the presence of KOH and DMF to obtain PDT-4NH2 as a white powder
(Scheme 1b). The proton’s signals appeared at 6.8 and 8.3 ppm due to the presence of an
amino group and a phenyl ring in the PDT-4NH2 (Figure S2). Scheme 2a illustrates the
synthetic route for preparing the porous organic polymer named Py-PDT POP from PDT-
4NH2 and Py-Ph-4CHO as building monomers. The Py-PDT POP was constructed through
a Schiff base polycondensation reaction between 6,6′-(1,4-phenylene)bis(1,3,5-triazine-2,4-
diamine) (PDA-4NH2) and 4,4′,4′ ′,4′ ′ ′-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (Py-Ph-
4CHO) in the presence of DMSO at 180 ◦C for 72 h under N2 without using any catalyst
(Scheme 2a). The as-synthesized Py-PDT POP was washed with DMF, DMSO, THF, MeOH,
and acetone to remove the unreacted Py-Ph-4CHO and PDT-4NH2. The Py-PDT POP was
then placed into a tube furnace for calcination at 600 ◦C under N2 for 8 h to afford Py-PDT
POP-600 as a black precipitate (Scheme 2b). Several instrumental techniques (FTIR, ssNMR,
TGA, TEM, SEM, BET, and XPS) were used to characterize our porous Py-PDT POP and
Py-PDT POP-600 materials.



Polymers 2023, 15, 1891 6 of 16

The chemical molecular structure of building monomers (Py-Ph-4CHO and PDT-
4NH2) and the obtained Py-PDT POP were confirmed using solid-state 13C NMR and FTIR,
as presented in Figure 1. Figure 1a displays the FTIR profile (recorded at 25 ◦C) of Py-Ph-
4CHO, PDT-4NH2, and Py-PDT POP. The FTIR spectrum of Py-Ph-4CHO displayed an
absorption band at 3061 cm−1 for the C-H aromatic, 2810 and 2717 cm−1 for the aldehydic
C-H, 1700 cm−1 for C=O, and 1598 cm−1 for the C=C bond. The FTIR spectrum of PDT-
4NH2 showed absorption bands at 3300, 3123, and 1624 for the NH2 group, aromatic C-H,
and C=C bonds. The peaks at ca. 1547 and 1364 cm−1 in the FTIR spectra (Figure 1a)
of PDT-4NH2 and Py-PDT POP indicated the triazine moiety’s existence in the chemical
structure [60,61]. Comparing the FTIR spectrum of the Py-Ph-4CHO monomer and the
as-prepared Py-PDT POP revealed that the characteristic absorption peak intensity of the
aldehydic units became weak in the FTIR profile of Py-PDT POP, indicating a complete
condensation reaction between Py-Ph-4CHO and PDT-4NH2 to afford Py-PDT POP with a
high cross-linking density and aminal linkage. The chemical structures of PDT-4NH2, Py-
Ph-4CHO, and Py-PDT POP were further examined by solid-state 13C NMR measurements
(recorded at 25 ◦C; Figure 1b). The carbon’s signals in the ssNMR of Py-Ph-4CHO centered
at 183 ppm and in the range of 144–121 ppm corresponded with the C=O of the aldehydic
group and aromatic rings (Figure 1b). The carbon peaks of PDT-4NH2 were observed at
168.46 ppm due to the C=N unit in the triazine ring and signals at 139.96 and 127.91 ppm
were attributed to aromatic carbons (Figure 1b). The ssNMR profile displayed peaks at 164
and 129 ppm in Py-PDT POP due to the presence of carbon atoms for the C=N units in
the triazine ring and aromatic carbons, respectively (Figure 1b). To evaluate the thermal
stability of our materials (PDT-4NH2, Py-Ph-4CHO, and Py-PDT POP), we performed
TGA under a N2 stream between temperatures of 40 and 800 ◦C (Figure 1c). The TGA
results revealed that the 10% weight loss values of PDT-4NH2, Py-Ph-4CHO, and Py-
PDT POP were 355, 338, and 320 ◦C, respectively. The char yield estimations at 800 ◦C
for PDT-4NH2, Py-Ph-4CHO, and Py-PDT POP were 35, 34, and 39 wt%, respectively.
Furthermore, the presence of nitrogen, oxygen, and carbon atoms on the surface of Py-PDT
POP was confirmed using an XPS analysis, as displayed in Figure 1d. The XPS profile of
Py-PDT POP showed signals at 284.5 eV, 400.17 eV, and 531.39 eV, which were attributed
to the C atoms of the aromatic rings, N atoms in the triazine units, and O atoms for the
terminal CHO group, respectively. According to the FTIR and TGA results, the information
mentioned above supported the formation of the aminal linkage to construct the Py-PDT
POP framework with good thermal stability. El-Kadri et al. prepared fluorescent NRAPOP-
1 and NRAPOP-2 through aminal linkage for I2 capture and Fe3+ detection [62]. The same
group constructed TALPOP based on anthracene and triazine units for I2 uptake [63].

The BET surface area, pore size diameter, and total pore volume of Py-PDT POP before
the carbonization process were investigated by N2 adsorption/desorption measurements
at 77 K (Figure 2). The N2 adsorption isotherm of Py-PDT POP exhibited minimal N2
uptake at low pressures. It rapidly increased at high pressures, indicating that Py-PDT POP
could be classified as type IV, according to the IUPAC classification. This suggested the
presence of mesopores in the Py-PDT POP framework, as shown in Figure 2a. Moreover,
the value of the BET surface area of Py-PDT POP was calculated from the N2 adsorp-
tion/desorption isotherm, which was 76 m2 g−1, with a total pore volume of 0.2 cm3 g−1.
The nonlocal density functional theory (NLDFT) was used to determine the pore diameters
from their sorption isotherms. The pore size profile of Py-PDT POP peaked at 2.5, 5.4, and
8.8 nm, indicating that Py-PDT POP contained mesopore structures, based on the pore size
(Figure 2b).
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confirm the compositions and different elements in the chemical structures of Py-PDT 
POP. Figure 3d–g show evidence of carbon, nitrogen, and oxygen atoms distributed in the 
Py-PDT POP skeleton. The HR-TEM images (Figure 3h,i) showed the existence of bright 
and alternating dark patches, which likely suggested that Py-PDT POP included porous 
networks. 

 

Figure 2. N2 adsorption/desorption (a) and pore size (PSD) curves (b) of Py-PDT POP.

Moreover, we examined the morphology of Py-PDT POP using high-resolution trans-
mission electron microscopy (HR-TEM) and field emission scanning electron microscopy
(FE-SEM). Py-PDT POP contained aggregated particles with pores, based on the FE-
SEM imaging (Figure 3a–c). SEM-EDS (energy-dispersive X-ray scattering) was used
to confirm the compositions and different elements in the chemical structures of Py-PDT
POP. Figure 3d–g show evidence of carbon, nitrogen, and oxygen atoms distributed in
the Py-PDT POP skeleton. The HR-TEM images (Figure 3h,i) showed the existence of
bright and alternating dark patches, which likely suggested that Py-PDT POP included
porous networks.
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3.2. Porosity, Thermal Stability, and Morphology of Py-PDT POP-600

As shown in Figure 4a, Py-PDT POP-600 exhibited a fast N2 capture ability at low
pressures, indicating micropores in the material. Furthermore, it continued to increase
for N2 adsorption at high pressures with a hysteresis loop, suggesting the presence of
mesopores in this material. Based on the IUPAC nomenclature, the adsorption/desorption
isotherm of Py-PDT POP-600 possessed both types I and type IV. The BET surface area
of Py-PDT POP-600 was calculated to be 314 m2 g−1. The pore size distribution (PSD)
of Py-PDT POP-600 was determined by applying the nonlocal density functional theory
(NLDFT). The pore size distribution (PSD) curve (Figure 4b) showed that Py-PDT POP-
600 possessed both micropores and mesopores (average diameters of 1.9 and 2.7 nm,
respectively). Compared with the precursor Py-PDT POP, the porosity of Py-PDT POP-600
was considerably enhanced. Furthermore, we used TGA to examine the thermal stability of
Py-PDT POP-600 (Figure 4c). The degradation temperature of Py-PDT POP-600 after losing
10% of its original weight was 769 ◦C. Moreover, the char yield for Py-PDT POP-600 was
90 wt%. The TGA results implied the outstanding thermal stability of Py-PDT POP-600;
this was also attributed to the carbonization process of the as-prepared Py-PDT POP, which
granted our materials sheet-like structures and, consequently, a higher stacking effect
between the layers.
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Figure 4. N2 adsorption/desorption (a), pore size (PSD) (b), and TGA (c) curves of Py-PDT POP-600. 

SEM and TEM analyses were used to examine the morphology of our porous Py-PDT 
POP-600. The SEM images of Py-PDT POP-600 revealed an aggregation and sheet struc-
ture (Figure 5a,b). SEM-EDS was used to confirm the compositions and different elements 
in the chemical forms of Py-PDT POP-600. The data showed the presence of C, N, and O 
atoms distributed in the Py-PDT POP-600 skeleton (Figure 5c–f). Furthermore, the TEM 
images of Py-PDT POP-600 elucidated the rod-like and microporous structures (Figure 
5g–i). As expected, the amorphous forms of both Py-PDT POP and Py-PDT POP-600 were 
revealed through the XRD analysis. 

Figure 4. N2 adsorption/desorption (a), pore size (PSD) (b), and TGA (c) curves of Py-PDT POP-600.

SEM and TEM analyses were used to examine the morphology of our porous Py-PDT
POP-600. The SEM images of Py-PDT POP-600 revealed an aggregation and sheet structure
(Figure 5a,b). SEM-EDS was used to confirm the compositions and different elements in the
chemical forms of Py-PDT POP-600. The data showed the presence of C, N, and O atoms
distributed in the Py-PDT POP-600 skeleton (Figure 5c–f). Furthermore, the TEM images
of Py-PDT POP-600 elucidated the rod-like and microporous structures (Figure 5g–i). As
expected, the amorphous forms of both Py-PDT POP and Py-PDT POP-600 were revealed
through the XRD analysis.
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Figure 5. SEM (a,b), EDS-SEM (c–f), and TEM (g–i) images of Py-PDT POP-600.

3.3. CO2 Uptake Performance for Py-PDT POP and Py-PDT POP-600 at 298 K

Global warming is one of the severe consequences of industrial revolutions, so re-
searchers continue to strive to find suitable solutions to minimize these environmental
issues. As previously reported, the carbonization process at a higher temperature un-
der N2 gas could enhance the CO2 uptake performance of the POP materials. As a
result, we performed the calcination process for Py-PDT POP at 600 ◦C for 8 h to pro-
duce a black solid (Py-PDT POP-600), as indicated in Scheme 2b. According to the
BET results, the resulting Py-PDT POP-600 material showed a larger pore volume, a
higher surface area, and microporous characters compared with the pristine Py-PDT
POP precursor. The CO2 isotherm measurements determined the CO2 uptake perfor-
mance of Py-PDT POP and Py-PDT POP-600 at 298 K (Figure 6a). Py-PDT POP showed
a low CO2 uptake of 0.24 mmol g−1. On the other hand, Py-PDT POP-600 showed an
improvement in CO2 uptake. As expected, Py-PDT POP-600, with the highest BET
surface area, offered the most increased CO2 uptake of 2.7 mmol g−1. As presented in
Figure 6b, the CO2 capacity of Py-PDT POP-600 (2.7 mmol g−1) was higher than that
of BZPh-A (1.44 mmol g−1) [64], UFK-550-0.1 (1.6 mmol g−1) [65], N-doped porous CNF
(1.78 mmol g−1) [66], MFC-650-0.1 (2.06 mmol g−1) [67], MFC-750-0.1 (2.31 mmol g−1) [67],
and UFK-550-0.1 (2.47 mmol g−1) [65].
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Figure 6. CO2 capacity (a) of Py-PDT POP and Py-PDT POP-600 and their performance compared 
with other materials (b). 

3.4. Electrochemical Performance of Py-PDT POP and Py-PDT POP-600 
As mentioned above, supercapacitor-based electrodes are challengeable nowadays; 
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sized Py-PDT POP and Py-PDT POP-600 were estimated using cyclic voltammetry (CV) 
and galvanostatic charge−discharge (GCD) measurements, based on a three-electrode sys-
tem incorporating glassy carbon, a platinum electrode, and Hg/HgO as the working, 
counter, and reference electrodes, respectively (Figure 7). The CV plateaus of Py-PDT POP 
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demonstrating its steady terms of the current sweep and revealing its capacitive feature 
to EDLC [41,42,61,68]. The CV plot of Py-PDT POP at a higher scan rate implied a sym-
metrical quasi-rectangular shape, elucidating its EDLC nature. Conversely, Py-PDT POP-
600 (Figure 7b) showed a superior integrated rate, corresponding with a higher former 
capacitance than pristine POP. This result was attributed to the poor electrical conductiv-
ity of the pristine Py-PDT POP. The GCD measurements of Py-PDT POP and Py-PDT 
POP-600 at different current densities were investigated to evaluate their electrical capac-
itance performance. As emphasized by Figure 7c,d, the GCD plots of Py-PDT POP and 
Py-PDT POP-600 at various current densities implied a semi-triangular shape, conse-
quently revealing the EDLC mechanism within their energy storage. 
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with other materials (b).

3.4. Electrochemical Performance of Py-PDT POP and Py-PDT POP-600

As mentioned above, supercapacitor-based electrodes are challengeable nowadays;
these devices also consider a green energy storage methodology. Encouraged by our synthe-
sized material’s physical and chemical features and carbonized form, we investigated their
electro- and capacitance behaviors. The electrochemical performances of our synthesized
Py-PDT POP and Py-PDT POP-600 were estimated using cyclic voltammetry (CV) and
galvanostatic charge−discharge (GCD) measurements, based on a three-electrode system
incorporating glassy carbon, a platinum electrode, and Hg/HgO as the working, counter,
and reference electrodes, respectively (Figure 7). The CV plateaus of Py-PDT POP repre-
sented numerous scans between 5 and 200 mV s−1 within a potential window of −1.0 to
0.0 V relative to Hg/HgO as a reference electrode. As shown in Figure 7a, Py-PDT POP
could derive quasi-rectangular CV shapes in addition to palpable humbling and harmony,
demonstrating its steady terms of the current sweep and revealing its capacitive feature to
EDLC [41,42,61,68]. The CV plot of Py-PDT POP at a higher scan rate implied a symmetri-
cal quasi-rectangular shape, elucidating its EDLC nature. Conversely, Py-PDT POP-600
(Figure 7b) showed a superior integrated rate, corresponding with a higher former capaci-
tance than pristine POP. This result was attributed to the poor electrical conductivity of the
pristine Py-PDT POP. The GCD measurements of Py-PDT POP and Py-PDT POP-600 at
different current densities were investigated to evaluate their electrical capacitance perfor-
mance. As emphasized by Figure 7c,d, the GCD plots of Py-PDT POP and Py-PDT POP-600
at various current densities implied a semi-triangular shape, consequently revealing the
EDLC mechanism within their energy storage.
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As we expected, the specific capacitance of Py-PDT POP-600 at a current density of 
0.5 A g−1 was 550 F g−1, which was considered to be much higher than Py-PDT POP (28 F 
g−1 at 0.5 A g−1) (Figure 8a). We compared our Py-PDT POP-600 with other carbon porous 
materials and their derivatives, such as carbons derived from peach gum, hollow carbon–
MoS2 carbon nanoplates, lignin-based and cellulose hydrogels, carbon composite and rep-
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and carbon nanotubes (CNTs), and others [61,69–80]. The electrochemical performance of 
our Py-PDT POP-600 displayed an excellent electrochemical character (Table S1) [61,69–
80]. The superb performance of Py-PDT POP-600 in energy storage applications was due 
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tigated through cycling processes for 2000 cycles at a current density of 10 A g−1. As shown 
in Figure 8b, both Py-PDT POP and Py-PDT POP-600 showed capacitance retention of 84 
and 96%, respectively. Accordingly, the Ragone plots of our materials (Figure 8c) empha-
sized that Py-PDT POP-600 possessed a maximum energy density of 76.38 Wh Kg−1, which 
was higher than pristine Py-PDT POP, which was 3.77 Wh Kg−1. Electrochemical imped-
ance spectroscopy (EIS) investigations of the Py-PDT POP- and Py-PDT POP-600-based 
electrodes helped us to emphasize their kinetic behaviors. Nyquist graphs of the Py-PDT 
POP and Py-PDT POP-600 precursors implied small semi-circles at higher frequencies and 
a semi-straight line at lower frequencies (Figure 8d). The latter represented a lower re-
sistance than the former, which revealed the lower resistance of Py-PDT POP-600. The 
lower resistance of Py-PDT POP-600 may have been due to the higher offering surface 
area of the electrode, consequently improving the surface wettability; hence, this en-
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As we expected, the specific capacitance of Py-PDT POP-600 at a current density of
0.5 A g−1 was 550 F g−1, which was considered to be much higher than Py-PDT POP
(28 F g−1 at 0.5 A g−1) (Figure 8a). We compared our Py-PDT POP-600 with other carbon
porous materials and their derivatives, such as carbons derived from peach gum, hollow
carbon–MoS2 carbon nanoplates, lignin-based and cellulose hydrogels, carbon composite
and replicas obtained from a hybrid layered double hydroxide active container, tannic
acid (TA), and carbon nanotubes (CNTs), and others [61,69–80]. The electrochemical
performance of our Py-PDT POP-600 displayed an excellent electrochemical character
(Table S1) [61,69–80]. The superb performance of Py-PDT POP-600 in energy storage
applications was due to its high N content, surface area, pore volume, pore size, and
prolonged conjugated structure [61,68]. The long-term stability of Py-PDT POP and Py-
PDT POP-600 was investigated through cycling processes for 2000 cycles at a current
density of 10 A g−1. As shown in Figure 8b, both Py-PDT POP and Py-PDT POP-600
showed capacitance retention of 84 and 96%, respectively. Accordingly, the Ragone plots
of our materials (Figure 8c) emphasized that Py-PDT POP-600 possessed a maximum
energy density of 76.38 Wh Kg−1, which was higher than pristine Py-PDT POP, which was
3.77 Wh Kg−1. Electrochemical impedance spectroscopy (EIS) investigations of the Py-PDT
POP- and Py-PDT POP-600-based electrodes helped us to emphasize their kinetic behaviors.
Nyquist graphs of the Py-PDT POP and Py-PDT POP-600 precursors implied small semi-
circles at higher frequencies and a semi-straight line at lower frequencies (Figure 8d). The
latter represented a lower resistance than the former, which revealed the lower resistance
of Py-PDT POP-600. The lower resistance of Py-PDT POP-600 may have been due to the
higher offering surface area of the electrode, consequently improving the surface wettability;
hence, this enhanced the access of electrolyte ions to the current electrode.
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4. Conclusions

In summary, Py-PDT POP was constructed and designed by reacting Py-Ph-4CHO
with PDT-4NH2 in DMSO at 180 ◦C (free metal Schiff base condensation reaction). The
molecular structure and thermal stability of the building units (Py-Ph-4CHO with PDT-
4NH2) and the Py-PDT POP framework were carefully investigated through ssNMR,
FTIR, and XPS measurements. The porosity property of Py-PDT POP was successfully
enhanced through a carbonization approach at 600 ◦C for 8 h to access Py-PDT POP-600
as a black solid with a high surface area (314 m2 g−1), high Td10 (769 ◦C), and high carbon
residue (90 wt%), based on BET and TGA results. For the CO2 uptake and supercapacitor
applications, the as-prepared Py-PDT POP-600 showed excellent performance in CO2
uptake (2.7 mmol g−1 at 298 K), a high specific capacitance (550 F g−1 at 0.5 A g−1),
and retention stability (96%) compared with the Py-PDT POP framework. Therefore,
the carbonization process improved the pore structure and significantly increased the
POP electrochemical performance and CO2 capture. The obtained materials and findings
presented here indicated that the multifunctional Py-PDT POP-600 precursor is an excellent
candidate for gas adsorption and energy storage. Creating porous Py-PDT POP-600 by
linking heteroatom-rich building units may open the door to creating innovative materials
for various applications, including dyes and iodine absorption.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15081891/s1, Scheme S1: Synthesis of Py-Br4; Figure S1:
FTIR spectrum of Py-Br4; Figure S2: 1H NMR profile of PDT-4NH2; Table S1: Comparison between
the capacity values of Py-PDT POP-600 with different reported data of three-electrode supercapacitor
materials [61,69–80].

https://www.mdpi.com/article/10.3390/polym15081891/s1
https://www.mdpi.com/article/10.3390/polym15081891/s1
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